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1. I N T R O D U C T I O N  

Linear two-point boundary-value problems can be readily solved by many methods, e.g., shooting, 
band matrix, parallel shooting, collocation, Ritz-Galerkin [1], sinc-Galerkin [2-5]. Even singular 
linear two-point boundary-value problems can be handled by the Ritz-Galerkin method, as was 
shown by Jespersen [6]. Nonlinear problems result in a nonlinear system of equations to solve, and 
the typical suggestion [1] is that  this system of equations be solved by a quasi-Newton method, 
or by embedding if a good initial approximation is not known. 

Broyden's, Newton, and Steffensen's methods for solving a nonlinear system of equations are 
local in nature and may fail if the starting point is not close to the solution. Embedding is 
an a t tempt  to overcome this difficulty, but unfortunately embedding also fails frequently due 
to "singular points" [1]. There are conditions, somewhat restrictive though, which preclude the 
existence of "singular points" [7]. 

Accurate and fast numerical solution of two-point boundary value ordinary differential equa- 
tions is necessary in many important scientific and engineering applications, e.g., boundary layer 
theory, the study of stellar interiors, control and optimization theory, and flow networks in biol- 
ogy. 

The sinc-Galerkin methods for ordinary differential equations have many salient features due 
to the properties of the basis functions and the manner in which the problem is discretized. Of 
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equal practical significance is the fact that  the method's implementation requires no modification 
in the presence of singularities. The approximating discrete system depends only on parameters 
of the differential equation regardless of whether it is singular or nonsingular. 

In this paper, we consider nonlinear differential equations of order 2m, m -- 1, 2, 3, 

Lu = u (2"~) + ~-(x)uu' + ~(x)H(u) = f(x), 0 < x < 1, (1.1) 

subject to boundary conditions 

uO)(0) = 0, uO)(1) = 0, 0 _< j < m - 1, (1.2) 

where H(u) may be a polynomial or a rational function, or exponential. Due to the large number 
of different possibilities, our work will be focused mainly on the following forms H(u):  

• H(u)=un, n > l ,  
• H(u) = exp(+u), cos(u), sin(u), sinh(u), cosh(u), . . . ,  
• H(u) = 1/(1 =t= u) n, 1/(1 =t= u2) n, 1/(u 2 =l= 1) n, n ¢ 0, 

or any analytic function of u which has a power series expansion. 
Agarwal and Akrivis [8] have discussed in detail the existence and uniqueness of (1.1),(1.2). 

Throughout this paper in keeping with Stenger [9], we shall assume that  u(x), ~-(x), ~;(x), and f(x) 
are analytic with respect to x in a neighborhood of [0, 1]. 

The sinc-Galerkin method utilizes a modified Galerkin scheme to discretize (1.1),(1.2). The 
basis elements that  are used in this approach are the sinc function composed with a suitable 
conformal map. A thorough description of the sinc function properties may be found in [9]. 

The outline of the paper is as follows. In Section 2, we review some of the main properties 
of sinc-Galerkin that  are necessary for the formulation of the discrete system. In Section 3, we 
illustrate how the sinc-Galerkin method may be used to replace equation (1.1) by an explicit 
system of nonlinear algebraic equations that  is solved by Newton's method. Section 4 presents 
appropriate techniques to treat nonhomogeneous boundary conditions. Finally, some numerical 
examples are presented in Section 5, where the scheme is tested on four nonlinear problems. The 
results demonstrate the reliability and efficiency of the algorithm developed. 

2. S I N C  F U N C T I O N  P R E L I M I N A R I E S  

The sinc function is defined on the whole real line by 

sine(x) sin(wx) = , - o o  < x < ec. (2.1) 
7 r x  

For h > 0, the translated sinc functions with evenly spaced nodes are given as 

S(k,h)(x)=sinc(~@hkh), k - -  0 + 1 , + 2 , . . . .  (2.2) 

If f is defined on the real line, then for h > 0 the series 

C(f,h)= ~ f (hk ) s inc (~h  hk) (2.3) 
k~--o¢) 

is called the Whittaker cardinal expansion of f whenever this series converges. The properties 
of (2.3) have been extensively studied. A comprehensive survey of these approximation properties 
is found in [10]. 

To construct approximations on the interval (0, 1), which are used in this paper, consider the 
conformal maps 
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The map ¢ carries the eye-shaped region 

DE=-- z = x + iy : < d <_ , (2.5) 

onto the infinite strip 

Da -= { (  = ~ + i~? : l~?l < d < 2 } .  (2.6) 

The composition 

S#(x) = S(h, j)  o ¢(x) --= sine (¢(x)- h-  jh  ) (2.7) 

defines the basis element for equation (1.1) on the interval (0, 1). The "mesh size" h is the mesh 
size in Dd for the uniform grids {kh}, -c~  < k < c~. The sinc grid points zk E (0, 1) in DE will 
be denoted by Xk because they are real. The inverse images of the equispaced grids are 

e kh 
Xk = ¢-l(kh)  = 1 + e  kh" (2.8) 

DEFINITION 2.1. Let DE be a simply connected domain in the complex plane C, and let ODE 
denote the boundary of DE. Let a, b (a ¢ b) be points on ODE, and ¢ be a conformal map DE 
onto Dd such that ¢(a) = -oo  and ¢(b) = c~. I f  the inverse map of ¢ is denoted by ~p, define 

r = : < < 

and Zk --= ¢(kh), k = 0, ±1, ±2 , . . . .  

DEFINITION 2.2. Let B(DE) be the class of functions F that are analytic in DE and satisfy 

]~ IF(z) dz I --+ O, as u = ±co, (2.9) 
(LWu) 

where 

L = { i y : l Y l < d < 2 } ,  (2.10) 

and on the boundary of DE (denoted ODE) satisfy 

T(F)  = f IF(z) dz I < oo. (2.11) 
Ja DE 

The importance of the class B(DE) with regard to numerical integration is summarized in the 
following theorems [10]. 

THEOREM 2.1. Let F be (0, 1), if F 6 B(DE), then for h > 0 sut~ciently small 

f r  ~ F(z#) i fo F(z)k(¢'h)(Z) dz =- ZF, (2.12) 
F(z) d z -  h E ¢'(z#) = 2 sin(Tr¢(z)/h) 

#=-oo D 

where 

,k(¢,h),zeOD = exp [ ~ s g n ( l m ¢ ( z ) ) ]  z6oD m e -~rd/h. (2.13) 

For the sinc-Galerkin method, the infinite quadrature rule must be truncated to a finite sum. 
The following theorem indicates the conditions under which exponential convergence results. 
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THEOREM 2.2. I f  there exist positive constants a,/3, and C such that 

F(x) ~ C{ exp(-al¢(x)l)' 
¢'(x) l exp(-~l¢(z)l), (2.14) 

x e ¢((0, ~)), 

then the error bound for the quadrature rule (2.12) is 

N F(xg) 
F(x) - h Z ¢'(xj) j=-M 

<--c(e-~ Mh + ~ ) +  IIFI. (2.15) 

The infinite sum in (2.12) is truncated with the use of (2.14) to arrive at this inequality (2.15). 
Making the selections 

i ~d  (2.16) h= ~--~, 

and 

N - + 1 (2.17) 

where [x] is the integer part of x, then 

N F(xj) (e_(~radM)~/2 } f E - - + o  
J r  ¢ '(xj)  j=--M 

(2ns) 

Theorems 2.1 and 2.2 are used to approximate the integrals that arise in the formulation of 

the discrete systems corresponding to equations (1.1),(1.2). 

3. S I N C - G A L E R K I N  M E T H O D  

We start with the case H(u) = u ~, where n is a nonnegative integer, and assume an approximate 
solution of the form 

N 

uQ(x) = E cjSj(x),  Q =  M + N + I, (3.1) 
j=-M 

where Sj (x) is the function S(j, h) o ¢(x) for some fixed step size h. The unknown coefficients 
{cj}NM in (3.1) are determined by orthogonalizing the residual LuQ - f with respect to the 
functions {sk}N__M. This yields the discrete system 

(LuQ - f,  Sk) = 0, (3.2) 

for k -- - M ,  - M  + 1, . . .  ,N. The weighted inner product (, } is taken to be 

1 

(g(x), f(x)} = Y~0 g(x ) f (x )w(x )  dx. (3.3) 

Here, w(x) plays the role of a weight function which is chosen depending on the boundary 
conditions, the domain, and the differential equation. For the case of 2m-order boundary value 
problems, it is convenient to take 

1 ~(x) = (¢,(x))~" (3.4) 

A complete discussion on the choice of the weight function can be found in [3,9]. The most direct 
development of the discrete system for equation (3.1) is obtained by substituting (3.1) into (1.1). 
The system can then be expressed in integral form via (3.3). This approach, however, obscures 
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the analysis which is necessary for applying sinc quadrature formulae to (3.2). An alternative 

approach is to analyze instead 

(u(2m),Sk>+<Tuu',Sk>+<nun, Sk>=<f, Sk), k = - M , . . . , N .  (3.5) 

The method of approximating the integrals in (3.5) begins by integrating by parts to transfer all 
derivatives from u to Sk. The approximation of the last inner products on the right-hand side 

of (3.5) 

h I(xk)w(xk) (3.6) (f, Sk) -- ¢'(xk) ' 

We need the following two theorems. 

THEOREM 3.1. The [ollowing relations hold: 
N 2 m  

<u(2"~)'Sk> : h  E E u(xj) 6(,)~ i x . x  (3.7) 
5=-Mi=O ¢'(x~)hi kju2-~,~ 3J, 

for some functions g2m# to be determined. 
PROOF. The inner product with sinc basis element is given by 

<u(2m),sk) = ~olU(U~)(x)Sk(x)w(x)dx. (3.8) 

This expression contains 2m derivative of u but the desired result is the variable u with no 
derivatives. Integrating by parts to remove 2m derivatives from the dependent variable u leads 
to the equality 

<u(2"~)(x),Sk(x)> = B= + ~lu(x)(Sk(X)W(X))(2m) dx, (3.9) 

where the boundary term 

Setting 

and noting that 

[ 2 m - 1  l 1 

Bx = ] ~ (-1)'u(2m-l-')(Skw)(') I = 0 .  
L i=O J x=O 

d n  
S k (x), 0 < n < 2 m ,  den [sk¢)]  = (n) 

~[Sk(x)] = s~ ~(x)¢'(x), 
we obtain by expanding the derivatives under the integral in (3.9) 

where g2m,1 are given as the following. 

C A S E  m = 1. 

(3.10) 

(3.11) 

g2,~(~) = ~(¢,)2,  

C A S E  m --~ 2. 

g~,l(z) = ~(¢)"  + 2~'¢',  g~,o(x) = ~". (3.12) 

g4,o(x) : w (4), g4,a(x) ---- w(¢') 4, g4,3 (x) = 6w(¢')2¢ '' ÷ 4w'(¢') 3, 

g4,2(x) = 3w(¢") 2 + 4w¢'¢'" + 12w'¢'¢" + 6w"(¢') 2, 

g4,1(x) = ~(¢)4  + 4~'(¢)'" + 6~"¢" + 4~'"¢'. 

(3.13) 

(3.14) 

(3.15) 
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CASE m = 3. 

96,0 = w (6), 96,6 = w(¢') 6, g6,5 = 15w(¢')4¢ '' + 6w'(¢') 5, (3.16) 

96,4 = 20W¢ (3) (¢,')(3) _~ 45W(¢t)2(¢,,)2 .~ 60w,(¢,)3¢,, + 15wt,(¢¢)(4) (3.17) 

9~,~ = 15~(¢")  a + 15~(¢ ' )2(¢)  (4) + 60~¢'¢"¢'" + 60~ ' (¢ ' )2¢  ''' 

+ 90w'¢'(¢") 2 + 80w"¢"(¢') 2 + 20w'"(¢') 3, (3.18) 

g6,2 = 10w(¢"') 2 + 6w¢'¢ (5) + 15w¢"¢ (4) + 30w'¢'¢ (4) + 60w'¢"¢"' 

+ 60wt'¢ '¢" + 45w"(¢") 2 + 60w'"¢'¢" + 15w(4)(¢') 2, (3.19) 

96,1 : q ~(6)w + 6~ b(5)w' + 154 (4)w(2) -t- 20¢(3)w (3) + 15¢(2)w (4) + 6¢'w (s). (3.20) 

Applying the sine quadrature rule to the right-hand side of (3.11) and deleting the error terms 
yields (3.7). | 

THEOREM 3.2. The following relations hold: 

<~(~>~, &> = ,~w(zk)~"(zk)~(zk). (3.22) 
¢'(xk) 

PROOF. For r(x)uu ~, the inner product with sinc basis elements is given by 

< ~ ' ,  &> = ~ ' ( & ~ ) d . .  (3.23) 

Integrating by parts to remove the first derivative from the dependent variable u leads to the 
equality 

u 2 (&rw)' dx, (3.24) <r~u', &) = B1 - 

where the boundary term is 

>11 B1 = u2Skrw = 0, (3.25) 
.I x~O 

and expanding the derivatives under the integral in (3.24) yields 

1 a~01%t2(Z)[S(1)Ot(TW ) q- S(kO)(T,w)t] dx. (3.26) 

Applying the sine quadrature rule to the right-hand side of (3.26) and deleting the error term 
yields (3.21). 

For ~(x)u n, the inner product with sine basis elements can be evaluated directly by application 
of (2.18) and deleting the error term to yield (3.22). | 

Replacing each term of (3.5) with the approximation defined in (3.7), (3.21), (3.22), and (3.6), 
respectively, and replacing u(xj) by cj, and dividing by h, we obtain the following theorem. 

THEOaEM 3.3. If the assumed approximate so/ution of the boundary-value problem (1.1),(1.2) 
is (3.1), then the discrete sinc-Galerkin system for the determination of the unknown coet~cients 
{ej}~__ M is given, for k = - M , . . .  ,N,  by 

N ~-----~1 d(i) g2m,i(Xj) l [ j k  l~(l)tTW'~(X ,,,2 (TW)t(Xk)e2] 

j=-M ~=o =-M (3.27) 

~ ( ~ ) ~ ( ~ ) ~ .  f(~k)~(~) 
¢'(~k) k = "  ¢'(x~) 
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The following notation will be necessary for writing down the system. Let D(g) be the Q x Q 

[g(X--M) ) 
D(g) = g(X-M+I) • (3.28) 

g( N) 

diagonal matrix: 

We need the following two lemmas. 

LEMMA 3.1. (See [5].) Let ¢ be the conformal one-to-one mapping of the simply connected 
domain DE onto Dd, given by (2.4). Then, 

(0) { 1, j = k, 
jk---[S(j,h)°¢(x)]lx=~k= O, j ¢ k ,  

0, j = k ,  
5 (1) = hff--~[S(j, h) o ¢(x)]lz=x~ -- (_ l )k - J  
jk j ~ k ,  

k - j  ' 
_7r2 

x(2) d2 . ---~-, j = k, 
= h2 $ [SO, h) o = 

j c k ,  

d3 { O, 

(k - j)3 

j -.~ k, 

j # k ,  

(3.29) 

(3.30) 

(3.31) 

(3.32) 

and 

,if4 
R(4) d4 -~--, j ~-- k, 
~jk -- h4-~[S(J,  h) o ¢(x)l~=xk = - 4 ( - 1 ) k - 3  [6 - 7r2(k - j)2] j # k. (3.33) | 

With some computations, one can prove the following lemma. 

LEMMA 3.2. Let ¢ be the conformal one-to-one mapping of the simp]y connected domain DE 
onto Dd, given by (2.4). Then, 

5 ~ ) = h ~  d 5 { 0, j = k ,  - ~  [S(j, h) o ¢(x)] Iz=zk = (3.34) 
ajk, j C k ,  

where t~jk = ((--1)k-J/(k -- j)s)[120 -- 207r2(k - j)2 + Ira(k _ j)4], 

71.6 
x ( 6 ) = h 6 d C  ~- ,  j = k ,  v~k [S(j, h) o ¢(x)l]~=~k = aq) v 

#jk, j ¢ k ,  
(3.35) 

where 

/.tjk ~- - 6 ( - 1 ) a - J  
(k-j)6 [120 - 207r2(k - j)2 + 7r4(k _ j )4] .  

Define the Q x Q matrices I (v) (see [11]) for 0 < p _< 2m by 

I (p) [~(P)] j , k  = - M , . .  N. (3.36) = [~jk j ,  ., 
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Let c be the Q-vector with jth component given by cj, and c ~ be the Q-vector with jth component 
given by c~', and 1 is an Q-vector each of whose components are 1. In this notation, the system 
in (3.27) takes the matrix form 

C-M+1 ¢2M+ 1 CnM+l 
A : + B  : + E  i 

where 

and 

= O, (3.37) 

E = D \ ¢ , ) ,  

(°,) O = D  -~- 1, 

(3.3s) 

(3.39) 

(3.40) 

2m 
A =  E I I ( J ) D  (g2m,j~ (3.41) 

j=0 hJ \ ¢ ' 1 "  

Now, we have a nonlinear system of Q = M + N + 1 equations of the Q unknown coefficients, 
namely, {cj}N=_M . We can obtain the coefficients of the approximate solution by solving this 
nonlinear system by Newton's method [12-17]. The solution c -- (C-M,.. . ,  CN) T gives the coef- 
ficients in the approximate sinc-Galerkin solution urn(x) of u(x). 

N e w t o n ' s  M e t h o d  

To solve the system of equations (3.37), we write it in the form 

F(C) = / F - M + I ( C - M ' C - M + I " .  "' cN) = , (3.42) 

\ I~N(C-M,C-M+I,...,CN) 

where c is the column vector of independent "variables and F is the column vector of the func- 
tions Fj, with Fj(c) = _Pj(C_M,C_M+I,... ,aN), --M ~ j ~ N. The number of functions that 
are set equal to zero is equal to the number of independent variables. A very good method for 
solving equation (3.42) is Newton's method. 

Let c (i) be the guess at the solution for iteration i. Let F (0 denote the value of F at the ith 
iteration. Assuming that ]IF (~) II is not too small, we seek update vectors Ac (~) 

(~+1) / • 

c( = +ac( ' )  c_ +li = c b+l + Ac  +l , (3.43) 

C N 

such that F(c (i+I)) = 0. Using the multidimensional extension of Taylor's theorem to approxi- 

mate the variation of F(c) in the neighborhood of c (i) gives 

F ( c ( ~ ) + A c ( ~ ) ) = F ( c ( 0 ) + F , ( c ( ~ ) ) A c ( 0 + O (  Ac(0 2 ) ,  (3.44) 
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where F~(c (~)) is the Jacobian of the system of equations 

F'(c) -- J(~) = 

( O---Z--M--MOF--M (c) 

OF-M+1 (c) 
OC-M 

OFN (~) 

OF-M a F - M  (c) . . .  (c), 
0C-M-t-1 OCN 

OF-M+~ (e) OF-M+1 (c), 
Ocg 

0F~ (c) --. ~ . aFN (c) 
0C--M-t-1 

(3.45) 

Neglecting higher order terms and designating j(i) as the Jacobian evaluated at c (~). We can 
rearrange equation (3.44) 

F (c  (i) + Ac (~)) = F (c (~)) + J(i)Ac(i). (3.46) 

The goal of Newton iterations is to make F (c  (~) ÷ Ac (i)) = 0, so setting tha t  term to zero in the 
preceding equation gives 

(3.47) 

Equation (3.47) is a system of Q linear equations in the Q unknown Ac (i). Each Newton iteration 
step involves evaluation of the vector F (i) , the matr ix J(i), and the solution to equation (3.47). A 
common numerical practice is to stop the Newton iteration whenever the distance between two 
iterates is less than a given tolerance, i.e., when Itc (i+1) - c (i) 11 -< s. 

Algorithm 

• initialize c = c (°), 
• for i = 0, 1, 2 , . . . ,  F(0 = Ac[(i) + Bc2[(i) + E c n l ( i )  - O ,  

• if HF(01[ is small enough, stop, 
• compute j(i) ,  
• solve J(i)Ac(i) = - F ( c ( 0 ) ,  
• c(i+ 1) = c(i) + Ac (i), 

• end. 

Also, some of the well-known techniques we can use in solving equation (3.37) are the quasi- 
Newton and secant methods; for more detail, see [18-21]. 

4 .  T R E A T M E N T  O F  T H E  B O U N D A R Y  C O N D I T I O N  

In the previous section the development of the sinc-Galerkin technique for homogeneous bound- 
ary conditions provided a practical approach since the sinc function composed with various con- 
formal mappings, S( j ,  h) o ¢, are zero at the endpoints of the interval. If the boundary  conditions 
axe nonhomogeneous, then these conditions need be converted to homogeneous ones via an in- 
terpolation by a known function. For example, consider 

~(~m) + ~ ( x ) ~ '  + ~(x)~" = / ( x ) ,  0 < x < 1, (4.1) 

subject to boundary  conditions 

~(')(0) = R,, ~(')(1) = T ,  0 < i < m - 1 .  (4.2) 

The nonhomogeneous boundary conditions in (4.2) can be transformed to homogeneous boundary 
conditions by the change of dependent variable 

W ( x )  = u(x)  - A(x), (4.3) 
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where A(x) is the interpolating polynomial that  satisfies A(~)(0)  = R~ a n d  A(~)(1)  = T~, 0 < i < 

m - 1  
2m--1 

A ( x ) =  E #~x~" (4.4) 
i=0  

It is easy to see the following. 

CASE m ~- 1. ].to ---~ Ro, /.11 ~-~ T 0 - R 0 .  

CASE m = 2. #o = /~o, 

CASE m = 3. #0 = R0, 

#1 = I{1, ~12 = 3T0 - T1 - 2R1  - 3Ro ,  #3 = T1 - 2To + R1 + 2Ro. 

#I=R1, ~2=-R2/2, 

,ua = 1 [(20To - 8T1 + T2) - (20no + 12R1 + 3R2)], 

~4 = [(-15To + 7T1- T2) + (15Ro + 8Rl + ~ R2) ] , 

#5 -- 1[(12To - 6T1 -t- T2) - (12R0 + 6R1 + R2)]. 

The new problem with homogeneous boundary conditions is then 

n--1 

k=O 

0 < x < l ,  (4.5) 

subject to the boundary conditions 

w ( ' ) ( 0 )  = 0, w ( ~ ) ( t )  = 0, 0 < i < m - 1, (4.6) 

where 
] ( x )  : f ( ~ )  - ~(x)AA(1)  - ~ ( x ) A  ~. (4.7) 

Now, apply the standard sinc-Galerkin method to (4.5). We define an approximate solution 
of (4.5) via the formula 

N 

WQ(X) = E c~Sj(x), Q = M + N + 1. (4.8) 
j=--M 

Then, the approximate solution of (4.1) is 

N 

u q ( z )  = Z c j S j ( x )  + h ( x )  
j = - M  

(4.9) 

5. N U M E R I C A L  R E S U L T S  

In this section, four nonlinear problems will be tested by using the sinc Galerkin method 
discussed above. For comparison reasons, the problems have homogeneous and nonhomogeneous 
boundary conditions and known solutions. As will be demonstrated by the numerical results, 
the boundary singularities have no adverse effect on the performance of the method. All the 
experiments were performed in MATLAB. In our tests, the zero vector is the initial guess and 
the stopping criterion is I]c (j+l) - c  (j)l[ < 10-8. 

In all the examples we take d -- ~r/2. Once M is chosen, the step size and remaining summation 
limit can be determined as follows: 

h = (~M' 
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where  [x] is t he  in teger  pa r t  of  x. No te  t h a t  if  c~/f~ is an integer ,  i t  suffices to  choose N = (o~/~)M. 
We use abso lu te  re la t ive  er ror  which is def ined as 

abso lu te  re la t ive  error  = [Uexact solution -- Cslnc-Galerkin[ 
IVexact solutionl 

(5.1) 

For the sake of comparison only, we will discuss the first examples that were investigated by 
Chawla and Katti [22], Agarwal [8], and Twizell and Wirmizi [23]. 

EXAMPLE 1. (See [8,22,23].) Consider the boundary value problem 

u (4) = 6 exp(-4u)  - 12(1 + x) -4, 

subject to boundary conditions 

0 < x < 1, (5.2) 

~(0) = 0 ,  ~(1) = l n 2 ,  ~ ' ( 0 ) = 1 ,  ~'(1) =0 .5 ,  (5.3) 

which  has  t h e  exac t  so lu t ion  given by u(x) = ln(1 + x).  

T h e  p a r a m e t e r s  are se lec ted  so t h a t  ~ = / ~  = 1 /2  and M = 60 . T h e  exac t  and  a p p r o x i m a t e  

solu t ions  and  t h e  abso lu te  re la t ive  error  are  displayed in Tab le  1. 

In  Tab le  2, we c o m p a r e  the  resul ts  ob t a ined  by the  S inc -Ga le rk in  m e t h o d  wi th  those  ob ta ined  

by  C h a w l a  and  K a t t a ,  us ing a four th -order  f ini te  difference m e t h o d ,  Aga rwa l  and  Akrivis ,  using 

the  f ini te  difference m e t h o d ,  and  Twizel l  and  T i rmiz i  [23], us ing a fou r th -o rde r  mu l t i de r iva t ive  

m e t h o d .  

EXAMPLE 2. Cons ider  t he  b o u n d a r y  value p rob l em 

o < x < 1, (5.4) ~,, + ~ ,  + ~3 = ! + x lnx(1  + lnx) + (xln~)  3, 
X 

subject to boundary conditions 

u(0) = 0, u(1) = 0, 

which has the exact solution given by u ( x )  = x lnx. 

Table 1. 

Exact Solution Sinc-Galerkin Relative Error 1.0e - 10 

0.0 0.0 - -  

0.077568262040 0.077568262046 0.06 

0.152623517296 0.152623517297 0.1 

0.205803507218 0.205803507212 0.04 

0.336452906454 0.336452906455 0.01 

0.405465108108 0.405465108103 0.04 

0.526121481267 0.526121481263 0.03 

0.571819991855 0.571819991858 0.06 

0.633234913798 0.633234913793 0.04 

0.665133248137 0.665133248135 0.02 

0.693147180559 0.693147180559 0.0 

(~.5) 

x 

0.0 

0.08065 

0.16488 

0.22851 

0.39997 

0.5 

0.69235 

0.77148 

0.88369 

0.94474 

1.0 

Table 2. Error norms. 

Sinc-Galerkin Chawla and Katti [22] 

0.5E-8 2.9E-7 

Agarwal and Akrivis [8] Twizell and Tirmizi [23] 

5.4E-8 0.26E-7 
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Table 3. 

x E x a c t  S o l u t i o n  S i n c - G a l e r k i n  A b s o l u t e  R e l a t i v e  E r r o r  1 .0e  - 06  

0 .0  0 .0  0 .0  - -  

0 . 0 7 7 0 1  -- 0 . 1 9 7 4 4 3 7 8  -- 0 . 1 9 7 4 4 3 7 7  0 . 0 6  

0 . 1 2 0 5 8  -- 0 , 2 5 5 0 8 3 7 0  -- 0 . 2 5 5 0 8 3 6 5  0 . 2 0  

0 . 2 7 0 2 2  

0 . 3 7 8 3 0  

0 .5  

0 . 6 2 1 6 9  

0 . 7 2 9 7 7  

0 . 8 7 9 4 1  

0 . 9 7 0 0 2  

1.0 

-- 0 . 3 5 3 5 9 0 8 7  - 0 , 3 5 3 5 9 0 8 1  0 . 1 5  

0 . 0 2  - 0 . 3 6 7 7 3 2 9 6  - 0 . 3 6 7 7 3 2 9 6  

- 0 . 3 4 6 5 7 3 5 9  --  0 . 3 4 6 5 7 3 5 3  0 . 1 4  

- 0 . 2 9 5 4 9 7 5 5  - 0 . 2 9 5 4 9 7 5 6  0 . 0 2  

- -  0 . 2 2 9 8 9 6 0 3  - 0 ° 2 2 9 8 9 6 0 0  0 .16  

-- 0.11300194 - 0.11300192 

- 0.02951702 - 0.02951703 

0 . 2 0  

0 .23  

0.0 0 . 0 0  - -  

In this problem the function f(x) has a s ingulari ty at  x = 0. The  pa ramete r s  M = 40 and 

a = fl = 1/2 are used. The  exact,  the  approximate  solutions, and absolute  relat ive error are 

displayed in Table 3. 

E X A M P L E  3. Consider the  bounda ry  value problem 

x 2 x 2 

~(4) + 1 + u ~ - - 7 2  (1 - 5x  + 5x  2) + 1 + (x  - x~)  6'  0 < • < 1, (5 .6)  

subject  to boundary  condit ions 

~ ( 0 )  = 0, ~ ( 1 )  = 0, ~ ' (0 )  = 0, u ' (1 )  = 0, (5.7) 

which has the  exact  solution given by u(x) = x3(1 - x) 3. 

By wri t ing 
1 - -  1 - u 2 + u 4 - u 6 + u s + . - .  , 

1 + u  2 

equat ion (5.6) becomes 

U(4) -~-X 2 ( 1 -  ?A 2 -~ U 4 -  i t  6 ~-  i t  8 - ~ - " ' ' )  ---- - - 7 2  ( 1 -  5 X  + 5 X 2 ) - ~  
X 2 

1 + (x  - z D  6'  
0 < z < 1. (5 .8)  

When equation (5.8) is solved by the sinc-Galerkin method, we get a discrete system of the form 

A c -  E c  2 + E c  4 -  E c  6 + . . . .  O ,  (5.9) 

where A, E ,  and @ are defined by equations (3.39)-(3.41) but  f changes to 

f(x) = - x  e - 72 (1 - 5x + 5x : )  + 
X 2 

1 + (x  - x2 )  6" 

The parameters  selected are a = ~ = 1/2 and M = 30. The  exact,  the  approximate  solutions, 

and absolute  relat ive error are displayed in Table 4. 

In the  following example,  we have nonhomogeneous bounda ry  conditions.  

EXAMPLE 4. Consider the  bounda ry  value problem 

u (6) + e-~u 2 = e - x  + e -3x,  0 < x < 1, (5.10) 



x 

0.0 

0.0537 

0.0915 

0.2410 

0.3604 

0.5 

0.7589 

0.9084 

0.9462 

0.9822 

1.0 

Sinc-Galerkin Method  

Table 4. 

Exact  Solution Sinc-Galerkin Relat ive Error 1.0e - 03 

0.0 0.0 -- 

0.0001316 0.0001316 0.0 

0.0005760 0~0005759 0.21 

0.0061203 0.0061173 0.48 

0.0122489 0.0122509 0.20 

0.0156250 0.0156245 0.02 

0.0061203 0.0061222 0.30 

0.0005760 0.0005759 0.21 

0.0001316 0.0001316 0.0 

0.0000052 0.0000052 0.0 

0.0 • - -  • 0.00 

1297 

x 

0.0 

0.0089 

0.0414 

0.1721 

0.3131 

0.5 

0.6868 

0.8278 

0.9134 

0.9585 

1.0 

Table 5. 

Exact  Solution Sinc-Galerkin Relative Error 1.0e - 03 

1.0 1.0 0.0 

0.99113 0.99113 0.0 

0.95942 0.95942 0.0 

0.84189 0.84189 0.0 

0.73113 0.73114 0.01 

0.60653 0.60655 0.04 

0.50316 0.50320 0.08 

0.43696 0.43701 0.09 

0.40114 0.40118 0.1 

0.38343 0.38347 0.1 

0.36787 0.36787 0.0 

subject to boundary conditions 

u(0) = 1, u'(0) = - 1 ,  u"(0)  = 1, 

1 1 1 
u(1)  = - ,  u'(1) = - -  () 

e e e 

which has the exact solution given by u ( x )  = e - ~ .  

The parameters selected are c~ =/~ -- 1/2 and M = 16. The exact, the approximate solutions, 
and absolute relative error are displayed in Table 5. 

6. C O N C L U S I O N  

The results of the previous section indicate that our procedure can be used to obtain accurate 
numerical solutions of nonlinear boundary value problem with very little computational effort. 
The accuracy of our methods depends on the magnitude of M. The results of Example 2 clearly 
indicate that our methods are accurate even when singularities occur at the boundaries. 
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