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Abstract

In this work, we shall present some arithmetical and topological properties of Ising automata.
More precisely, we shall study many di4erent notions, such as faithful and strictly faithful
automata, factor and product automata, irreducible and weakly irreducible automata, prime au-
tomata, homogeneous automata, minimal automata, invertible automata, etc., and discuss their
related properties. We shall also de6ne and study three di4erent topologies over the set of all
minimal automata, and discuss the topological closure property of automatic sequences. As appli-
cation, we shall use the obtained results to give a somewhat detailed analysis of Ising automata.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Ising model introduced by Ising in the early 1920s concerns the physics of
phase transitions, which occur when a small change in a parameter such as tempera-
ture or pressure causes a large-scale qualitative change in the state of a system. Phase
transitions are common in physics and familiar in our daily life: for instance, it is well
known that a phase transition occurs to water whenever the temperature drops below
0◦C or rises to 100◦C. There are also many other examples such as the formation of
binary alloys, and the phenomenon of ferromagnetism. The latter also has a historical
interest: originally Ising recurred to his model for a good understanding of ferromag-
netism, and especially spontaneous magnetization (see [21]). To know more on this
subject, the reader can consult for example the excellent survey [12] and its references.
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In this work, we shall only concentrate our attention to a very special case of
the above model: the one-dimensional inhomogeneous Ising chain (see for example
[16,15,4]). It occurs that this chain is tightly related to the so-called Ising automata
discovered by MendHes France [26] (see also [3,27]), and many properties of it can be
studied via the latter (see [4,22]). In other words, any property of the latter reIects that
of the 6rst, and it is our main purpose here to exhibit some arithmetical and topological
properties of these automata. More precisely, we shall study many di4erent notions,
such as faithful and strictly faithful automata, factor and product automata, irreducible
and weakly irreducible automata, prime automata, homogeneous automata, minimal
automata, invertible automata, etc., and discuss their related properties. We shall also
de6ne and study three di4erent topologies over the set of all minimal automata, and
discuss the topological closure property of automatic sequences. As application, we
shall use the obtained results to give a somewhat detailed analysis of Ising automata.
As the careful reader can observe, our study is strongly inspired and inIuenced by that
of Kamae and MendHes France [22].

The paper is organized as follows. After having recalled in Sections 2 and 3 some
basic de6nitions and notations, we give in Section 4 a characterization of strictly faithful
automata which is similar to that of faithful automata in [26]. Then we introduce
in Section 5 the notions of irreducible automata, weakly irreducible automata, and
prime automata, and discuss the problem of factorization of a 6nite automaton in these
“simple” automata. In Section 6, we characterize homogeneous automata by their factor
properties, and show that an irreducible (thus weakly irreducible) automaton is not
necessarily prime although a prime automaton is always weakly irreducible. In Section
7, we show a necessary condition for automatic sequences to be linearly dependent,
and we give in Section 8 a detailed study on invertible automata. We discuss the
topological aspect of 6nite automata in Section 9, and give a suMcient condition for the
weak limit of automatic sequences to be still automatic. The main results of this work
are presented in Section 10 where we analyze the factor structure of Ising automata,
and discuss their continuity. Finally we list some open problems in the last section.

2. Words over an alphabet

Let A be a 6nite nonempty set. We call it an alphabet and denote by Card(A) the
number of elements in A. Each member of A is called a letter, and we 6x � an element
not in A, called the empty word over A.

Let N= {0; 1; : : :} be the set of all natural numbers and let n∈N. If n= 0, we de6ne
A0 := {�} and in the contrary case, we denote by An the set of all 6nite sequences with
terms in A of length n. Finally we set

A∗ :=
+∞⋃
n=0

An and QA := A∗ ∪ AN:

An element w in QA is called a 6nite word if w∈A∗ and an in6nite word if w∈AN,
and the length of w is denoted by |w|. More precisely, we have |w|= n if w∈An, and
|w|= + ∞ if w∈AN. In particular, we have |�|= 0.
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Let w= (w(n))06n¡|w| ∈A∗ and v= (v(n))06n¡|v| ∈ QA be two words over A. The
concatenation or product between w and v, denoted by w ∗ v (or more simply by wv),
is again a word of length |w| + |v| over A, de6ned as follows:

(w ∗ v)(n) =
{
w(n) if 0 6 n ¡ |w|;
v(n− |w|) if |w|6 n ¡ |w| + |v|:

Therefore, w�= �w=w for all w∈A∗. Clearly (A∗; ∗) is a monoid with � as the identity
element, and by induction, we can also de6ne the product of a 6nite or even an in6nite
number of words over A. Thus every w= (w(n))06n¡|w| ∈ QA can be represented by a
6nite or an in6nite product

w =
|w|−1∏
n=0

w(n) := w(0)w(1) · · ·

and every pre6x of w can be written as w[0; n] :=w(0) · · ·w(n), with 06n¡|w|.
Let w= (w(n))06n¡|w| and v= (v(n))06n¡|v| be two words over A. We de6ne

dA(w; v) = 2− max{06n6min(|w|;|v|)|w(j)=v(j);06j¡n}

if w 
= v, and dA(w; v) = 0 if w= v. Clearly dA is a metric over QA. Endowed with this
metric, QA becomes a compact metric space and contains A∗ as a dense subset. Finally
we remark that AN is a compact subspace of QA.

3. Finite automata and automatic sequences

We begin with the de6nition of 6nite automaton (see for example [17,13]).
Let 
 be an alphabet which contains at least two elements. A 6nite automaton over


 (called 
-automaton) is a quadruple A= (S; i; 
; t) which consists of
• an alphabet S of states; one of the states, say i, is distinguished and called the initial

state.
• a mapping t : S ×
→ S, called the transition function.

For all s∈ S, put t(s; �) = s. Then extend t over S ×
∗ (denoted still by t) such
that t(s; ��) := t(t(s; �); �), for all s∈ S and �; �∈
∗. The 6nite 
-automaton A also
induces a mapping (denoted again by A) from Q
 to QS de6ned by

(A�)(m) := t(i; �[0; m]) = t(i; �(0) · · · �(m))

for all �∈ Q
 and m∈N (0 6 m¡|�|).
It is useful to give a pictorial representation of A= (S; i; 
; t). States will be rep-

resented by points or nodes or vertices. For all s∈ S and �∈
, we link s to t(s; �)
by a (directed) arrow, labelled �. This arrow (also called edge) is said of type �
and denoted by (s; �; t(s; �)) (i.e., treated as an element in S ×
× S) where s is the
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starting-point, � is the label or type of the arrow and t(s; �) is the endpoint. In the
following, we shall constantly identify A with its graph (and we use a vertical incident
arrow to mark the initial state). Then S becomes the set of vertices and 
 becomes
the set of labels or types of arrows.

Let r; s be two states of A= (S; i; 
; t). We say that s is accessible from r if there
exists �∈
∗ such that s= t(r; �). So s is accessible from itself for t(s; �) = s. A state
of A is said accessible if it is accessible from the initial state i, and we call A an
accessible (resp. strictly accessible) automaton if every state of A is accessible (resp.
for all states a and b; a is accessible from b and vice versa). From now on, all 6nite
automata in discussion will be supposed (implicitly) accessible.

Let o be a mapping de6ned on S with values in some given set. We shall call
the couple (A; o) = (S; i; 
; t; o) a 6nite 
-automaton with output and o the output
function of A. Just like the 6nite 
-automaton A, this couple also induces a mapping
(denoted still by (A; o)) from Q
 to o(S) such that

∀� ∈ Q
 and ∀m ∈ N (0 6 m ¡ |�|) we have (A; o)(�)(m) := o((A�)(m)):

These two mappings A and (A; o) will be the kernel of our present study. Finally
we denote by Card(A) the number of states of A (i.e., Card(S)), by AUT(
) the
set of all 6nite 
-automata, and by AUTO(
) the set of all 6nite 
-automata with
output. Remark that every 6nite 
-automaton A= (S; i; 
; t) can be looked as a 6nite

-automaton with output (the output function is the identity mapping idS), so we can
always treat AUT(
) as a subset of AUTO(
).

Let p¿2 be an integer. Let 
p := {0; 1; : : : ; p − 1}. A sequence u= (u(n))n¿0 will
be called a p-automatic sequence if there exists a 6nite 
p-automaton with output
(A; o) = (S; i; 
p; t; o) such that u(0) = o(i), and u(n) = o(t(i; nk · · · n0)) for all integer
n¿1 with standard p-adic expansion n=

∑k
j=0 njpj. In this case, we also say that

u is generated by (A; o), and we denote by AUTS(
p) the set of all p-automatic
sequences.

Now we give several examples to illustrate the above de6nitions and notations.

Example 1 (one-state automaton). Let S = {i}. For all �∈
, put t(i; �) = i. The 6nite

-automaton I
 = (S; i; 
; t) is strictly accessible and generates the constant sequence
iii · · ·, if 
=
p for some integer p¿2.

Example 2 (identity automaton). Let S = {a; b}; i= a; 
= {0; 1}, and de6ne the tran-
sition function t by t(a; 0) = a, t(b; 0) = a; t(a; 1) = b, and t(b; 1) = b. The 6nite 
-
automaton A= (S; i; 
; t) is strictly accessible, and if we de6ne o(a) = 0 and o(b) = 1,
then (A; o)(�) = �, for all �∈ Q
. Moreover the 2-automatic sequence generated by A
is just the periodic sequence abab · · · (Fig. 1).

Example 3 (Thue–Morse automaton). Let S = {a; b}; i= a; 
= {0; 1}, and let t be
de6ned by t(a; 0) = a; t(b; 0) = b, t(a; 1) = b, and t(b; 1) = a. The 6nite 
-automaton
A= (S; i; 
; t) is strictly accessible and generates the well-known Thue–Morse sequence
in a; b (see for example [2]) (Fig. 2).
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Fig. 1. Identity automaton.

Fig. 2. Thue–Morse automaton.

4. Faithfulness and strict faithfulness

Let u= (u(n))n¿0 and v= (v(n))n¿0 be two sequences. They are said ultimately
equal (and written as u ∼ v) if there exists d∈N such that for all n∈N (n¿d), we
have u(n) = v(n).

Let A= (S; i; 
; t) be a 6nite 
-automaton. We endow 
N with the uniform Bernoulli
product measure �
 determined by

�
([w]) = |
|−|w|

for all w∈
∗, where [w] denotes the set of all elements in 
N with w as pre6x. Then
it is meaningful to speak of “almost all”. We say that A is faithful (see [26]) if for
almost all �∈
N, � ∼ �′ implies A� ∼ A�′. If this is true for all �∈
N, i.e., if for
all �∈
N, � ∼ �′ implies A� ∼ A�′, we say that A is strictly faithful.

Obviously a 6nite 
-automaton A= (S; i; 
; t) is faithful if and only if for all r; r′ ∈ S
and almost all �∈
N, � ∼ �′ implies t(r; �[0; n]) = t(r′; �′[0; n]), for all large integer
n. Similarly a 6nite 
-automaton A= (S; i; 
; t) is strictly faithful if and only if the
above property holds for all r; r′ ∈ S and all �∈
N.

The following result characterizes faithful 
-automata (cf. [26]).

Proposition 1. A 6nite 
-automaton A= (S; i; 
; t) is faithful if and only if there
exist s∈ S and �∈
∗ such that t(r; �) = s for all r ∈ S.

Proof. For completeness, we reformulate below the original proof of [26].
Assume that there exist s∈ S and �∈
∗ such that t(r; �) = s for all r ∈ S. A clas-

sical result of Borel (see for example [25, p. 71] or [28, p. 29]) asserts that al-
most all �∈
N contains � in6nitely many times. For such a �= (�(n))n¿0 ∈
N, if
�′ = (�′(n))n¿0 ∈
N satisfying �′ ∼ �, then from some rank on, the word � appears
at the same position in � and in �′, and indeed in6nitely often.
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Let n be a large integer. Write �[0; n] = ���, and �′[0; n] = �′��, with �; �′ and � in

∗. Then we have

(A�)(n) = t(t(t(i; �); �); �) = t(s; �) = t(t(t(r′; �′); �); �) = (A�′)(n):

Conversely, suppose that for at least one �= (�(n))n¿0 ∈
N, and all r; r′ ∈ S, the
relation �′ ∼ � (�′ ∈
N) implies t(r; �[0; n]) = t(r′; �′[0; n]), for all suMciently large
integer n. Write �r = (�r(n))n¿0 := (t(r; �[0; n]))n¿0 (r ∈ S). Then �r ∼ �i, for all r ∈ S.
Hence for each r ∈ S, we can 6nd d(r)∈N such that �r(n) = �i(n) for all integer
n¿d(r). Set

d = max
r∈S

d(r):

It is clear that �r(d) = �i(d) for all r ∈ S. So if we de6ne � := �[0; d] and s := �i(d),
then we have t(r; �) = �r(d) = s, for all r ∈ S.

For strictly faithful 
-automata, we have a similar result below (see also [31]).

Proposition 2. A 6nite 
-automaton A= (S; i; 
; t) is strictly faithful if and only if
there exists an integer k¿1 such that for all �∈
k and all r ∈ S, the state t(r; �)
only depends on � but not on r.

Proof. Assume that there exists an integer k¿1 satisfying the condition of our propo-
sition. We should show that if �= (�(n))n¿0 and �′ = (�′(n))n¿0 are two elements in

N such that � ∼ �′, then A� ∼ A�′.

Indeed if � ∼ �′, then for all large integer n, we can write

�[0; n] = �� and �′[0; n] = �′�;

with �; �′ ∈
∗ and �∈
k . Put r = t(i; �) and r′ = t(i; �′). Then we have

(A�)(n) = t(i; ��) = t(r; �) = t(r′; �) = t(i; �′�) = (A�′)(n):

Now we show the converse by absurdity. Suppose that for all integer n¿1, there
exists �n = (�n(j))06j¡n ∈
n such that for all s∈ S, we can 6nd r(n)

s ∈ S satisfying
t(r(n)

s ; �n) 
= s. Since ( Q
; d
) is compact, then (�n)n¿1 possesses a limit point �. Remark
that A is strictly faithful. So for this � and for all r ∈ S, we can 6nd d(r)∈N such
that t(i; �[0; n]) = t(r; �[0; n]), for all n¿d(r). Put

d = max
r∈S

d(r):

Then t(i; �[0; d]) = t(r; �[0; d]), for all r ∈ S. So if n is a suMciently large integer such
that n¿d and �n[0; d] = �[0; d], then for all r ∈ S, we have

t(r; �n) = t(t(r; �[0; d]); �n[d + 1; n− 1])

= t(t(i; �[0; d]); �n[d + 1; n− 1])

= t(i; �n):

Set s= t(i; �n). Then s= t(r; �n) for all r ∈ S, so for r(n)
s . This is absurd.
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We remark that the one-state automaton and the identity automaton are both strictly
faithful, but the Thue–Morse automaton is not faithful.

Let A= (S; i; 
; t) be a 6nite 
-automaton. An element �∈
∗ is called a synchro-
nizing word of A if t(s; �) is independent of s∈ S. Obviously, A is faithful if and
only if it has a synchronizing word, and it is strictly faithful if and only if there exists
k ∈N such that all the elements in 
k are synchronizing words of A. It is not diMcult
to see that the existence of a synchronizing word can be decided by computing the
6nite automaton in question. The existence of an integer k such that all words of length
k are synchronizing is also easily decidable.

Synchronizing words are also important for symbolic dynamical systems. For exam-
ple, it was shown in [14, p. 233] (where the author discussed two-sided instead of
one-sided sequences) that the symbolic dynamical system associated to a p-automatic
sequence, generated by a primitive 
p-automaton A= (S; i; 
p; t) (i.e., there exists an
integer k¿1 such that [s]k := {t(s; �) | �∈
k

p}= S for all s∈ S) satisfying t(i; 0) = i,
has discrete spectrum if and only if A has a synchronizing word, i.e., it is faithful.
For more discussions on this subject, see [1,30].

Proposition 2 tells us that the structure of a strictly faithful 
-automaton is very
simple. This point can be speci6ed further.

Corollary 1. Let p¿2 be an integer. If A= (S; i; 
p; t) is a strictly faithful 
p-
automaton, then the p-automatic sequence generated by A is ultimately periodic,
and it becomes (purely) periodic if in addition holds t(i; 0) = i.

Proof. Let A= (S; i; 
p; t) be a strictly faithful 
p-automaton. Then there exists an
integer k¿1 such that for all �∈
k

p, the state t(r; �) is independent of r ∈ S. Let
u= (u(n))n¿0 be the p-automatic sequence generated by A. For all n∈N with standard
p-adic expansion n=

∑h−1
j=0 njpj, de6ne

w(n) =




k−h︷ ︸︸ ︷
0 · · · 0 nh−1nh−2 · · · n0 if h ¡ k;
nk−1nk−2 · · · n0 otherwise:

Obviously w(n + pk) =w(n), and thus u(n) = t(i; w(n)) if n¿pk−1 or t(i; 0) = i. As a
result, we obtain u(n + pk) = u(n), if n¿pk−1 or t(i; 0) = i.

In the next section, we shall recall some de6nitions and results which will be im-
plicitly used later. For more detailed discussions, see for example [5,13,17–20,22,11],
and their references.

5. Factor and product automata

Let A= (S; i; 
; t) and A′ = (S ′; i′; 
; t′) be two 6nite 
-automata. We call A′ a
factor of A (see e.g. [22]) if there exists a surjective mapping  de6ned on S with
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values in S ′ such that i′ =  (i), and

t′( (s); �) =  (t(s; �))

for all s∈ S and all �∈
. In this case, we call  a 
-automaton homomorphism of
A, and write A′ =  (A).

A 6nite 
-automaton A has at least two factors: the one-state 
-automaton I
 and
A itself. These factors will be referred to as the trivial factors of A, and the set of all
factors of A will be denoted by FAC(A). One shall see later that FAC(A) is closed
under the multiplication of 6nite automata de6ned below.

Let  be a 
-automaton homomorphism of A. If  is also injective, then its inverse
mapping  −1 is a 
-automaton homomorphism of  (A). In this case, we call  a 
-
automaton isomorphism of A, and say that A and A′ are isomorphic, noted A�A′.
Intuitively two 6nite 
-automata are isomorphic if and only if, up to the notations of
states, they have the same graph. Clearly this isomorphism de6nes over AUT(
) an
equivalence relation. From now on, we shall always identify isomorphic 
-automata
and use, if no confusion possible, the same symbols A; B, and so on, for 6nite 
-
automata and for classes of isomorphic 
-automata. In particular, up to isomorphism,
there exists only one one-state 
-automaton I
.

The following result is well known.

Proposition 3. Let A and A′ be two 6nite 
-automata. If A′ is a factor of A, and
A is a factor of A′, then A�A′.

Let A= (S; i; 
; t) be a 6nite 
-automaton, and let ! be a partition of S. We shall
use the same symbol ! to represent the equivalence relation over S de6ned by !. For
all s∈ S, we denote by !(s) the class of s, and write r≡ s (mod !) if r ∈ !(s) (or
equivalently s∈ !(r)). We call ! an automaton partition of A if for all r; s∈ S, the
relation r≡ s (mod !) implies t(r; �)≡ t(s; �) (mod !) for all �∈
. For example, the
trivial partitions (S) and ({s})s∈S are automaton partitions of A. Finally we remark
that the automaton partitions are just those partitions which have substitution property
(cf. [19, p. 22]), and in the literature, they are also called right regular partitions (see
for example [5, p. 18]).

Let ! be an automaton partition of A. From !, we can deduce a new 6nite 
-
automaton A=! := (!; !(i); 
; t′) (called quotient 
-automaton of A), where t′ is de-
6ned by t′(!(s); �) = !(t(s; �)), for all s∈ S and for all �∈
. One can remark that
A=! is a factor of A, where the corresponding 
-automaton homomorphism is just
s �→ !(s)(s∈ S).

Conversely if A′ = (S ′; i′; 
; t′) is a factor of A, then there is a 
-automaton
homomorphism  of A, de6ned from S onto S ′, such that A′ =  (A). Put

!( ) := { −1( (s)) | s ∈ S}:
Then it is clear that !( ) is an automaton partition of A and A=!( )�A′. So the
factors and the quotient 
-automata of A coincide.

In other words, we have just established the following result (cf. [19]).
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Proposition 4. Let A= (S; i; 
; t) be a 6nite 
-automaton. There is a bijection be-
tween the factors and the automaton partitions of A. In particular, the trivial factor
I
 (resp. A) corresponds to the trivial partition (S) (resp. ({s})s∈S).

We remark that if ! is an automaton partition of A, and if # is an automaton
partition of A=!, then (A=!)=#�A=!′, where !′ = {⋃�∈E � |E∈#}.

From Proposition 4, we deduce immediately

Corollary 2. Let  be a mapping de6ned on S. It is a 
-automaton homomorphism
of A if and only if !( ) := { −1( (s)) | s∈ S} is an automaton partition of A.

Corollary 3. Every 6nite 
-automaton only has a 6nite number of factors.

Of course, in the last result, we should identify all isomorphic factors, just as we
have already conventionalized in this section.

Now we de6ne and study the products of 6nite 
-automata. For more general de6-
nitions and discussions, the reader can consult for example [17–19,22], and their ref-
erences.

Let A= (S; i; 
; t) and A′ = (S ′; i′; 
; t′) be two 6nite 
-automata. The product 
-
automaton A×A′ (also written as AA′) is de6ned as follows (cf. [22]):
• the set of states is S ⊗ S ′ := {(t(i; �); t′(i′; �)) | �∈
∗}, with (i; i′) as the initial state,
• the transition function is t⊗ t′, where t⊗ t′(s; �) := (t(s1; �); t′(s2; �)), for all s=

(s1; s2)∈ S ⊗ S ′ and all �∈
.
The binary operation × is associative, commutative and idempotent, i.e., for all 6nite


-automata A; A′, and A′′, we have

(A×A′) ×A′′ � A× (A′ ×A′′); A×A′ � A′ ×A; and A×A � A:

Endowed with ×, the set AUT(
) becomes a commutative monoid with I
 as the
identity element. Moreover I
 is also the unique invertible element in AUT(
).

The following result justify the de6nition of factor 
-automaton.

Proposition 5. Let A and A′ be two 6nite 
-automata. Then A is a factor of
A×A′, and if A′ is a factor of A, then A�A×A′.

Let A= (S; i; 
; t) be a 6nite 
-automaton. If !1 and !2 are two automaton partitions
of A, then !1 ∩ !2 = {s∩ s′ | s∈ !1; s′ ∈ !2, and s∩ s′ 
= ∅} is a new automaton partition
of A, and !1 ∩ !2 = {!1(s)∩ !2(s) | s∈ S}. Moreover

A=!1 ×A=!2 � A=!1 ∩ !2: (1)

So the bijection between FAC(A) and the set of all automaton partitions of A keeps
the product, i.e., the product of two factors of A corresponds to the intersection of
the corresponding automaton partitions of A.

Let A and A′ be two 6nite 
-automata. We say that A is divisible by A′ or
A is a multiple of A′ (denoted by A′ |A), if there exists a 6nite 
-automaton A′′



260 J.Y. Yao / Theoretical Computer Science 314 (2004) 251–279

such that A�A′ ×A′′. It is clear that A is divisible by A′ if and only if A′ is a
factor of A. It is also clear that the divisibility de6nes a partial order over AUT(
),
and endowed with this partial order, AUT(
) becomes a lattice. Indeed, for any two
6nite 
-automata A′ and A′′; A′ ×A′′ is the least common multiple of A′ and A′′

(i.e., A′ ×A′′ divides every common multiple of A′ and A′′), and the product of
all common factors of A′ and A′′ is the greatest common factor of A′ and A′′ (i.e.,
every common factor of A′ and A′′ divides this product).

A 6nite 
-automaton A is said irreducible if it only has trivial factors. By Propo-
sition 4, we know that a 6nite 
-automaton is irreducible if and only if it only has
two automaton partitions (i.e., the two trivial partitions). Consequently every two-states

-automaton is irreducible. In general, a 6nite 
-automaton cannot be decomposed into
the product of irreducible 
-automata (see Section 10). This encourages us to introduce
a new notion, namely weakly irreducible automaton. A 6nite 
-automaton A is said
weakly irreducible if A�A′ ×A′′ implies that A′ or A′′ is a trivial factor of A.
Obviously, every irreducible 
-automaton is weakly irreducible, however the converse
is not always true (see Section 10). Finally we remark that by induction on the number
of states, we can easily show that every 6nite 
-automaton can be factorized into the
product of weakly irreducible 
-automata.

Now consider prime 
-automata, i.e., those 6nite 
-automata A such that the divis-
ibility A |A′ ×A′′ implies A |A′ or A |A′′. Although we do not know yet whether
there exist or not prime 
-automata, we can still prove the following result.

Proposition 6. Every prime 
-automaton is weakly irreducible.

Proof. By absurdity, we suppose that there would exist a prime but not weakly irre-
ducible 
-automaton A. Then we could 6nd proper factors A′; A′′ of A such that
A�A′ ×A′′. Thus A |A′ or A |A′′ for A is prime. Now by Proposition 3, we
have A�A′ or A�A′′, from which we obtain the desired contradiction.

The converse of Proposition 6 is false, and this explains why the factorization in
weakly irreducible 
-automata is not always unique (see Example 4).

6. Homogeneous automata

Let A= (S; i; 
; t) be a 6nite 
-automaton, and let s be a state of A. We call s a
homogeneous state of type � (�∈
) of A if over the graph of A, all the incident
arrows into s are of type �. In other words, if there exist r ∈ S and $∈
 such that
t(r; $) = s, then $= �. Finally we call A a homogeneous 
-automaton if all states of
A are homogeneous.

We remark that homogeneous automata de6ned above are called pure automata in
[22], which are objects quite di4erent from those studied in [7], although they have
the same name. We remark also that this notion can be generalized to more general
automata (not necessarily deterministic), and that Glushkov automata are homogeneous
(see for example [10]).
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It is clear that the identity automaton de6ned in Example 2 is homogeneous. More
generally, for each $∈
, if we de6ne P$ = (
; $; 
; t$), where t$(s; �) = �, for all
s∈
 and all �∈
, then P$ is homogeneous. Remark that for every homogeneous

-automaton A, we have necessarily Card(A)¿Card(
). So in a certain sense, P$

($∈
) is a “minimal” homogeneous 
-automaton. The following result speci6es
this point of view, generalizes and improves a result in [22].

Proposition 7. A 6nite 
-automaton A= (S; i; 
; t) is homogeneous if and only if
there exists $∈
 such that P$ divides A.

Proof. Let A= (S; i; 
; t) be a homogeneous 
-automaton. For all s∈ S, we denote
by  (s) the type of s (in the case that there is not any arrow incident into the initial
state i, we 6x in advance an element in 
, and then take it as  (i)). Clearly  is a

-automaton homomorphism of A, and we have  (A) =P (i).

Reciprocally, assume that there exists $∈
 such that P$ is a factor of A. Then we
can 6nd a 
-automaton homomorphism  of A such that P$ =  (A). Let s be a state
of A. If over A, one of the incident arrows into s is of type �, then over P$, there
exists also an arrow of type � incident into  (s). But P$ is homogeneous, so over P$,
all the incident arrows into  (s) are of type �. Thus over A, all the incident arrows
into s are of the same type. Consequently A is homogeneous.

We remark that homogeneity is a “product property”, i.e., the product with a homo-
geneous 
-automaton gives again a homogeneous 
-automaton.

Homogeneous automata are also important in opacity theory of 6nite automata. In
fact, it has been shown in [33] (see also [31]) that a strictly accessible automaton is
transparent if and only if it is homogeneous.

Let $∈
, and let ! be a partition of 
. Since the transition function t$ of P$ is
independent of its 6rst variable, so ! is an automaton partition of P$. As a result, we
obtain that FAC(P$) is in bijection with the set of all partitions of 
.

For all �∈
, de6ne !� = {{�}; 
\{�}}. Then the 
-automaton P$=!� is irreducible
for it consists of two states. Moreover by formula (1), we have also

P$ � ∏
�∈


P$=!�;

i.e., P$ can be decomposed into irreducible 
-automata.
Now we can give an example to show that an irreducible (thus weakly irreducible)


-automaton may not be prime.

Example 4. Let 
= {�; %; �; �} and != {{�; %}; {�; �}}. Then P�=! is an irreducible
factor of P�, and di4erent from all P�=!� (�∈
), so it is not prime.

In other words, the product of two 6nite automata may contain a factor which is
not the product of any factors of the original two automata!

Let A= (S; i; 
; t) be a 6nite 
-automaton, and let ! be a partition of 
. A state
s∈ S is said !-homogeneous over A if over A, all the incident arrows into s take
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their types in a same class of !, i.e. there exists s∈ ! such that if �∈
 and r ∈ S
satisfying t(r; �) = s, then �∈ s. Finally we call A a !-homogeneous 
-automaton if
all states of A are !-homogeneous. Clearly homogeneity is a special !-homogeneity
with != {{�} | �∈
}. We remark also that !-homogeneity appeared already in [22]
in the case that ! only contains two elements.

Using the same argument as above, we can easily show the following result.

Proposition 8. Let A be a 6nite 
-automaton, and ! a partition of 
. Then A is
!-homogeneous if and only if there exists $∈
 such that P$=! divides A.

7. Minimal automata

Let (A; o) and (A′; o′) be two 6nite 
-automata with output. If for all �∈ Q
, we
have (A; o)(�) = (A′; o′)(�), then we call them equivalent and write (A; o)≈ (A′; o′).
If in addition A � A′, then we call them isomorphic and write (A; o)∼= (A′; o′). Such
an isomorphic relation between 6nite 
-automata with output, induces an equivalence
relation over AUTO(
), and henceforth, we shall always identify all isomorphic ele-
ments in AUTO(
).

Let (A; o) = (S; i; 
; t; o) be a 6nite 
-automaton with output. Two states r; s of A
are said indistinguishable if o(t(r; �)) = o(t(s; �)) for all �∈
∗. Otherwise we call
them distinguishable. If all distinct states of A are distinguishable, then (A; o) is
called minimal. Clearly every 6nite 
-automaton is minimal since its output function
is the identity mapping. Finally we remark that two equivalent minimal 
-automata
are isomorphic.

It is well known that every 6nite 
-automaton with output is equivalent to some
minimal 
-automaton (see for example [13]). This result can be slightly speci6ed by
the following one, which shows that a minimal 
-automaton is in fact the least common
factor of all 6nite 
-automata with output, which are equivalent to it.

Proposition 9. For each 6nite 
-automaton with output (A; o), there exists a unique
minimal 
-automaton (A′; o′) such that (A; o)≈ (A′; o′) and A′ |A.

Indeed A′ is just the factor of A which corresponds to the classical Nerode partition
of A associated with (A; o).

From now on, we can (and shall) identify AUTO(
) with the set of all minimal 
-
automata, i.e., we shall always suppose implicitly that all the studied 
-automata with
output are minimal. Such an identi6cation is acceptable in the present context, although
in general it is mathematically diMcult to be justi6ed, notably because it evacuates all
kinds of interesting representation or algorithmic problems.

Let p¿2 be an integer. Let A= (S; i; 
p; t) be a 6nite 
p-automaton. It is said
normalized if t(i; 0) = i. Obviously being normalized is a “factor property”, i.e., a factor
of a normalized 
-automaton is still normalized. The set of all normalized 
p-automata
with output will be denoted by NAUTO(
p).
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Every p-automatic sequence u can be generated by a normalized 
p-automaton with
output. In fact, if u is generated by (A; o) = (S; i; 
p; t; o) with t(i; 0) 
= i, then by adding
a new state i′ to S and de6ning S ′ = S ∪{i′}; t′|S×
p = t and t′(i′; 0) = i′; t′(i′; k) =
t(i; k) for all k ∈
p\{0}; o′|S = o and o′(i′) = o(i), we obtain a normalized 
p-auto-
maton with output (A′; o′) = (S ′; i′; 
p; t′; o′), which generates u. If u is generated by
two normalized 
p-automata with output, then they are equivalent, and since we only
consider minimal 
-automata, we know that they are indeed isomorphic. Thus we
establish a bijection & from AUTS(
p) onto NAUTO(
p), and every property of
NAUTO(
p) can be transferred via this mapping to AUTS(
p) and vice versa. This
point is important for our study.

Proposition 10. Let u1; u2; : : : ; uk be complex-valued p-automatic sequences. If they
are linearly dependent over C, then one of Aj divides the product of all the other
Aj’s, where &(uj) = (Aj; oj) (16j6k).

Proof. If u1; u2; : : : ; uk are linearly dependent over C, then up to the notations of in-
dices, we can 6nd complex numbers c2; c3; : : : ; ck such that

u1 = c2u2 + c3u3 + · · · + ckuk

from which we deduce immediately(
k∏

j=2
Aj;

k∑
j=1

cjoj

)
≈ (A1; o1) and A1

∣∣∣∣∣ k∏
j=2

Aj

for the 6nite 
p-automaton with output (A1; o1) is minimal.

As application, we obtain that the Thue–Morse sequence, the Rudin–Shapiro se-
quence, the Baum–Sweet sequence, the paperfolding sequence, and the constant se-
quence 1 are linearly independent over C (consult for example [2] for the de6nition
of all above-mentioned sequences). Of course this result can also be proved directly
and easily by de6nition.

8. Invertible automata

Let (A; o) = (S; i; 
; t; o) be a 6nite 
-automaton with output. We shall say that
(A; o) is left-invertible (resp. invertible) if the mapping � �→ (A; o)(�) (�∈ Q
\{�})
is injective (resp. bijective). Clearly (A; o) is left-invertible if and only if for every
s∈ S, all the output values o(t(s; �)) (�∈
) are di4erent. Remark that in this case,
we have also Card(
)6Card(o(S)). So all homogeneous 
-automata, in particular, the
identity automaton, are left-invertible, but the one-state automaton is not, although it
is invertible for multiplication.

The following result justi6es the above de6nition of left-invertibility.
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Proposition 11. A 6nite 
-automaton with output (A; o) = (S; i; 
; t; o) is left-inver-
tible if and only if there exists a 6nite o(S)-automaton with output (A′; o′) such that
for all �∈ Q
\{�}, we have (A′; o′) ◦ (A; o)(�) = �.

Proof. The suMciency is quite evident. So we need only show the necessity.
Suppose that (A; o) = (S; i; 
; t; o) is a left-invertible 
-automaton with output. Then

for every s∈ S, all the output values o(t(s; �)) (�∈
) are di4erent. Based on this
property, we shall construct in the following a 6nite o(S)-automaton with output
(A′; o′) = (S × S; (i; i); o(S); t′; o′), which satis6es our need.

First we de6ne t′. Let (r; s)∈ S × S and �∈ o(S). If o(t(s; �)) 
= � for all �∈
, then
we de6ne t′((r; s); �) = (s; i). In the contrary case, we can 6nd a unique �∈
 such
that o(t(s; �)) = �, and we de6ne in this case t′((r; s); �) = (s; t(s; �)).

Second we de6ne o′. For all couple (r; s)∈ S × S, we de6ne o′((r; s)) = � if there
exists �∈
 such that t(r; �) = s (remark here that such a � is unique). Otherwise we
put o′((r; s)) = �0, where �0 ∈
 is an element 6xed in advance.

Finally by induction on the length of the input word, we can easily verify that for
all �∈ Q
\{�}, we have (A′; o′) ◦ (A; o)(�) = �.

For invertible 
-automata with output, we have the following similar result.

Proposition 12. A 6nite 
-automaton with output (A; o) = (S; i; 
; t; o) is invertible if
and only if there exists a 6nite o(S)-automaton with output (A′; o′) such that for all
�∈ Q
\{�} and all �∈ o(S)\{�}, we have

(A′; o′) ◦ (A; o)(�) = � and (A; o) ◦ (A′; o′)(�) = �:

Proof. The suMciency is quite evident. So we shall only show the necessity.
Let (A; o) = (S; i; 
; t; o) be an invertible 
-automaton with output. Then by Propo-

sition 11, we can 6nd a 6nite o(S)-automaton with output (A′; o′) such that (A′; o′) ◦
(A; o)(�) = � for all �∈ Q
\{�}. Now � �→ (A; o)(�) (�∈ Q
\{�}) is bijective, so � �→
(A′; o′)(�) (�∈ o(S)\{�}) is its inverse mapping, and then for all �∈ o(S)\{�}, we
have (A; o) ◦ (A′; o′)(�) = �.

We can also give a simple characterization of invertible 
-automata with output.

Proposition 13. A 6nite 
-automaton with output (A; o) = (S; i; 
; t; o) is invertible if
and only if it is left-invertible and Card(o(S)) = Card(
).

Proof. First suppose that (A; o) is an invertible 
-automaton with output. Then nec-
essarily Card(
)6Card(o(S)), and we can 6nd a 6nite o(S)-automaton with out-
put (A′; o′) = (S ′; i′; o(S); t′; o′) such that for �∈ Q
\{�} and �∈ o(S)\{�}, we have
(A′; o′) ◦ (A; o)(�) = � and (A; o) ◦ (A′; o′)(�) = �. Clearly (A′; o′) is also invert-
ible and o′(S ′) =
, thus Card(o(S))6Card(o′(S ′)) = Card(
), and we obtain 6nally
Card(o(S)) = Card(
).

Now suppose that (A; o) is a left-invertible 
-automaton with output such that
Card(o(S)) = Card(
). Then by Proposition 11, we can construct a 6nite o(S)-auto-
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maton with output (A′; o′) = (S × S; (i; i); o(S); t′; o′) such that for all �∈ Q
\{�}, we
have (A′; o′) ◦ (A; o)(�) = �. In particular, we can remark that the mapping � �→ (A′;
o′)(�) (�∈ o(S)\{�}) is surjective. So to obtain the desired conclusion, we need only
show that this mapping is also injective, i.e., to show that for every (r; s)∈ S × S, all the
output values o′(t′((r; s); �)) (�∈ o(S)) are di4erent. Let � and �′ be two di4erent ele-
ments in o(S). Since Card(o(S)) = Card(
) and all the output values o(t(s; �)) (�∈
)
are di4erent, the mapping � �→ o(t(s; �)) is bijective, and there exists �; �′ ∈
 such
that o(t(s; �)) = � and o(t(s; �′)) = �′. Hence o′(t′((r; s); �)) = � 
= �′ = o′(t′((r; s); �′)),
and the result is established.

Hence the Thue–Morse automaton, and the identity automaton or more generally the
“minimal” homogeneous 
-automaton P$ ($∈
) are invertible. Incidentally, one can
remark that all invertible 
-automata are strictly accessible.

Let (A; o) = (S; i; 
; t; o) be a 6nite 
-automaton with output. Let (A′; o′) be a 6nite
o(S)-automaton with output. If (A′; o′) ◦ (A; o)(�) = � for all �∈ Q
\{�}, then we call
(A′; o′) a left-inverse of (A; o), and (A; o) a right-inverse of (A′; o′). Finally we call
(A′; o′) a bilateral-inverse of (A; o) if (A′; o′) is a left-inverse and also a right-inverse
of (A; o). A 6nite 
-automaton with output may have many di4erent left-inverses or
right-inverses, but it has at most one bilateral-inverse.

As an illustrative example, we give below the bilateral-inverse (A′; o′) of the Thue–
Morse automaton (Fig. 3). Remark that if we rede6ne the output function o′ by

o′(c) = o′(f) = 0 and o′(d) = o′(e) = 1;

then the new (A′; o′) is the bilateral-inverse of the identity automaton. In general,
if A1 and A2 are two invertible 
-automata with the same set of states, then their
bilateral-inverses only di4er in the output functions.

Now Propositions 11 and 12 can be reformulated as follows: a 6nite automaton
with output has a left-inverse (resp. bilateral-inverse) if and only if it is left-invertible
(resp. invertible). Thus we obtain an exact analog of the well-known result that a
mapping g is injective (resp. bijective) if and only if there exists a mapping h such
that h ◦ g is the identity mapping (resp. h ◦ g and g ◦ h are the corresponding identity
mappings).

Fig. 3. The bilateral-inverse of the Thue–Morse automaton.
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Fig. 4. A counter-example.

Let (A; o) be a 6nite 
-automaton with output. Clearly if it has a right-inverse, then
the mapping � �→ (A; o)(�) (�∈ Q
\{�}) is surjective. Inspired by the above results, one
can ask whether the converse is also true. Unfortunately, just as we can see below, the
answer to this question is negative in general.

Example 5. Let 
= {0; 1; 2}. We denote by (A; o) = (S; a; 
; t; o) the 6nite 
-auto-
maton with output de6ned in Fig. 4, where S = {a; b; c}. Obviously the mapping � �→
(A; o)(�) (�∈ Q
\{�}) is surjective. However (A; o) does not have a right-inverse.
By absurdity, assume that (A; o) has a right inverse (A′; o′). Then we have (A; o) ◦
(A′; o′)(�) = � for all �∈ o(S)\{�}. Thus A ◦ (A′; o′)(+−+) = aca and A ◦ (A′; o′)
(+ −−) = abc or abb. Hence A ◦ (A′; o′)(+−) takes two values!

Let (A; o) = (S; i; 
; t; o) be a 6nite 
-automaton with output. Obviously when the
mapping � �→ (A; o)(�) (�∈ Q
\{�}) is surjective, we have necessarily

Card(o(S)) 6 Card(
):

This property is not suMcient, and until now, we do not know how to character-
ize a 6nite 
-automaton with output (A; o) such that � �→ (A; o)(�) (�∈ Q
\{�}) is
surjective, and we do not know either when (A; o) can have a right-inverse. How-
ever we can still remark that if the output function o is injective, then the mapping
� �→ (A; o)(�) (�∈ Q
\{�}) is surjective if and only if for all state s∈ S, we have
{t(s; �) | �∈
}= S, and by the same construction as in the proof of Proposition 11,
we can also show that � �→ (A; o)(�) (�∈ Q
\{�}) is surjective if and only if (A; o)
has a right-inverse.

9. Some topological properties of ,nite automata

Finite automata are discrete objects. It is somehow surprising to talk of the limit
of 6nite automata. How can a four-state 6nite automaton, say, become a 6ve-state
6nite automaton in a continuous fashion? We remark that such a phenomenon exists
abundantly, and the Ising automata in the next section will o4er us a good example.

To explain how this is possible, Kamae and MendHes France have introduced in
[22] an intuitive notion of continuity. In this section, we shall treat this problem
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systematically and thoroughly via another approach. Indeed we shall de6ne three dif-
ferent but natural topologies so that we can obtain some 6ner results which cannot be
attained via the above-mentioned notion of continuity. Then we use these results to
study in the next section the continuity of Ising automata. By the way, we also obtain
a suMcient condition such that the weak limit of a sequence of automatic sequences
is still automatic. This is the 6rst approach towards the diMcult problem about the
topological closure property of automatic sequences.

Let AUTOC(
) be the set of all minimal 
-automata with complex-valued output
function. Without loss of generality, we shall also suppose that 
⊆C and all the output
functions are de6ned on the whole C.

Let (A1; o1) and (A2; o2) be two elements in AUTOC(
). For all a; b∈C, and all
state (r; s) of A1 ×A2, we de6ne

o1o2((r; s)) = o1(r)o2(s) and (ao1 + bo2)((r; s)) = ao1(r) + bo2(s)

and we denote by (A1; o1)× (A2; o2) (resp. a(A1; o1) + b(A2; o2)) the unique mini-
mal 
-automaton which is equivalent to (A1 ×A2; o1o2) (resp. (A1 ×A2; ao1 + bo2)).
Clearly endowed with these binary operations, AUTOC(
) becomes a C-algebra.
Finally we remark that (I
; 0) is the zero element, (I
; 1) is the identity element
for multiplication, and an element (A; o) = (S; i; 
; t; o)∈AUTOC(
) is invertible for
multiplication if and only if 0 =∈ o(S).

Now we de6ne three topologies over AUTOC(
). The reader can consult for example
[24] for all the basic notions and results in topology cited in this section.

Let (A; o)∈AUTOC(
). For all �∈
∗, de6ne f�((A; o)) = o(A�). Then f� is a
complex-valued mapping de6ned on AUTOC(
). Let WC(
) be the weakest topology
(called the weak topology) over AUTOC(
) such that all the f� (�∈
∗) are con-
tinuous. Clearly (AUTOC(
);WC(
)) is a Hausdor4 space (see [8, Chapter 10]). But
unfortunately, it is not complete.

Let * be the mapping de6ned on AUTOC(
) which associates all element (A; o) in
AUTOC(
) with the mapping � �→f�((A; o)). Obviously * is a homeomorphism from
(AUTOC(
);WC(
)) onto *(AUTOC(
))⊆C
∗

, endowed with the product topol-
ogy. Moreover (AUTOC(
);WC(
)) is metrizable (i.e., we can de6ne a metric over
AUTOC(
) which induces WC(
)) and *(AUTOC(
)) is dense in C
∗

, which is
complete and metrizable.

Let (A; o) = (S; i; 
; t; o) be an element in AUTOC(
). De6ne

‖(A; o)‖ = sup
s∈S

|o(s)|:

Then ‖ · ‖ is a norm on AUTOC(
), and the topology induced by it over AUTOC(
),
called the uniform topology, is stronger than the weak topology WC(
).

The normed algebra (AUTOC(
); ‖ · ‖) is not complete. Hence the topological vector
space (AUTOC(
);WC(
)) is not complete neither. For the proof, we 6rst consider
the case 
=
p, where p¿2 is an integer. Let u= (u(n))n¿0 be a complex-valued
sequence almost periodic in the sense of Bohr (see [23]). We also suppose that u
takes an in6nite number of values. So it is not p-automatic, but it can be approached
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uniformly by periodic sequences uk = (uk(n))n¿0 (k ∈N), i.e.,

lim
k→∞

sup
n∈N

|uk(n) − u(n)| = 0:

For all k ∈N, write &(uk) = (Ak ; ok). Then ((Ak ; ok))k¿0 is a family of Cauchy se-
quences in (AUTOC(
); ‖ · ‖), since for all k; l∈N, we have

‖(Ak ; ok) − (Al; ol)‖ = sup
n∈N

|uk(n) − ul(n)|:

However it is not convergent in (AUTOC(
); ‖ · ‖) for u is not p-automatic. Now
let 
 be an alphabet with p elements. Then we can 6nd a bijection between 
 and

p, which induces in turn a bijection between AUTOC(
) and AUTOC(
p), and the
desired conclusion that (AUTOC(
); ‖ · ‖) is not complete can be deduced from that
of (AUTOC(
p); ‖ · ‖).

Proposition 14. Let ((An; on))n¿0 be a sequence in AUTOC(
) which converges uni-
formly to (A; o)∈AUTOC(
). Then there exists an integer d¿0 such that A divides
An for all n¿d.

Proof. Write (A; o) = (S; i; 
; t; o) and (An; on) = (Sn; in; 
; tn; on) (n∈N), and let �¿0
be a real number suMciently small so that all the open discs

D(o(s); �) = {x ∈ C | |x − o(s)| ¡ �} (s ∈ S)

are disjoint. Since ((An; on))n¿0 converges uniformly to (A; o), then there exists an
integer d¿0 such that ‖(An; on) − (A; o)‖¡�, for all n¿d. Therefore

on(Sn) ⊆ D :=
⋃
s∈S

D(o(s); �)

for all n¿d. Let o′ be the mapping de6ned on D such that o′(x) = o(s), for all
x∈D(o(s); �). Then for all n¿d, we have (An; o′ ◦ on)≈ (A; o). Thus A divides An

by Proposition 9, for (A; o) is supposed to be minimal.

Below we shall de6ne the strong topology SC(
) over AUTOC(
) such that the
topological vector space (AUTOC(
);SC(
)) is locally convex (i.e., SC(
) has a
fundamental system of the origin composed of convex sets) and complete.

Let n¿1 be an integer. We denote by AUTO(n)
C (
) the vector subspace of

AUTOC(
), generated by all minimal 
-automata (A; o) satisfying Card(A)6n, where
Card(A) is the number of states of A, and by -n the canonical injection of the vector
subspace AUTO(n)

C (
) into AUTOC(
).
The dimension of AUTO(n)

C (
) is 6nite. Indeed there is only a 6nite number of
non isomorphic 
-automata A with Card(A)6n. So if we denote by B= (S; i; 
; t)
the product of all these 6nite 
-automata, then for every (A; o)∈AUTO(n)

C (
), we
can 6nd an output function o′ such that (A; o)≈ (B; o′). Hence AUTO(n)

C (
) can be
generated by a 6nite number of minimal 
-automata which are equivalent to one of
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these (B; $s), where $s is the characteristic function of s∈ S, i.e.,

$s(s) = 1 and $s(r) = 0 for all r ∈ S\{s}:

Now that C is complete for the usual absolute value, so over AUTO(n)
C (
), all the

Hausdor4 topologies which are compatible with its C-vector space structure coincide
(see [9, EVT I, p.14]), a fortiori, the weak topology and the uniform topology coincide.
Let S(n)

C (
) be the restriction of WC(
) over AUTO(n)
C (
). We denote by SC(
) the

strongest locally convex topology over AUTOC(
) such that all the following mappings

-n : (AUTO(n)
C (
);S(n)

C (
)) → (AUTOC(
);SC(
))

are continuous. It is well known that (AUTOC(
);SC(
)) is locally convex and com-
plete (see for example [9, EVT II, p. 35]). Finally, we remark that the algebraic
dual of AUTOC(
) coincides with the topological dual of (AUTOC(
);SC(
)), i.e.
every linear form � over AUTOC(
) is continuous for SC(
). In fact, by the result
in [29, p. 58], a linear form � over AUTOC(
) is continuous for SC(
) if and
only if its restriction on AUTO(n)

C (
) is continuous for S
(n)
C (
), which is trivially true

for AUTO(n)
C (
) has a 6nite dimension.

The topology SC(
) is surely stronger than the uniform topology. In particular,
Proposition 14 also holds for (AUTOC(
);SC(
)).

Proposition 15. A sequence ((An; on))n¿0 is convergent in AUTOC(
) for the strong
topology if and only if there exists an integer d¿1 such that the same sequence is
convergent in (AUTO(d)

C (
);S(d)
C (
)).

Proof. This is just a reformulation of the result in [29, p. 62].

Proposition 16. Let ((An; on))n¿0 be a Cauchy sequence in (AUTOC(
);WC(
)). If
(Card(An))n¿0 is bounded, then ((An; on))n¿0 converges for the strong topology.

Proof. In fact, since (Card(An))n¿0 is bounded, then we can 6nd an integer d¿1
such that (An; on)∈AUTO(d)

C (
) for all n¿0. But the weak topology and the strong
topology coincide over AUTO(d)

C (
), so ((An; on))n¿0 is also a Cauchy sequence for
SC(
), thus convergent.

Let p¿2 be an integer. We denote by AUTSC(
p) (resp. NAUTOC(
p)) the set of
all complex-valued p-automatic sequences (resp. the C-vector subspace of all normal-
ized minimal 
p-automata in AUTOC(
p)). Then AUTSC(
p) is a C-vector space
and the restriction of & on AUTSC(
p) (denoted by &C) is an isomorphism of
C-vector spaces. So all topological property over NAUTOC(
p) can be transferred
via &C over AUTSC(
p), and we say that a family (uk)k¿0 of p-automatic se-
quences converges weakly (resp. uniformly or strongly) to a p-automatic sequence
u, if the family (&(uk))k¿0 converges weakly (resp. uniformly or strongly) to &(u).
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Clearly the family (uk)k¿0 converges weakly to u if and only if for all n∈N, we have

lim
k→∞

uk(n) = u(n):

Similarly (uk)k¿0 converges uniformly to u if and only if we have

lim
k→∞

sup
n∈N

|uk(n) − u(n)| = 0:

One can remark here that even if u is not p-automatic, it is still meaningful to say
whether (uk)k¿0 converges weakly (resp. uniformly) or not to u.

The characterization of strongly convergent p-automatic sequences is a little more
complicated and needs some new notion, namely p-kernel. For all complex-valued
sequence u= (u(n))n¿0, we de6ne

Np(u) := {(u(pbn + a))n¿0 | 0 6 a ¡ pb; and a; b ∈ N}
and call it the p-kernel of u. It is well known that u is p-automatic if and only if
Np(u) is 6nite, and in this case, Card(Np(u)) = Card(&C(u)) (cf. [2]). With this no-
tation, Proposition 15 can be reformulated as follows: a family (un)n¿0 of p-automatic
sequences converges strongly to a p-automatic sequence u if and only if the family
(Card(Np(un)))n¿0 is bounded and (un)n¿0 converges weakly to u.

An important problem in the study of p-automatic sequences concerns their topologi-
cal closure property. More precisely, we would like to know when the limit of a family
of p-automatic sequences is also p-automatic. Clearly the topology in question plays a
capital role in this problem. For example, the limit of a weakly or uniformly convergent
sequence of p-automatic sequences is not p-automatic in general (the counter-example,
which serves to show that (AUTOC(
); ‖ · ‖) is not complete, can also be used here).
However Proposition 16 tells us that we have the following topological closure prop-
erty.

Proposition 17. Let (un)n¿0 be a family of complex-valued p-automatic sequences
which converges weakly to a sequence u. If the sequence (Card(Np(un)))n¿0 is
bounded, then u is p-automatic.

Proof. Since (un)n¿0 converges weakly to u, so (&C(un))n¿0 is a Cauchy sequence
in (AUTOC(
p);WC(
p)), and by Proposition 16, it converges strongly to an element
of AUTOC(
p), which obviously generates u.

10. Ising automata

Since the discovery of quasicrystals, automata theory has found a good place in the
study of theoretical physics to describe some nonperiodic but ordered phenomena. A
typical example is the one-dimensional inhomogeneous Ising chain, which contains N+
1 particles of spins ±1 ranged on a line. For each q∈N (06q6N ), we denote by �(q)
the spin of the qth particle, and call the 6nite word �= (�(q))06q6N a con6guration
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of the system. Let �∈{−1;+1}N be a 6nite word which represents for example the
distribution of two di4erent substances or some impurities in an alloy. The Hamiltonian
of this system at the con6guration �= (�(q))06q6N is de6ned as

H�(�) = −J
N−1∑
q=0

�(q)�(q)�(q + 1) − H
N∑
q=0

�(q);

where J¿0 is the coupling constant and H¿0 is the external magnetic 6eld.
Given two parameters J and H , an important problem in statistical mechanics is

to determine the system’s equilibrium state, i.e., the con6guration �̂ which may min-
imize the Hamiltonian H�(�). Kamae and MendHes France [22] showed that such an
equilibrium con6guration �̂ must satisfy the recurrent relation:

�̂(N ) = sgn(�(N )) and �̂(q) = sgn(�(q) + 2�(q)�̂(q + 1)) for 0 6 q ¡ N;

where the 6nite word �= (�(q))06q6N is de6ned by

�(q + 1) = � + �(q)sgn(�(q)) min{2; |�(q)|} (0 6 q ¡ N );

with �= 2H=J and �(0) 6xed beforehand (by convention, here sgn(0) may take the
two values +1 and −1 arbitrarily. This corresponds to the fact that there are probably
more than one equilibrium states under the same conditions).

In this work, we shall only restrict our attention on the case �(0) = � + 2. Then the
study of our system is reduced to that of the following recurrent relation:

�(0) = � + 2;

�(q + 1) = � + �(q)sgn(�(q)) min{2; |�(q)|}: (2)

The 6nite word � depends on � and on �, so we can denote it by ��(�). It was shown
in [22,27] that the mapping � �→ ��(�), de6ned from 
∗\{�} to O∗

� , where 
= {−1;+1}
and O� is a 6nite subset of [� − 2; � + 2], can be de6ned by a 6nite automaton with
output (A�; o�) = (S�; i�; 
; t�; o�). In other words, for all �= (�(j))06j¡|�| ∈
∗ and
q∈N (06q¡|�|), we have ��(�)(0) = � + 2, and

��(�)(q + 1) = o�(t�(i�; �[0; q])):

For �= 0, relation (2) becomes �(q + 1) = 2�(0)�(1) · · · �(q), and gives the 6nite

-automaton with output de6ned in Fig. 5. Remark here that if we replace +1 by 0

Fig. 5. Ising automaton A0.
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Fig. 6. Ising automaton A� with �¿4.

Fig. 7. Ising automaton A� (denoted by N�).

and −1 by 1, then we obtain the Thue–Morse automaton. So A0 is irreducible and
invertible, but it is neither faithful (cf. [26]) nor homogeneous.

If �¿4, relation (2) gives �(q+1) = �+2�(q), and the 6nite 
-automaton with output
de6ned by Fig. 6 satis6es our need. Once again, if we replace +1 by 0 and −1 by
1, we get the identity automaton. So A� is strictly faithful, irreducible, homogeneous,
and invertible.

When 0¡�¡4, we obtain two types of 6nite automata with output. To distinguish
them, we shall denote A� by N� or L� according to 4=�∈N or not, where �= [4=�]
is the integral part of 4=� (see Figs. 7 and 8), and give below a somewhat detailed
analysis of A�.

First we examine the Ising automaton N� (�¿1).
Clearly N1 is just the 6nite 
-automaton de6ned in Fig. 6, so it is strictly faithful,

irreducible, homogeneous, and invertible.
In the following, we shall show that for all �¿2, the Ising automaton N� is weakly

irreducible, but not irreducible. More precisely, we have

FAC(N�) = {I
;N′
� ;N�}; (3)
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Fig. 8. Ising automaton A� (denoted by L�).

where N′
� is the factor which corresponds to the automaton partition

!� = {{a�+1; a�}; {a1}; : : : ; {a�−1}}
of N�. By the way, we remark that N� is left-invertible but not invertible, it is also
faithful (since t�(s; 1�) = i�, for all s∈ S�) but not strictly faithful (cf. [26]).

Now show (3) by absurdity. Suppose that there exists a proper automaton partition
!= {Dj}06j6n of N�, di4erent from !�, and such that a�+1 ∈D0.

We shall distinguish two cases.
Case 1: D0 contains at least two states. In this case, we shall show that there

exists j∈N (16j¡�) such that aj ∈D0. Indeed if this were false, then we would
have D0 = {a�+1; a�}. But ! 
= !�, so we can 6nd two integers k; l (16k¡l¡�)
such that ak ≡ al (mod !). Applying � − l + 1 times t(�)(·;+1) over ak and al, where
t(�) is the transition function of N�, then a�+1+k−l ≡ a�+1 (mod !). Thus we obtain
a�+1+k−l = a�, and l= k+1. Consequently for all h∈N (k6h6�), we have ah = a�+1,
for ah+1 = t(�)(ah;+1). This is absurd.

Now let j be the least integer such that 16j¡� and aj ∈D0. Since

t(�)(a�+1;+1) = a�+1 and t(�)(aj;+1) = aj+1;

so aj+1 ∈D0 too. By recurrence, we obtain ak ∈D0 for all k ∈N (j6k6�). But
for all integer k¿j, we also have a1 ≡ a�−k+1 (mod !) for a1 = t(�)(a�+1;−1) and
a�−k+1 = t(�)(ak ;−1). In particular, we have a1 ≡ a2 (mod !), and then by the same ar-
gument as above, we obtain a1 ≡ ak (mod !) for all k ∈N (16k6�). Hence a�+1 ≡ a1

(mod !), and ! is trivial.
Case 2: D0 = {a�+1}. Then there exists two integers k; l (16k¡l6�) such that

ak ≡ al (mod !). Remark that ak+1 = t(�)(ak ;+1) and al+1 = t(�)(al;+1), so ak+1 ≡ al+1

(mod !), and by recurrence, we obtain a�+1+k−l ≡ a�+1 (mod !). Whence k = l, and it
contradicts our original hypothesis on k; l.
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The case L� (�¿1) is much more complicated. Clearly it is left-invertible but not
invertible. It is also faithful (since for all s∈ S�, we have t�(s; 1�+1) = i�) but not strictly
faithful (cf. [26]). Moreover we also have L� =N� ×N�+1 (see [22]). Below we shall
specify all the elements in FAC(L�).

For �= 1; FAC(L1) consists of seven elements:

!0 = {c0; c1; b0; b1} (I
);

!1 = {{c0}; {b0}; {c1; b1}} (N2);

!2 = {{c0; c1}; {b0}; {b1}} (L′
1);

!3 = {{c0; c1; b1}; {b0}} (N′
2);

!4 = {{c0; b1}; {c1}; {b0}} (N1 ×N′
2);

!5 = {{c0; b1}; {c1; b0}} (N1);

!6 = {{c0}; {c1}; {b0}; {b1}} (L1):

Hence, FAC(L1) is not generated by N1, N′
2 , and N2, although L1 =N1 ×N2. Indeed

we also have L1 =N1 ×L′
1 . Moreover, L′

1 is weakly irreducible and N′
2 is its unique

proper factor. Incidentally, L1 is also homogeneous for N1 | L1. Here, we shall not
give the proof of all these results. In fact, the reader can check them directly or just
use the same argument as follows.

For �¿2; FAC(L�) is composed of 10 elements:

!0 = {cj; bj; 0 6 j 6 �} (I
);

!1 = {{c0}; {cj; b�−j+1}; {b0}; 1 6 j 6 �} (N�+1);

!2 = {{c0}; {c1; b�}; {cj}; {bj−1}; {b0}; 2 6 j 6 �} (N′
� ×N�+1);

!3 = {{c0; c1}; {cj}; {b0}; {b1}; {bj}; 2 6 j 6 �} (L′
�);

!4 = {{c0; c1; b�−1; b�}; {cj; b�−j}; 2 6 j 6 �} (N′
� );

!5 = {{c0; c1; b�}; {cj+1}; {bj}; 0 6 j 6 � − 1} (N′
� ×N′

�+1);

!6 = {{c0; c1; b�}; {cj; b�+1−j}; {b0}; 2 6 j 6 �} (N′
�+1);

!7 = {{c0; b�}; {cj}; {bj−1}; 1 6 j 6 �} (N� ×N′
�+1);

!8 = {{cj; b�−j}; 0 6 j 6 �} (N�);

!9 = {{cj}; {bj}; 0 6 j 6 �} (L�):

From the above formulas and also Relation (1), we obtain immediately

FAC(L′
�) = {I
;N′

� ;N
′
�+1;N

′
� ×N′

�+1;L
′
�};

thus L′
� is weakly irreducible, and

L� = N� ×N�+1 = L′
� ×N�+1 = N� ×L′

�+1;

where the 6rst equality existed already in [22].
Now let ! be a proper automaton partition of L�, and we shall show that it must

be one of the above eight nontrivial elements.
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Case I: !(c0) only contains one state. Since ! is proper, then there exists an integer
j (06j6�) such that !(bj) contains at least two elements, or there exists an integer
k (16k6�) such that !(ck) contains at least two states.

If there exists an integer j (06j6�) such that !(bj) contains at least two el-
ements, then bk =∈ !(bj) for all k 
= j. In fact if bk ∈ !(bj) with 06k 
= j6�, then
b�+1−|k−j| ∈ !(c0), and it contradicts !(c0) = {c0}. So there must exist an integer
l (16l6�) such that cl ∈ !(bj). Necessarily we should have l= � − j + 1. Indeed
if � − j¿l− 1, then bj+l ∈ !(c0) with 16j + l6�, and we obtain again a contradic-
tion with !(c0) = {c0}. If � − j¡l − 1, then cl−�+j−1 ∈ !(c0) and it contradicts also
!(c0) = {c0}, for we have l− � + j − 1¿0.

Likewise if there exists an integer k (16k6�) such that !(ck) contains at least two
elements, then ch =∈ !(ck) for 16h 
= k6�, and we fall into the above case.

According to the value of the integer j, we should distinguish two possibilities.
(a) If 06j¡�, then c�−j+1 ≡ bj (mod !), and thus c�−k+1 ≡ bk (mod !) for j6k6�.

In particular c2 ≡ b�−1 (mod !), and so b1 ≡ c� (mod !). In other words, we can suppose
j = 1. Hence c�−k+1 ≡ bk (mod !) for 16k6�, and consequently we have != !1.

(b) Now suppose that j = � and there is not any other integer j satisfying the above
property. Then c1 ∈ !(b�), and we must have != !2.

Case II: !(c0) contains at least two states.
A. Suppose c1 ∈ !(c0). Then we have the following two possibilities.
(a) If !(c0) = {c0; c1}, then for all integer j (06j6�), we have !(bj) = {bj}.
First bk =∈ !(bj) for 06k 
= j6�, since bk ∈ !(bj) implies b�+1−|k−j| ∈ !(c0).
Now we show by absurdity ck =∈ !(bj) for 26k6�. Suppose that there exists an

integer k (26k6�) such that ck ∈ !(bj). If �−j¿k−1, then bj+k ∈ !(c0) with 26j+
k6�, and it contradicts !(c0) = {c0; c1}. If �−j¡k−2, then we have ck−�+j−1 ∈ !(c0)
with k−�+j−1¿1, and we obtain a similar contradiction as above. Hence j+k−�= 1
or 2. In the 6rst case, we would have c1 ≡ b�(mod!), just as in Case I, and it contradicts
again !(c0) = {c0; c1}. In the second case, we would have c�−j+2 ≡ bj (mod !), and
then c�−l+2 ≡ bl (mod !) for j6l6�. In particular c2 ≡ b� (mod !), and thus b1 ≡ b0

(mod !), which is impossible.
Similarly we also have !(cj) = {cj} for 26j6�. To see this, we only need check

ck =∈ !(cj) for 36k 
= j. However if ck ∈ !(cj), then c1 ≡ c|k−j|+1 (mod !) with |k−j|+
1¿2, and we obtain a contradiction with !(c0) = {c0; c1}.

In conclusion, we have just obtained != !3.
(b) Now assume that !(c0) contains at least three elements. Clearly b0 =∈ !(c0),

for b0 ∈ !(c0) will imply != !0. Also we have cj =∈ !(c0) for 26j6�. In fact, if
there exists an integer j (26j6�) such that cj ∈ !(c0), then for 06k6j, we must
have ck ∈ !(c0). Thus b0 ≡ bk−1 (mod !) for 26k6j. In particular, we obtain b0 ≡ b1

(mod !), which implies directly b0 ≡ bk (mod !) for 16k6�, and thus b0 ∈ !(c0). This
is absurd. Hence there must exist an integer j (26j6�) such that bj ∈ !(c0). Again
we need distinguish two di4erent situations.

(i) Assume 16j6�− 1. Then c1 ≡ bj (mod !) and c0 ≡ bj (mod !), from which we
deduce b0 ≡ cj+1 (mod !) and bk ∈ !(c0) for j6k6�. Then from the latter, we obtain
immediately ck+1 ∈ !(b0) for j6k6�−1, and thus ck ∈ !(b1). If j¡�−1, then we have
b1 ≡ cj+1 (mod !), and therefore b1 ≡ b0 (mod !). But this is impossible, as we have
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already shown above. So we must have j = �−1, and then !(c0) = {c0; c1; b�−1; b�}; c�
∈ !(b0). Thus ck ∈ !(b�−k) for 06k6�. Now remark that if bg ≡ bh (mod !) for 06g
¡h¡� − 1, then b�−1−h+g ∈ !(c0) with 06� − 1 − h + g¡� − 1, and this is absurd.
Hence we have != !4.

(ii) Assume j = � and bk =∈ !(c0) for 26k6� − 1. Then !(c0) = {c0; c1; b�}.
(1) If !(bk) = {bk} for 06k6�−1, then !(ck+1) = {ck+1} for 16k6�−1, and thus

!= !5. In fact if cg ≡ ch (mod !) with 26g¡h6�, then we would have bg−1 ≡ bh−1

(mod !) with 16g− 1¡h− 16� − 1, and this contradicts our hypothesis !(bg−1) =
{bg−1}.

(2) Assume that there exists an integer k (06k6� − 1) such that !(bk) contains
at least two elements. Clearly bl =∈ !(bk) for 06l 
= k6� − 1. Indeed if there exists
an integer l (06l 
= k6� − 1) such that bl ∈ !(bk), then we must have b�−1−|l−k| ∈
!(c0) with 06� − 1 − |l − k|¡� − 1, and this is absurd. So there exists an integer
g (26g6�) such that cg ≡ bk (mod !). If � − k¿g, then we have bk+g ∈ !(c0) with
26k + g¡�, which is impossible. If � − k¡g − 1, then we have cg+k−� ∈ !(c0)
with 26k + g − �, and this is absurd again. Thus we must have k + g − �= 0 or
1. If k + g − �= 0, then c�−k ≡ bk (mod !), and we obtain thus c�−h ≡ bh (mod !)
for k6h6�. In particular c1 ≡ b�−1 (mod !), and this is absurd. Therefore we must
have k + g − �= 1, and then c�+1−k ≡ bk (mod !). Hence for k6h6�, we have
c�+1−h ≡ bh (mod !), and b�−h ≡ ch+1 (mod !). In particular b1 ≡ c� (mod !), and thus
bh ≡ c�+1−h (mod !) for 16h6�. Since for 06l 
= k6� − 1, we have bl =∈ !(bk),
so != !6.

B. Now suppose c1 =∈ !(c0). Then cj =∈ !(c0) for 16j6�. In fact, if there exists an
integer j¿2 such that cj ∈ !(c0), then ck ∈ !(c0) for all integer k6j, thus c1 ∈ !(c0)
and it is absurd. Hence there exists an integer j (16j6�) such that bj ∈ !(c0), which
implies directly bk ∈ !(c0) for j6k6�. If 16j6�−1, then ck+1 ∈ !(b0) for j6k6�−
1. In particular, we obtain c� ∈ !(b0), and it gives bk ≡ c�−k (mod !) for 06k6�.
Therefore c�−k ∈ !(c0) for j6k6�, and so c1 ∈ !(c0), which is absurd. Thus j = �,
and !(c0) = {c0; b�}.

(a) If !(bk) = {bk} for 06k6� − 1, then we have !(ck) = {ck} for 16k6�,
and consequently != !7. In fact if there exists integers g; h (16g¡h6�) such that
cg ≡ ch (mod !), then bg−1 ≡ bh−1 (mod !) with 06g− 1¡h− 16�− 1, and this con-
tradicts our hypothesis !(bg−1) = {bg−1}.

(b) Assume that there exists an integer k (06k6� − 1) such that !(bk) contains
at least two elements. Clearly bl =∈ !(bk) for 06l 
= k6�− 1. Indeed if there exists an
integer l (06l 
= k6�−1) such that bl ∈ !(bk), then we should have b�−1−|l−k| ∈ !(c0)
with 06�−1−|l−k|¡�−1, and this is absurd. So there exists an integer g (16g6�)
such that cg ≡ bk (mod !). If �−k¿g, then we have bk+g ∈ !(c0) with 16k+g¡�, and
we obtain a contradiction with the fact !(c0) = {c0; b�}. If �−k¡g, then cg+k−� ∈ !(c0)
with 16k+g−�, and this is also absurd. Consequently g= �−k, and c�−k ≡ bk (mod !),
from which we obtain c�−h ≡ bh (mod !) for k6h6�. In particular c1 ≡ b�−1 (mod !),
and thus b0 ≡ c� (mod !). Then c�−h ≡ bh (mod !) for 06h6�. Since bl =∈ !(bk) for
06l 
= k6� − 1, thus !(bh) = {bh; c�−h} for 06k6� − 1, and != !8.

In conclusion, we have just established the following result about the factor structure
of Ising automata.
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Theorem 1. Let �¿0 be a real number.
(1) A0 is irreducible and invertible, but it is neither faithful nor homogeneous;
(2) A� (�¿4) is strictly faithful, irreducible, homogeneous, and invertible;
(3) If 0¡�¡4, we denote A� by N� or L� according to 4=�∈N or not, where

�= [4=�] is the integral part of 4=�:
(a) N1 is strictly faithful, irreducible, homogeneous, and invertible;
(b) N� (�¿2) is faithful but not strictly faithful, left-invertible but not invertible,

weakly irreducible but not irreducible. Indeed it has three factors: I
; N′
� ,

and N�, where N′
� is the factor corresponding to the automaton partition

!� = {{a�+1; a�}; {a1}; : : : ; {a�−1}} of N�;
(c) L� (�¿1) is left-invertible but not invertible. It is also faithful but not

strictly faithful. Moreover FAC(L1) only contains seven elements: I
; N2;
L′

1 ; N′
2 ; N1 ×N′

2 ; N1, and L1; while FAC(L�) (�¿2) contains ten el-
ements: I
; N�+1; N′

� ×N�+1; L′
� ; N′

� ; N′
� ×N′

�+1; N′
�+1; N� ×N′

�+1;
N�, and L�.

Now we discuss the topological properties of (A�; o�) (see also [22]). About this
subject, we have the following theorem which is based heavily on the results obtained
in the preceding section.

Theorem 2. The Ising mapping � �→ (A�; o�) is uniformly continuous from the interval
[�0;+∞) to the topological vector space (AUTOC(
);SC(
)), where �0¿0. However
it is only weakly but not strongly continuous at �= 0.

Proof. Let �0¿0 be a real number. For all �; %∈ [�0;+∞), we can easily show that
we have (see Theorem 4 in [22])

‖ (A�; o�) − (A%; o%) ‖6
(

1 +
[

4
�0

])
|�− %|;

hence the mapping � �→ (A�; o�) is uniformly continuous from [�0;+∞) to the topo-
logical vector space (AUTOC(
); ‖ · ‖). Remark that for all �¿�0, we have

Card(A�) 6 2[4=�] + 1 6 2[4=�0] + 1;

thus by Proposition 16, the mapping � �→ (A�; o�) is also uniformly continuous in
[�0;+∞) for the strong topology SC(
), whence continuous over (0;+∞) for the
same topology. This mapping is clearly weakly continuous at �= 0. Whereas it is not
strongly continuous at that point, since A0 cannot divide A� even when � is very
close to 0 (see Proposition 14). Indeed at the neighborhood of �= 0, the function
� �→Card(A�) is unbounded (see Proposition 15).

The above theorem, although simple in appearance, reveals a surprising fact: a
discrete model such as Ising chain can imply underground the continuity! However
its meaning in physics is rather self-evident (see [22]): the so-called Ising automata
describe the induced 6eld of the inhomogeneous Ising chain which depends on the
external 6eld. The induced 6eld varies continuously with the external 6eld, and there-
fore the family of Ising automata must be continuous!
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To conclude this section, we indicate in the following a remarkable property of the
above Ising family (A�; o�)�¿0, pointed out to the author by Kamae in response to a
question put forward by MendHes France.

For all n∈N with standard binary expansion n=
∑k

j=0 nj2j, de6ne

u�(n) = o�(t�(i�; (−1)nk (−1)nk−1 · · · (−1)n0 )):

The sequence u� = (u�(n))n¿0 is clearly 2-automatic. We remark also that u0 is just
the Thue–Morse sequence in ±2, hence its correlative measure is singular continuous
(see for example [4] or [32]), and u0 itself is pseudo-random (cf. [6]). Now let �¿0.
Since the Ising automaton A� is normalized, primitive, and faithful, so the symbolic
dynamical system associated to u� has discrete spectrum, in particular the correlative
measure of u� is discrete, and u� itself is almost-periodic in the sense of Bertrandias
(see [4, p. 336]). When �¿4, the conclusion becomes much more precise: u� is indeed
periodic of period 2 (see Example 2). So when � drops from 4 to 0, the sequence u�
is at 6rst periodic, then almost-periodic in the sense of Bertrandias, and 6nally pseudo-
random. It marks a “phase transition” at the point �= 0. In physics, this means that
when �¿0, the external magnetic 6eld is present, so our system is ordered, and when
�¿4, i.e. H¿2J , the external magnetic 6eld dominates the internal interaction, and
thus the system becomes highly ordered. But when �= 0, the external magnetic 6eld
disappears, and the system is only governed by the internal interaction, so it becomes
totally chaotic, i.e. pseudo-random.

For more details on Ising automata, see for example [3,4,22,26,27,34].

11. Further studies

As the reader can remark, many problems remains open. For example, we do not know
whether prime automata exist, and although we know how to characterize irreducible auto-
mata, but until now we have no idea about the characterization of weakly irreducible auto-
mata. We have already pointed out that homogeneity or more general !-homogeneity
is a product property, and being normalized is a factor property, and clearly these prop-
erties merit a more thorough and deep discussion. We have already characterized faith-
ful and strictly faithful automata. It is also possible to study and characterize faithful
and strictly faithful automata with output. The open problems listed here are certainly
far from completeness, and we shall discuss and study all of them in a later work.
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