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In this paper we apply minimax methods to obtain existence and multiplicity of weak
solutions for singular and nonhomogeneous elliptic equation of the form

−�N u = f (x, u)

|x|a + h(x) in Ω,

where u ∈ W 1,N
0 (Ω), �N u = div(|∇u|N−2∇u) is the N-Laplacian, a ∈ [0, N), Ω is a smooth

bounded domain in R
N (N � 2) containing the origin and h ∈ (W 1,N

0 (Ω))∗ = W −1,N ′
is

a small perturbation, h �≡ 0. Motivated by a singular Trudinger–Moser inequality, we study
the case when f (x, s) has the maximal growth on s which allows to treat this problem
variationally in the Sobolev space W 1,N

0 (Ω).
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the multiplicity of critical points for the functional

I(u) = 1

N

∫
Ω

|∇u|N dx −
∫
Ω

F (x, u)

|x|a dx −
∫
Ω

h(x)u dx, (1.1)

where u ∈ W 1,N
0 (Ω), a ∈ [0, N) and Ω is a smooth bounded domain in R

N with N � 2 containing the origin. We also

assume that h ∈ (W 1,N
0 (Ω))∗ = W −1,N ′

is a small perturbation with N ′ = N/(N − 1), h �≡ 0.

Here W 1,N
0 (Ω) denotes the Sobolev space modeled in LN (Ω) with the norm ‖u‖ = (

∫
Ω

|∇u|N dx)1/N and W −1,N ′
denotes

the dual space of W 1,N
0 (Ω) with the usual norm ‖ · ‖∗ .

Our aim goal is to investigate existence of critical points of the functional I when the nonlinear term f (x, s) = Fs(x, s)
has the maximal growth on s for which the functional I can be studied on the W 1,N

0 -setting. Such critical points are weak
solutions of the associated Euler–Lagrange equation involving singular term of the form⎧⎨⎩−�N u = f (x, u)

|x|a + h(x) in Ω,

u = 0 on ∂Ω,

(1.2)
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where �N u = div(|∇u|N−2∇u) is the N-Laplacian. We study (1.2) when f (x, s) has subcritical or critical growth, which we
define next. We say that f (x, s) has subcritical growth at +∞ if

lim
s→+∞

| f (x, s)|
eα|s|N/(N−1)

= 0, uniformly on x ∈ Ω, for all α > 0 (1.3)

and f (x, s) has critical growth at +∞ if there exists α0 > 0 such that

lim
s→+∞

| f (x, s)|
eα|s|N/(N−1)

=
{

0, uniformly on x ∈ Ω, for all α > α0,

+∞, uniformly on x ∈ Ω, for all α < α0.
(1.4)

Similarly we define subcritical and critical growth at −∞.
Let us introduce the precise assumptions under which our problem is studied.

( f0) f (x, s) ∈ C(Ω × R,R), f (x,0) = 0 for all x ∈ Ω;
( f1) there exist θ > N and s1 > 0 such that for all |s| � s1 and x ∈ Ω ,

0 < θ F (x, s) = θ

s∫
0

f (x, t)dt � sf (x, s);

( f2) there exist constants R, M > 0 such that for all |s| � R and x ∈ Ω ,

0 < F (x, s) � M
∣∣ f (x, s)

∣∣.
( f3) lim sups→0

N F (x,s)
|s|N < λ1,

where λ1 is first eigenvalue of the following nonlinear eigenvalue problem

−div
(|∇u|N−2∇u

) = λ|u|N−2u

|x|a , u ∈ W 1,N
0 (Ω). (1.5)

It is well known (cf. [5,9]) that there exists a smallest positive eigenvalue, which we denote by λ1, and an associated
eigenfunction ψ1 > 0 in Ω that solves (1.5). Moreover λ1 is a simple eigenvalue (that is, any two solutions u, v of (1.5)
satisfy u = cv for some constant c) and is variationally characterized as

λ1 = inf

{ ∫
Ω

|∇u|N dx:
∫
Ω

|u|N

|x|a dx = 1

}
.

Remark 1.1. Let us briefly recall some important facts about the notion of critical growth in the Sobolev spaces W 1,p in
the case p = N (Trudinger–Moser case). In this case, the notion of criticality is motivated by the so-called Trudinger–Moser
inequality [13,20,21,23], which says that if u ∈ W 1,N

0 (Ω) then eα|u|N/(N−1) ∈ L1(Ω), for all α > 0. Moreover, there exists
a constant C = C(N) > 0 such that

sup
‖u‖�1

∫
Ω

eα|u|N/(N−1)

dx � C |Ω| if α � αN , (1.6)

where αN = Nω
1/(N−1)

N−1 and ωN−1 is the measure of the unit sphere in R
N . We would like to point out that in (1.2) we

have the presence of a singular term |x|−a which prevents us to use the classical Trudinger–Moser inequality, so we use the
following version of the Trudinger–Moser inequality due to Adimurthi–Sandeep [2]:

Proposition 1.1. Let Ω be a bounded domain in R
N (N � 2) containing the origin and u ∈ W 1,N

0 (Ω). Then for every α > 0 and
a ∈ [0, N),∫

Ω

eα|u|N/(N−1)

|x|a dx < ∞.

Moreover,

sup
‖u‖�1

∫
Ω

eα|u|N/(N−1)

|x|a dx < ∞ iff α/αN + a/N � 1.
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Here, we search weak solutions of (1.2), that is, functions u ∈ W 1,N
0 (Ω) such that∫

Ω

|∇u|N−2∇u∇v dx −
∫
Ω

f (x, u)

|x|a v dx −
∫
Ω

h(x)v dx = 0, ∀v ∈ W 1,N
0 (Ω). (1.7)

Observe that if f (x, s) has subcritical or critical growth, in view of Proposition 1.1, the expression in (1.7) is well defined
on W 1,N

0 (Ω) and moreover, critical points of the functional I are precisely the weak solutions of problem (1.2), for more
details see Section 2.

Remark 1.2. Condition ( f3) is natural, since if N = 2 and h � 0, one can prove that the problem

−�u = λ1u + 2ueu2 − 2u

|x|a + h(x) in Ω and u = 0 on ∂Ω

does not have positive solutions.

The main features of the class of problems considered in this paper, are the presence of singularity |x|−a , critical growth
and the nonlinear operator �N u = div(|∇u|N−2∇u). In spite of a possible failure of the Palais–Smale compactness condition,
we apply minimax methods, more precisely, the mountain-pass theorem combined with minimization and the Ekeland
variational principle, to obtain multiplicity of weak solutions of (1.2).

Next we state the main results of this paper which, for the sake of easy reference, we distinguish in two cases.

1.1. Subcritical case

Theorem 1.2. Suppose ( f0), ( f1), ( f3) and that f (x, s) has subcritical growth at both +∞ and −∞. Then there exists δ1 > 0 such
that if 0 < ‖h‖∗ < δ1 , (1.2) has at least two weak solutions. One of them with positive energy, while the other one with negative energy.

Furthermore, if h(x) has defined sign, the following result holds:

Theorem 1.3. Under the assumptions of Theorem 1.2, if h(x) � 0 (h(x) � 0) almost everywhere in Ω , then the weak solutions obtained
in Theorem 1.2 are nonnegative (nonpositive, respectively).

Remark 1.3. When N = 2 an example of functions satisfying assumptions ( f1), ( f3) with subcritical growth is f (x, s) =
g(x)(2s cos(s2) + 2ses + s2es), where g : Ω → R is a continuous function with 0 < g(x) < λ1/4 in Ω . We have that F (x, s) =
g(x)(sin(s2) + s2es). Note that f (x, s) satisfies condition ( f1):

lim|s|→∞
F (x, s)

sf (x, s)
= lim|s|→∞

sin(s2) + s2es

s(2s cos(s2) + 2ses + s2es)
= lim|s|→∞

sin(s2)s−2e−s + 1

2 cos(s2)e−s + 2 + s
= 0.

Furthermore, ( f3) is satisfied, since

lim sup
s→0

2F (x, s)

s2
= 2g(x) lim

s→0

sin(s2) + s2es

s2
= 4g(x) < λ1.

1.2. Critical case

Theorem 1.4. Assume ( f0), ( f2), ( f3) and that f (x, s) has critical growth at both +∞ and −∞. Then there exists δ1 > 0 such that if
0 < ‖h‖∗ < δ1 , (1.2) has a weak solution with negative energy.

For the next results, in the singular case, a ∈ (0, N), we denote by r the radius of the largest open ball centered at origin
and contained in Ω . In the nonsingular case, a = 0, we denote by r the inner radius of the set Ω , that is, r := radius of the
largest open ball contained in Ω .

Theorem 1.5. Suppose the hypotheses of Theorem 1.4. Furthermore suppose that

( f +
4 ) there exists β0 such that

lim inf
s→+∞ sf (x, s)e−α0|s|N/(N−1) � β0 >

N − a

rN−ae1+1/2+···+1/(N−1)

(
N − a

α0

)N−1

.

Then, there exists δ2 > 0, such that if 0 < ‖h‖∗ < δ2 , (1.2) has a second weak solution.

Furthermore, if h(x) has defined sign, the following result holds:



244 M. de Souza, J.M. do Ó / J. Math. Anal. Appl. 380 (2011) 241–263
Theorem 1.6. Under the assumptions of Theorem 1.5, if h(x) � 0 almost everywhere in Ω , then the solutions obtained in Theorem 1.5
are nonnegative. Moreover, if h(x) � 0 almost everywhere in Ω and f (x, s) satisfies

( f −
4 ) there exists β0 such that

lim inf
s→−∞ sf (x, s)e−α0|s|N/(N−1) � β0 >

N − a

rN−ae1+1/2+···+1/(N−1)

(
N − a

α0

)N−1

,

then these solutions are nonpositive.

Remark 1.4. When N = 2, an example of nonlinearity satisfying ( f2), ( f3), ( f +
4 ) and ( f −

4 ) with critical growth is given

by f (x, s) = g(x)(2s cos(s2) + 2ses2 − 4s), with α0 = 1, where g : Ω → R is a continuous function. Note that F (x, s) =
g(x)(sin(s2) + es2 − 1 − 2s2) and ( f2) is satisfied:

lim|s|→∞
F (x, s)

f (x, s)
= lim|s|→∞

sin(s2) + es2 − 1 − 2s2

2s cos(s2) + 2ses2 − 4s
= 0.

In order to show that ( f3) is satisfied, it is enough to verify that

lim sup
s→0

2F (x, s)

s2
= 2g(x) lim

s→0

sin(s2) + es2 − 1 − 2s2

s2
= 0.

Furthermore, it is easy to see that lim inf|s|→+∞ sf (x, s)e−s2 = +∞, showing that ( f +
4 ) and ( f −

4 ) holds.

Remark 1.5. The assumptions on f (x, s) will be altered slightly in Theorem 1.3 and in Theorem 1.6 to accommodate positives
and negatives solutions. Essentially we impose symmetric constraints on f (x, s). Of course, these can be lifted if we neglect
interest in signs of solutions, and a remark to this effect is made later.

Remark 1.6. Condition ( f2) is stronger than ( f1), in the sense that ( f2) implies ( f1). By integrating condition ( f1), we can
show that there exist positive constants C1, C2 such that

F (x, s) � C1|s|θ − C2, s ∈ R. (1.8)

On the other hand, it follows from ( f2) that there exist positive constants C1, C2 such that

F (x, s) � C1e|s|/M − C2, s ∈ R. (1.9)

Moreover, there are R0 > 0 and θ > N such that for |s| � R0 and x ∈ Ω

θ F (x, s) � sf (x, s). (1.10)

Remark 1.7. Note that if N = 2, α0 = 4π , a = 0 and r is the inner radius of Ω , assumption ( f +
4 ) reads

lim inf
s→+∞ sf (x, s)e−4π s2 � β0 >

1

eπr2
.

In [11] (see also [1] and [15], for the quasilinear problems) it was used the same assumption as above with eπ replaced
by 2π , where they used the Moser sequence. In order to get this improvement on the growth of the nonlinearity f (x, s)
at +∞, it was crucial in our argument to use a new sequence introduced in [12].

Remark 1.8. In the last years, several papers have been devoted to the study of elliptic problems involving critical growth
in terms of the Trudinger–Moser inequality. We refer the reader to the review article on this subject of de Figueiredo,
et al. [13]. Problems with critical growth involving the Laplace operator in bounded domains of R

2 with a = 0 and h ≡ 0,
have been investigated in [3,4,11,12]. Quasilinear elliptic problems with critical growth for the N-Laplacian in bounded
domains of R

N with a = 0 and h ≡ 0, have been studied in [1,15]. The case a = 0 and h �≡ 0 was treated in [22]. Problems
of this type in the whole R

N , have been studied recently by several authors, see [16–18] and references therein. However
all these papers considered nonsingular case, that is, a = 0. Moreover, in [1,15] for Ω ⊂ R

N a smooth bounded domain and
f (x, s) with critical growth, the main asymptotic hypothesis on f (x, s) was of the following type:

lim inf
s→+∞ sf (x, s)e−α0|s|N/(N−1) � β0 >

1
N

(
N

)N−1

. (1.11)

r α0
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Here we are motivated by a recent paper of Adimurthi and Sandeep [2] where they proved a version the Trudinger–Moser
inequality with singular weight and studied the existence of positive weak solutions for the following quasilinear and
homogeneous elliptic problem⎧⎨⎩−�N u = f (u)uN−2

|x|a in Ω,

u = 0 on ∂Ω.

Motivated by [2], in the present paper, we improve and complement some of the results cited above for the singular and
nonhomogeneous case. Moreover, the hypothesis (1.11) is improved to ( f +

4 ) in Theorem 1.5. The proofs of our results rely
on minimization methods in combination with the mountain-pass theorem. In the subcritical case we are able to prove that
the associated functional satisfies the Palais–Smale compactness condition which allow us to obtain critical points for the
functional. As a consequence we can distinguish the local minimum solution from the mountain-pass solution. However, in
the critical case to prove that these solutions are different is more involved, requiring fine energy level estimates. For this
assumption ( f +

4 ) in Theorem 1.5 will be crucial in our argument to estimate the mountain-pass level.

Remark 1.9. It is well known that problems involving the p-Laplacian arises in various applications. For instance, they may
be found in the study of non-Newtonian fluid, nonlinear elasticity and reaction–diffusions. For discussions on problems
modelled by p-Laplacian equations, see [14].

The outline of the paper is as follows: Section 2 contains some technical results, the variational framework and we check
also the geometric conditions of the associated energy functional. In Section 3, we study the Palais–Smale sequences. Finally
in Section 4, we complete the proofs of our main results. In this work C , C0, C1, C2, . . . denote positive (possibly different)
constants.

2. The variational framework

By assumption ( f3), there exist ε, δ > 0 in such a way that |s| � δ implies∣∣F (x, s)
∣∣ � (λ1 − ε)

N
|s|N . (2.1)

Since f (x, s) is continuous and has subcritical (or critical) growth at both +∞ and −∞, for each q > N there exists a
constant C = C(q, δ) such that∣∣F (x, s)

∣∣ � C |s|qeα|s|N/(N−1)

if |s| � δ. (2.2)

From (2.1) and (2.2), we obtain∣∣F (x, s)
∣∣ � (λ1 − ε)

N
|s|N + C |s|qeα|s|N/(N−1)

for all s ∈ R. (2.3)

Let u ∈ W 1,N
0 (Ω), then by Proposition 1.1 and Hölder inequality, we see that if α > 0 and q > 0,

eα|u|N/(N−1)

|x|a |u|q ∈ L1(Ω) for all u ∈ W 1,N
0 (Ω). (2.4)

Consequently, we have from (2.3) and (2.4) that F (x, u)/|x|a ∈ L1(Ω). Therefore, the functional I : W 1,N
0 (Ω) → R, given by

I(u) = ‖u‖N

N
−

∫
Ω

F (x, u)

|x|a dx −
∫
Ω

h(x)u dx

is well defined. Furthermore, using standard arguments and Proposition 2.1, we can see that I ∈ C1(W 1,N
0 (Ω),R) with〈

I ′(u), v
〉 = ∫

Ω

|∇u|N−2∇u∇v dx −
∫
Ω

f (x, u)

|x|a v dx −
∫
Ω

h(x)v dx for all v ∈ W 1,N
0 (Ω).

Consequently, critical points of the functional I are precisely the weak solutions of (1.2).
The next proposition is a converse of the Lebesgue dominated convergence theorem in the space W 1,N

0 (Ω).

Proposition 2.1. Let (un) be a sequence in W 1,N
0 (Ω) strongly convergent. Then there exists a subsequence (unk ) of (un) and g ∈

W 1,N
0 (Ω) such that |unk (x)| � g(x) almost everywhere in Ω .

Proof. See proof in [18, Proposition 1]. �
In the next lemmas we check that the functional I satisfies the geometric conditions of the mountain-pass theorem.
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Lemma 2.1. If v ∈ W 1,N
0 (Ω), β > 0, q > 0 and ‖v‖ � M with βMN/(N−1)/αN + a/N < 1, then there exists C > 0 such that∫

Ω

eβ|v|N/(N−1)

|x|a |v|q dx � C‖v‖q.

Proof. We consider r > 1 sufficiently close to 1 such that rβMN/(N−1)/αN + ar/N < 1 and sq � 1 where s = r/(r − 1). Using
Hölder inequality, we have∫

Ω

eβ|v|N/(N−1)

|x|a |v|q dx �
( ∫

Ω

e(rβ‖v‖N/(N−1)(
|v|
‖v‖ )N/(N−1))

|x|ar
dx

)1/r

‖v‖q
qs.

Using the continuous embedding W 1,N
0 (Ω) ↪→ Lsq(Ω) for all sq � 1 and Proposition 1.1, we conclude the result. �

Lemma 2.2. Assume ( f0), ( f1) (or ( f2)), ( f3) and that f (x, u) has subcritical (or critical) growth at both +∞ and −∞. Then there
exists δ1 > 0 such that for each h ∈ W −1,N ′

with ‖h‖∗ < δ1 , there exists ρh > 0 such that

I(u) > 0 if ‖u‖ = ρh.

Furthermore, ρh can be chosen such that ρh → 0 as ‖h‖∗ → 0.

Proof. Let u ∈ W 1,N
0 (Ω) be such that α‖u‖N/(N−1)/αN + a/N < 1, by Lemma 2.1 and by definition of λ1, we obtain

I(u) � 1

N
‖u‖N − (λ1 − ε)

N

∫
Ω

|u|N

|x|a dx − C‖u‖q − ‖h‖∗‖u‖

� 1

N

[
1 − (λ1 − ε)

λ1

]
‖u‖N − C‖u‖q − ‖h‖∗‖u‖.

Consequently,

I(u) � ‖u‖
[

1

N

(
1 − (λ1 − ε)

λ1

)
‖u‖N−1 − C‖u‖q−1 − ‖h‖∗

]
. (2.5)

Since ε > 0 and q > N , we may choose ρ > 0 such that

1

N

[
1 − (λ1 − ε)

λ1

]
ρN−1 − Cρq−1 > 0.

Thus, for ‖h‖∗ sufficiently small there exists ρh > 0 such that I(u) > 0 if ‖u‖ = ρh and ρh → 0 as ‖h‖∗ → 0. �
Lemma 2.3. Suppose that f (x, s) satisfies ( f1) (or ( f2)). Then there exists e ∈ W 1,N

0 (Ω) with ‖e‖ > ρh such that

I(e) < inf‖u‖=ρh

I(u).

Proof. From ( f1) (or ( f2)) for θ > N , there are positive constants C1 and C2 such that

F (x, s) � C1sθ − C2 for all s > 0.

Thus, for all u ∈ W 1,N
0 (Ω) \ {0} and u � 0,

I(tu) � tN

N
‖u‖N − C1tθ

∫
Ω

uθ

|x|a dx + C2

∫
Ω

dx

|x|a − t

∫
Ω

h(x)u dx

� tN

N
‖u‖N − C1tθ

∫
Ω

uθ

|x|a dx + t‖h‖∗‖u‖ + C3.

Since θ > N , we get I(tu) → −∞ as t → +∞. Setting e = tu with t large enough, the proof is finished. �
In order to find an appropriate ball to use minimization argument we need the following result:
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Lemma 2.4. If f (x, s) has subcritical (or critical) growth at both +∞ and −∞, there exists η > 0 and v ∈ W 1,N
0 (Ω) with ‖v‖ = 1

such that I(tv) < 0 for all 0 < t < η. In particular,

inf‖u‖�η
I(u) < 0.

Proof. For each h ∈ W −1,N ′
, let v ∈ W 1,N

0 (Ω) be the unique solution of the problem

−�N v = h(x), x ∈ Ω and v = 0 on ∂Ω.

Thus
∫
Ω

h(x)v dx = ‖v‖N > 0 for each h �≡ 0. For t > 0, we have

d

dt
I(tv) = tN−1‖v‖N −

∫
Ω

f (x, tv)

|x|a v dx −
∫
Ω

h(x)v dx.

Since f (x,0) = 0, by continuity, it follows that there exists η > 0 such that

d

dt
I(tv) = tN−1‖v‖N −

∫
Ω

f (x, tv)

|x|a v dx −
∫
Ω

h(x)v dx < 0,

for all 0 < t < η. Using that I(0) = 0, it must hold that I(tv) < 0 for all 0 < t < η. �
3. On Palais–Smale sequences

To show that the weak limit of a Palais–Smale sequence in W 1,N
0 (Ω) is a weak solution of (1.2) we will use the following

convergence result, which is a version of Lemma 2.1 in [11].

Lemma 3.1. Let Ω ⊂ R
N be a bounded domain and f : Ω × R → R a continuous function. Then for any sequence (un) in L1(Ω) such

that

un → u in L1(Ω),
f (x, un)

|x|a ∈ L1(Ω) and

∫
Ω

| f (x, un)un|
|x|a dx � C1,

up to a subsequence we have

f (x, un)

|x|a → f (x, u)

|x|a in L1(Ω).

Proof. It suffices to prove∫
Ω

| f (x, un)|
|x|a dx →

∫
Ω

| f (x, u)|
|x|a dx.

Since u, f (x, u)/|x|a ∈ L1(Ω), given ε > 0 there is a δ > 0 such that for any measurable subsets A ⊂ Ω ,∫
A

|u|dx < ε and
∫
A

| f (x, u)|
|x|a dx < ε if |A| � δ. (3.1)

Next using the fact that u ∈ L1(Ω), we find M1 > 0 such that∣∣{x ∈ Ω:
∣∣u(x)

∣∣ � M1
}∣∣ � δ. (3.2)

Taking M = max{M1, C1/ε}, we write∣∣∣∣ ∫
Ω

| f (x, un)|
|x|a dx −

∫
Ω

| f (x, u)|
|x|a dx

∣∣∣∣ � I1,n + I2,n + I3,n,

where

I1,n =
∫

[|un|�M]

| f (x, un)|
|x|a dx,

I2,n =
∣∣∣∣ ∫ | f (x, un)|

|x|a dx −
∫ | f (x, u)|

|x|a dx

∣∣∣∣

[|un|<M] [|u|<M]
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and

I3,n =
∫

[|u|�M]

| f (x, u)|
|x|a dx.

Now we estimate each integral separately.

I1,n =
∫

[|un|�M]

| f (x, un)|
|x|a dx =

∫
[|un|�M]

| f (x, un)un|
|un||x|a dx � C1

M
� ε.

From (3.1) and (3.2), we have I3,n � ε .
Next we claim I2,n → 0 as n → +∞. Indeed,

I2,n �
∣∣∣∣ ∫
Ω

X[|un|<M](| f (x, un)| − | f (x, u)|)
|x|a dx

∣∣∣∣ +
∣∣∣∣ ∫
Ω

(X[|un|<M] − X[|u|<M])| f (x, u)|
|x|a dx

∣∣∣∣
and gn(x) = X[|un|<M](| f (x, un)| − | f (x, u)|) → 0 almost everywhere in Ω . Moreover∣∣gn(x)

∣∣ �
{ | f (x, u)| if |un(x)| � M,

C + | f (x, u)| if |un(x)| < M,

where C = sup{| f (x, t)|: (x, t) ∈ Ω × [−M, M]}. So, by the Lebesgue dominated convergence theorem, we get∣∣∣∣ ∫
Ω

X[|un|<M](| f (x, un)| − | f (x, u)|)
|x|a dx

∣∣∣∣ → 0 as n → ∞.

Moreover, we have{
x ∈ Ω:

∣∣un(x)
∣∣ < M

}∖{
x ∈ Ω:

∣∣u(x)
∣∣ < M

} ⊂ {
x ∈ Ω:

∣∣u(x)
∣∣ � M

}
.

Hence by (3.1),∣∣∣∣ ∫
Ω

(X[|un|<M] − X[|u|<M])| f (x, u)|
|x|a dx

∣∣∣∣ �
∫

[|u|�M]

| f (x, u)|
|x|a dx < ε,

which completes the proof. �
To prove that a Palais–Smale sequence converges to a weak solution of (1.2) we need to establish the following lemma,

inspired in [15].

Lemma 3.2. Let (un) be a Palais–Smale sequence for I . Then (un) is bounded in W 1,N
0 (Ω). Moreover, (un) has a subsequence, still

denoted by (un) and u ∈ W 1,N
0 (Ω) such that

f (x, un)

|x|a → f (x, u)

|x|a in L1(Ω), (3.3)

|∇un|N−2∇un ⇀ |∇u|N−2∇u weakly in
(
LN/(N−1)(Ω)

)N
. (3.4)

Proof. Let (un) ⊂ W 1,N
0 (Ω) be a Palais–Smale sequence at level c, that is,

1

N

∫
Ω

|∇un|N dx −
∫
Ω

F (x, un)

|x|a dx −
∫
Ω

h(x)un dx → c (3.5)

and ∫
Ω

|∇un|N−2∇un∇v dx −
∫
Ω

f (x, un)

|x|a v dx −
∫
Ω

h(x)v dx → 0 (3.6)

for all v ∈ W 1,N
0 (Ω).

Step 1: (un) is bounded in W 1,N
0 (Ω). Indeed, from (3.5) and (3.6) have that∣∣∣∣( θ

N
− 1

)
‖un‖N −

∫
Ω

(θ F (x, un) − f (x, un)un)

|x|a dx − (θ − 1)

∫
Ω

h(x)un dx

∣∣∣∣ � C + εn‖un‖

where εn → 0 as n → +∞. Thus,
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∣∣∣∣[(
θ

N
− 1

)
‖un‖N−1 − (θ − 1)‖h‖∗

]
‖un‖ −

∫
Ω

(θ F (x, un) − f (x, un)un)

|x|a dx

∣∣∣∣ � C + εn‖un‖

which together with ( f0) and ( f1), implies that (un) is bounded in W 1,N
0 (Ω). Consequently, up to a subsequence,

un ⇀ u in W 1,N
0 (Ω),

un → u in Lq(Ω) for all q ∈ [1,∞),

un(x) → u(x) almost everywhere in Ω. (3.7)

Then using that (un) is bounded and Lemma 3.1 together with (3.6), we get that (un) has a subsequence such that (3.3)
holds.

Step 2: (un) has a subsequence such that (3.4) holds.
Indeed, since (|∇un|N−2∇un) is bounded in (LN/(N−1)(Ω))N , without loss of generality we may assume that

|∇un|N → μ in D′(Ω) and

|∇un|N−2∇un ⇀ ν weakly in
(
LN/(N−1)(Ω)

)N
,

where μ is a nonnegative regular measure and D′(Ω) are the distributions on Ω .
Let σ > 0 and Aσ = {x ∈ Ω: ∀r > 0, μ(Br(x) ∩ Ω) � σ }. We claim that Aσ is a finite set. Suppose for the sake of

contradiction that there exists a sequence of distinct points (xk) in Aσ . Since for all r > 0, μ(Br(x) ∩ Ω) � σ , we have that
μ({xk}) � σ , which implies that μ(Aσ ) = +∞, however

μ(Aσ ) = lim
n→+∞

∫
Aσ

|∇un|N dx � C .

Thus, Aσ = {x1, x2, . . . , xm}.
Let u ∈ W 1,N (O), where O is bounded domain in R

N . We know (cf. [6] and [8]) that there are positive constants r1 and
C1 depending only on N such that∫

O

e
r1(

|u|
‖∇u‖

LN (O)
)N/(N−1)

dx � C1.

Consequently, there are positive constants r2 and C2 such that∫
O

er2(|u|/‖∇u‖LN (O)
)N/(N−1)

|x|a dx � C2. (3.8)

Indeed, let 0 < r2 < r1 and t > 1 be such that r2/r1 + at/N = 1. Using Hölder inequality, we obtain∫
O

er2(|u|/‖∇u‖LN (O)
)N/(N−1)

|x|a dx �
( ∫

O

e
r1(

|u|
‖∇u‖

LN (O)
)N/(N−1)

dx

)r2/r1( ∫
O

1

|x|N/t
dx

)at/N

� C2.

Assertion 1. For any relative compact subset K of Ω \ Aσ and σ > 0 such that

ασ 1/(N−1)/r2 + a/N < 1,

we have

lim
n→∞

∫
K

f (x, un)

|x|a un dx =
∫
K

f (x, u)

|x|a u dx.

Indeed, let x0 ∈ K and r0 > 0 be such that μ(Br0(x0) ∩ Ω) < σ . Consider a function ϕ ∈ C∞
0 (Ω, [0,1]) such that ϕ ≡ 1 in

B r0
2
(x0) ∩ Ω and ϕ ≡ 0 in Ω \ Br0 (x0). Thus

lim
n→∞

∫
Br (x0)∩Ω

|∇un|Nϕ dx =
∫

Br (x0)∩Ω

ϕ dμ � μ
(

Br0(x0) ∩ Ω
)
< σ.
0 0
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Therefore, for n ∈ N sufficiently large and ε > 0 sufficiently small, we have∫
B r0

2
(x0)∩Ω

|∇un|N dx �
∫

B r0
2

(x0)∩Ω

|∇un|Nϕ dμ � (1 − ε)σ ,

which together with (3.8) implies∫
B r0

2
(x0)∩Ω

( | f (x, un)|
|x|a

)q

dx � C (3.9)

if we choose q > 1 sufficiently close to 1 and such that qασ 1/(N−1)/r2 + aq/N < 1.
Now, we estimate∫

B r0
2

(x0)∩Ω

| f (x, un)un − f (x, u)u|
|x|a dx � I1 + I2

where

I1 =
∫

B r0
2

(x0)∩Ω

| f (x, un) − f (x, u)|
|x|a |u|dx and I2 =

∫
B r0

2
(x0)∩Ω

| f (x, un)|
|x|a |un − u|dx.

Note that, by Hölder inequality, (3.9) and embedding Sobolev theorem,

I2 =
∫

B r0
2

(x0)∩Ω

f (x, un)

|x|a |un − u|dx � C

( ∫
Ω

|un − u|q′
dx

)1/q′

→ 0 as n → ∞.

Now, we claim that I1 → 0. Indeed, given ε > 0, by density we can take ϕ ∈ C∞
0 (Ω) such that ‖u − ϕ‖q′ < ε . Thus,∫

B r0
2

(x0)∩Ω

| f (x, un)u − f (x, u)u|
|x|a dx �

∫
B r0

2
(x0)∩Ω

| f (x, un)|
|x|a |u − ϕ|dx +

∫
B r0

2
(x0)∩Ω

| f (x, un) − f (x, u)|
|x|a |ϕ|dx

+
∫

B r0
2

(x0)∩Ω

| f (x, u)|
|x|a |ϕ − u|dx.

Applying Hölder inequality and using (3.9), we have∫
B r0

2
(x0)∩Ω

| f (x, un)|
|x|a |u − ϕ|dx �

( ∫
B r0

2
(x0)∩Ω

( | f (x, un)|
|x|a

)q

dx

)1/q

‖u − ϕ‖q′ < ε.

Using Lemma 3.1,∫
B r0

2
(x0)∩Ω

| f (x, un) − f (x, u)|
|x|a |ϕ|dx � ‖ϕ‖∞

∫
B r0

2
(x0)∩Ω

| f (x, un) − f (x, u)|
|x|a dx → 0

and by Proposition 1.1, we have∫
B r0

2
(x0)∩Ω

| f (x, u)|
|x|a |ϕ − u|dx → 0.

To conclude Assertion 1 we use that K is a compact and we repeat the same procedure over a finite covering of balls.

To complete the proof of (3.4), we estate:
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Assertion 2. Let ε0 > 0 be fixed and small enough such that Bε0(xi) ∩ Bε0(x j) = ∅ if i �= j and Ωε0 = {x ∈ Ω: ‖x − x j‖ � ε0,

j = 1,2, . . . ,m}. Then∫
Ωε0

(|∇un|N−2∇un − |∇u|N−2∇u
)
(∇un − ∇u)dx → 0.

Indeed, let 0 < ε < ε0 and ϕ ∈ C∞
0 (RN , [0,1]) be such that ϕ ≡ 1 in B1/2(0) and ϕ ≡ 0 in Ω \ B1(0). Taking

ψε(x) = 1 −
m∑

j=1

ϕ

(
x − x j

ε

)
,

we have 0 � ψε � 1, ψε ≡ 1 in Ωε = Ω \ ⋃m
j=1 B(x j, ε), ψε ≡ 0 in

⋃m
j=1 B(x j,

ε
2 ) and ψεun is bounded sequence in

W 1,N
0 (Ω). Using (3.6) with v = ψεun , we have∫

Ω

|∇un|N−2∇un∇(ψεun)dx −
∫
Ω

f (x, un)

|x|a ψεun dx −
∫
Ω

hψεun dx � εn‖ψεun‖,

which implies that∫
Ω

|∇un|N−2∇un[un∇ψε + ψε∇un]dx −
∫
Ω

f (x, un)

|x|a ψεun dx −
∫
Ω

hψεun dx � εn‖ψεun‖.

Hence∫
Ω

[
|∇un|Nψε + un|∇un|N−2∇un∇ψε − ψε

f (x, un)

|x|a un

]
dx −

∫
Ω

hψεun dx � εn‖ψεun‖. (3.10)

Now, using (3.6) with v = −ψεu, we have∫
Ω

[
−|∇un|N−2ψε∇un∇u − |∇un|N−2u∇un∇ψε + ψε

f (x, un)

|x|a u

]
dx +

∫
Ω

hψεu dx � εn‖ψεu‖. (3.11)

Using that the function g : R
N → R, g(v) = |v|N is strictly convex we have that

0 �
(|∇un|N−2∇un − |∇u|N−2∇u

)
(∇un − ∇u)

and consequently

0 �
∫

Ωε0

(|∇un|N−2∇un
) − |∇u|N−2∇u)(∇un − ∇u)dx

�
∫
Ω

(|∇un|N−2∇un
) − |∇u|N−2∇u)(∇un − ∇u)ψε dx,

which can written as

0 �
∫
Ω

[|∇un|Nψε − |∇un|N−2ψε∇un∇u − |∇u|N−2ψε∇u∇un + |∇u|Nψε

]
dx. (3.12)

From (3.10), (3.11) and (3.12), we obtain

0 �
∫
Ω

[
−|∇un|N−2ψε + un|∇un|N−2∇un∇ψε + ψε

f (x, un)

|x|a un + ψεhun

]
dx + εn‖ψεun‖

+
∫
Ω

[
|∇un|Nψε∇un∇u − u|∇un|N−2∇un∇ψε − ψε

f (x, un)

|x|a u − ψεhu

]
dx + εn‖ψεu‖

+
∫
Ω

[|∇un|Nψε − |∇un|N−2ψε∇un∇u − |∇u|N−2ψε∇u∇un + |∇u|Nψε

]
dx.

Therefore,
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0 �
∫
Ω

|∇un|N−2∇un∇ψε(un − u)dx +
∫
Ω

ψε |∇u|N−2∇u(∇u − ∇un)dx

+
∫
Ω

ψε
f (x, un)

|x|a (un − u)dx +
∫
Ω

ψεh(un − u)dx + εn‖ψεu‖ + εn‖ψεun‖. (3.13)

Now we estimate each integral in (3.13) separately. Note that for arbitrary δ > 0, using the interpolation inequality ab �
δaN/(N−1) + CδbN , with Cδ = δ1−N , we have∫

Ω

|∇un|N−2∇un∇ψε(u − un)dx � δ

∫
Ω

|∇un|N dx + Cδ

∫
Ω

| ∇ψε |N |u − un|N dx

� δC + Cδ

( ∫
Ω

|∇ψε |rN dx

)1/r( ∫
Ω

|u − un|sN dx

)1/s

,

where 1/r + 1/s = 1. Thus, since un → u in LsN (Ω) and δ is arbitrary we obtain that

lim sup
n→+∞

∫
Ω

|∇un|N−2∇un∇ψε(u − un)dx � 0. (3.14)

Using that un ⇀ u in W 1,N
0 (Ω), we have∫

Ω

ψε |∇u|N−2∇u(∇u − ∇un)dx → 0 as n → ∞. (3.15)

Now, we claim∫
Ω

ψε
f (x, un)

|x|a (un − u)dx → 0 as n → ∞. (3.16)

Indeed,∫
Ω

ψε
f (x, un)

|x|a (un − u)dx =
∫
Ω

ψε
f (x, un)

|x|a un dx −
∫
Ω

ψε
f (x, u)

|x|a u dx +
∫
Ω

ψε
f (x, u)

|x|a u dx −
∫
Ω

ψε
f (x, un)

|x|a u dx

and applying Assertion 1 with g(x, u) = ψε(x) f (x,u)
|x|a and K = Ωε/2, we have that∫

Ω

ψε
f (x, un)

|x|a un dx =
∫

Ωε/2

ψε
f (x, un)

|x|a un dx →
∫

Ωε/2

ψε
f (x, u)

|x|a u dx =
∫
Ω

ψε
f (x, u)

|x|a u dx

and using Lemma 3.1, we obtain∫
Ω

ψε
f (x, un)

|x|a u dx →
∫
Ω

ψε
f (x, u)

|x|a u dx as n → ∞.

Thus, from (3.13), (3.14), (3.15) and (3.16), we come to the conclusion that Assertion 2 holds.
Finally using Assertion 2, since ε0 is arbitrary, we obtain that

∇un(x) → ∇u(x) almost everywhere in Ω,

which together with the fact the sequence (|∇un|N−2∇un) is bounded in LN/(N−1)(Ω), implies

|∇un|N−2∇un ⇀ |∇u|N−2∇u in LN/(N−1)(Ω).

up to a subsequence. Thus, we have completed the proof of Lemma 3.2. �
It follows from that

Corollary 3.3. Let (un) be a Palais–Smale sequence for I . Then (un) has a subsequence, still denoted by (un) weakly convergent to a
nontrivial weak solution of (1.2).
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Proof. Using Lemma 3.2, up to a subsequence, we can assume that un ⇀ u weakly in W 1,N
0 (Ω). Now, from (3.6), taking the

limit and using again Lemma 3.2, we have∫
Ω

|∇u|N−2∇u∇ϕ dx −
∫
Ω

f (x, u)

|x|a ϕ dx −
∫
Ω

h(x)ϕ dx = 0, for all ϕ ∈ C∞
0 (Ω).

Since C∞
0 (Ω) is dense in W 1,N

0 (Ω), we conclude that u is a weak solution of (1.2). Since h �≡ 0, we conclude that u �≡ 0. �
4. Proof of the main results

In order to obtain a weak solution with negative energy, observe that by Lemma 2.4 we have

−∞ < c0 ≡ inf‖u‖�η
I(u) < 0. (4.1)

4.1. Subcritical case

In this subsection we will give the proof of Theorem 1.2. Thus we are assuming that f (x, s) satisfies ( f0), ( f1) (or ( f2))
and ( f3). To prove the existence of a local minimum solution we will use the Ekeland variational principle.

Lemma 4.1. The functional I satisfies the Palais–Smale condition.

Proof. Let (un) be a (P S)c sequence. By Lemma 3.2, (un) is bounded, so, up to subsequence, we may assume that un =
u0 + wn , with wn ⇀ 0 weakly in W 1,N

0 (Ω) and wn → 0 strongly in Lq(Ω) for all q ∈ [1,∞). By Brezis–Lieb lemma (see [7]),
we have

‖un‖N = ‖u0‖N + ‖wn‖N + o(1).

We first claim that∫
Ω

f (x, un)

|x|a u0 dx →
∫
Ω

f (x, u0)

|x|a u0 dx as n → ∞. (4.2)

In fact, since C∞
0 (Ω) is dense in W 1,N

0 (Ω), for all ε > 0 there exists ϕ ∈ C∞
0 (Ω) such that ‖ϕ − u0‖ < ε . Now, we write∣∣∣∣ ∫

Ω

f (x, un)

|x|a u0 dx −
∫
Ω

f (x, u0)

|x|a u0 dx

∣∣∣∣ � J1 + J2 + J3. (4.3)

Since ∣∣〈I ′(un), u0 − ϕ
〉∣∣ � εn‖u0 − ϕ‖ with εn → 0,

we have

J1 =
∣∣∣∣ ∫
Ω

f (x, un)

|x|a (u0 − ϕ)dx

∣∣∣∣ � εn‖u0 − ϕ‖ + ‖un‖N−1‖u0 − ϕ‖ + ‖h‖∗‖u0 − ϕ‖ � C‖u0 − ϕ‖ < Cε,

where C is independent of n and ε . Similarly, using that 〈I ′(u0), u0 − ϕ〉 = 0, we can estimate

J2 =
∣∣∣∣ ∫
Ω

f (x, u0)

|x|a (u0 − ϕ)dx

∣∣∣∣ < Cε.

Using Lemma 3.2, we obtain

J3 = ‖ϕ‖∞
∫
Ω

| f (x, un) − f (x, u0)|
|x|a dx → 0 as n → ∞.

Thus (4.2) holds, and consequently〈
I ′(un), un

〉 = 〈
I ′(u0), u0

〉 + ‖wn‖N −
∫

f (x, un)

|x|a wn dx + o(1).
Ω
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This implies,

‖wn‖N =
∫
Ω

f (x, un)

|x|a wn dx + o(1).

Since (un) is bounded in W 1,N
0 (Ω) and f (x, s) has subcritical growth, we can choose q > 1 sufficiently close to 1 and α > 0

sufficiently small such that αq‖un‖N/(N−1)/αN + qa/N < 1. Then∫
Ω

( | f (x, un)|
|x|a

)q

dx � C

∫
Ω

eqα‖un‖N/(N−1)| un‖un‖ |N/(N−1)

|x|aq
dx � C .

Thus, ∫
Ω

f (x, un)

|x|a wn dx � C‖wn‖q′ → 0.

Consequently ‖wn‖ → 0 and the result follows. �
In view of Lemmas 2.2 and 2.3 we can apply the mountain-pass theorem to obtain the following result:

Proposition 4.1. There exists η1 > 0 such that if ‖h‖∗ � η1 , then the functional I has a critical point uM at the minimax level

cM = inf
g∈Γ

max
t∈[0,1] I

(
g(t)

)
,

where

Γ = {
g ∈ C

([0,1], W 1,N
0 (Ω)

)
: g(0) = 0 and g(1) = e

}
.

Proposition 4.2. For each h ∈ W −1,N ′
with h �≡ 0, Eq. (1.2) has a local minimum solution u0 with I(u0) = c0 < 0, where c0 is defined

in (4.1).

Proof. Let ρh be as in Lemma 2.2. Since Bρh is convex and a complete metric space with the metric given by the norm of

W 1,N
0 (Ω), and I is of class C1 and bounded below on Bρh , by Ekeland’s variational principle there exists a sequence (un) in

Bρh such that

I(un) → c0 = inf‖u‖�ρh

I(u) < 0 and
∥∥I ′(un)

∥∥∗ → 0,

and the proof follows by Lemma 4.1. �
Proof of Theorem 1.2. The proof follows from Propositions 4.1 and 4.2. �
4.2. Critical case

In order to get a more precise information about the minimax level obtained by the mountain-pass theorem, it was
crucial in our argument to consider the following sequence, which it was introduced in [12]: For n ∈ N set δn = 2 logn

n , and
let

yn(t) =
{ t

n1/N (1 − δn)
(N−1)/N if 0 � t � n,

N−1
(n(1−δn))1/N log An+1

An+e−(t−n)/(N−1) + (n(1 − δn)
(N−1)/N) if n � t,

where An is defined as follows

An = 1

n2

1

e1+1/2+···+1/(N−1)
+

{
O (1/n4) if N = 2,

O (log2(n)/n3) if N � 3.

The sequence of function (yn) satisfies the following proprieties:

• (yn) ⊂ C([0,+∞)), piecewise differentiable, with yn(0) = 0 and y′
n(t) � 0;

• ∫ +∞
0 |y′

n(t)|N dt = 1;

• limn→+∞
∫ +∞

0 e yN/(N−1)
n (t)−t dt = 1 + e1+1/2+···1/(N−1) .

(See more details about this sequence in [12].)
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Now, yn(t) = N(N−1)/Nω
1/N
N−1 Vn(e−t/N), with |x|N = e−t , define a function Vn(x) = Vn(|x|) on B1(0), which is non-negative

and radially symmetric. Moreover,∫
B1(0)

∣∣∇Vn(x)
∣∣N

dx =
+∞∫
0

∣∣y′
n(t)

∣∣N
dt = 1.

Let β = N−a
N , then Vn define another function non-negative and radially symmetric M̃n as follows:

Vn(ρ) = β(N−1)/N M̃n
(
ρ1/β

)
, for ρ ∈ [0,1].

Notice that

1∫
0

∣∣V ′
n(ρ)

∣∣N
ρN−1 dρ =

1∫
0

∣∣M̃n
′
(ρ)

∣∣N
ρN−1 dρ.

Thus, ‖Vn‖ = ‖M̃n‖ = 1.
For the next lemma, let us consider the following sequence Mn(x, r) = M̃n(x/r). Notice that Mn(x/r) ∈ W 1,N

0 (Ω),
supp(Mn(x, r)) = Br(0) and ‖Mn(·, r)‖ = 1.

Lemma 4.2. Assume ( f2), ( f3) and ( f +
4 ). Then there exists n ∈ N such that

max
t�0

{
tN

N
−

∫
Ω

F (x, tMn)

|x|a dx

}
<

1

N

(
N − a

N

αN

α0

)N−1

.

Proof. Suppose, for the sake of contradiction, that for all n ∈ N, we have

max
t�0

{
tN

N
−

∫
Ω

F (x, tMn)

|x|a dx

}
� 1

N

(
N − a

N

αN

α0

)N−1

.

In view of Lemma 2.2 and Lemma 2.3, for all n ∈ N, there exists tn > 0 such that

tN
n

N
−

∫
Ω

F (x, tn Mn)

|x|a dx = max
t�0

{
tN

N
−

∫
Ω

F (x, tMn)

|x|a dx

}
.

Up to a subsequence, we have

tN
n →

(
N − a

N

αN

α0

)N−1

. (4.4)

Indeed, since

tN
n

N
−

∫
Ω

F (x, tn Mn)

|x|a dx � 1

N

(
N − a

N

αN

α0

)N−1

and F (x, tn Mn) � 0 in Ω , we have

tN
n �

(
N − a

N

αN

α0

)N−1

. (4.5)

Also at t = tn , we have

d

dt

(
tN

N
−

∫
Ω

F (x, tMn)

|x|a dx

)∣∣∣∣
t=tn

= 0.

Thus,

tN
n =

∫
Ω

f (x, tn Mn)

|x|a tn Mn dx �
∫

B r (0)

f (x, tn Mn)

|x|a tn Mn dx. (4.6)
n
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By ( f +
4 ), given ε > 0 there exists Rε > 0 such that

u f (x, u) � (β0 − ε)eα0|u|N/(N−1)

for all u � Rε . (4.7)

Since tn Mn � Rε in B r
n
(0), for n sufficiently large, using (4.6) and (4.7), we obtain

tN
n � (β0 − ε)

∫
B r

n
(0)

eα0|tn Mn|N/(N−1)

|x|a dx

= (β0 − ε)

(
r

n

)N−a ∫
B1(0)

eα0|tn M̃n|N/(N−1)

|x|a dx

= (β0 − ε)ωN−1

(
r

n

)N−a 1∫
0

eα0|tn M̃n(ρ)|N/(N−1)

ρN−1−a dρ.

By performing the change of variable ρ = τ 1/β , we get

tN
n � (β0 − ε)ωN−1

N

N − a

(
r

n

)N−a 1∫
0

eα0
N

N−a |tn Vn(τ )|N/(N−1)

τ N−1 dτ .

Also setting τ = e−t/N , we obtain

tN
n � (β0 − ε)

ωN−1

N − a

(
r

n

)N−a +∞∫
0

e
α0
αN

N
(N−a)

|tn yn(t)|N/(N−1)

e−t dt. (4.8)

Thus,

tN
n � (β0 − ε)

ωN−1

N − a

(
r

n

)N−a +∞∫
n

e
α0
αN

N
(N−a)

tN/(N−1)
n (n−2 logn)

e−t dt

= (β0 − ε)
ωN−1

N − a
rN−ae

α0
αN

N
(N−a)

tN/(N−1)
n (n−2 logn)−(N−a) logn−n

,

and hence

1 � (β0 − ε)
ωN−1

N − a
rN−ae

α0
αN

N
(N−a)

tN/(N−1)
n (n−2 logn)−(N−a) logn−n−log tN

n , (4.9)

which implies that (tn) is bounded, otherwise we have

tN/(N−1)
n n

[
α0

αN

N

(N − a)

(
1 − 2 logn

tN/(N−1)
n n

)
− (N − a) logn + n

tN/(N−1)
n n

− log tN
n

tN/(N−1)
n n

]
→ +∞,

which is a contradiction with (4.9).
Next, assuming that (4.4) does not hold and using (4.5), there exists δ > 0 such that, for n sufficiently large,

tN/(N−1)
n � δ + N − a

N

αN

α0
.

By (4.8),

tN
n � (β0 − ε)

ωN−1

N − a

(
r

n

)N−a +∞∫
n

e
(δ

α0
αN

N
(N−a)

+1)(n−2 logn)
e−t dt,

thus,

tN
n � (β0 − ε)

ωN−1

N − a
rN−ae

δ
α0
αN

N
(N−a)

n−(δ
α0
αN

N
(N−a)

+1)2 logn−(N−a) logn
, (4.10)

which implies that tn → +∞. Thus, (4.4) holds.
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Now, consider

An = {
x ∈ Br(0): tn Mn � Rε

}
and Bn = Br(0) \ An.

By (4.6), we have

tN
n � (β0 − ε)

[ ∫
Br(0)

e(α0|tn Mn|N/(N−1))

|x|a dx −
∫
Bn

e(α0|tn Mn|N/(N−1))

|x|a dx

]
+

∫
Bn

f (x, tn Mn)

|x|a tn Mn dx. (4.11)

Notice that Mn(x) → 0, almost everywhere in Br(0), and the characteristic functions χBn (x) → 1 almost everywhere in Br(0)

and tn Mn(x) � Rε in Bn . Therefore, the Lebesgue dominated convergence theorem implies∫
Bn

f (x, tn Mn)

|x|a tn Mn dx → 0

and ∫
Bn

e(α0|tn Mn|N/(N−1))

|x|a dx → ωN−1

N − a
rN−a.

Notice that∫
Br(0)

eα0|tn Mn|N/(N−1)

|x|a dx = rN−a
∫

B1(0)

eα0|tn M̃n|N/(N−1)

|x|a dx

= ωN−1rN−a

1∫
0

eα0|tn M̃n(ρ)|N/(N−1)

ρN−1−a dρ.

Changing variables in the integral above, ρ = τ 1/β , we get

∫
Br(0)

eα0|tn Mn|N/(N−1)

|x|a dx = ωN−1
N

N − a
rN−a

1∫
0

eα0
N

N−a |tn Vn(τ )|N/(N−1)

τ N−1 dτ ,

and setting τ = e−t/N , we obtain

∫
Br(0)

eα0|tn Mn|N/(N−1)

|x|a dx = ωN−1

N − a
rN−a

+∞∫
0

e
α0
αN

N
(N−a)

|tn yn(t)|N/(N−1)

e−t dt

� ωN−1

N − a
rN−a

+∞∫
0

e yN/(N−1)
n (t)−t dt.

Passing to the limit in (4.11),(
N − a

N

αN

α0

)N−1

� (β0 − ε)

(
ωN−1

N − a
rN−a(1 + e1+1/2+···+1/(N−1)

) − ωN−1

N − a
rN−a

)
,

which implies that(
N − a

N

αN

α0

)N−1

� (β0 − ε)
ωN−1

N − a
rN−ae1+1/2+···+1/(N−1).

Thus,

β0 � N − a

rN−ae1+1/2+···+1/(N−1)

(
N − a

α0

)N−1

,

which is a contradiction with the assumption ( f +
4 ). �



258 M. de Souza, J.M. do Ó / J. Math. Anal. Appl. 380 (2011) 241–263
Corollary 4.3. Under the conditions ( f2) − ( f +
4 ), if ‖h‖∗ is sufficiently small, it holds

max
t�0

{
tN

N
−

∫
Ω

F (x, tMn)

|x|a dx − t

∫
Ω

hMn dx

}
<

1

N

(
N − a

N

αN

α0

)N−1

.

Proof. Notice that ‖hMn‖1 � ‖h‖∗ . Thus, taking ‖h‖∗ sufficiently small and using Lemma 4.2 the result follows. �
In order to obtain convergence results, we need to improve the estimate of Lemma 2.2.

Corollary 4.4. Under the hypotheses ( f2) − ( f +
4 ), there exists δ2 > 0 such that for all h ∈ W −1,N ′

with 0 < ‖h‖∗ < δ2 , there exists

u ∈ W 1,N
0 (Ω) with compact support verifying

I(tu) < c0 + 1

N

(
N − a

N

αN

α0

)N−1

, for all t � 0.

Proof. It is possible to raise the infimum c0 by reducing ‖h‖∗ . By Lemma 2.2, ρh → 0 as ‖h‖∗ → 0. Consequently, c0 in-
creases as ‖h‖∗ decreases and c0 → 0 as ‖h‖∗ → 0. Thus, there exists δ2 > 0 such that if 0 < ‖h‖∗ < δ2 then, by Corollary 4.3,
we have

max
t�0

I(tMn) < c0 + 1

N

(
N − a

N

αN

α0

)N−1

.

Taking u = Mn ∈ W 1,N
0 (Ω), the result is proved. �

Lemma 4.5. If (un) is a Palais–Smale sequence for I at any level such that

lim inf
n→∞ ‖un‖N <

(
N − a

N

αN

α0

)N−1

, (4.12)

then (un) possesses a subsequence which converges strongly in W 1,N
0 (Ω) to a weak solution u0 of (1.2).

Proof. From Lemma 3.2 and Corollary 3.3, up to a subsequence, we may assume that

un ⇀ u0 in W 1,N
0 (Ω),

un → u0 in Lq(Ω) for all q ∈ [1,∞),

un(x) → u0(x) almost everywhere in Ω,

where u0 is a weak solution of (1.2).

Assertion 3. un → u0 strongly in W 1,N
0 (Ω).

Indeed, writing un = u0 + wn , it follows that wn ⇀ 0 in W 1,N
0 (Ω). Thus wn → 0 in Lq(Ω) for all q ∈ [1,∞). By the

Brezis–Lieb lemma (see [7]), we get

‖un‖N = ‖u0‖N + ‖wn‖N + o(1). (4.13)

Using similar argument as in the proof of (4.2), we have∫
Ω

f (x, un)

|x|a u0 dx →
∫
Ω

f (x, u0)

|x|a u0 dx as n → ∞. (4.14)

By (4.13) and (4.14), we can write〈
I ′(un), un

〉 = 〈
I ′(u0), u0

〉 + ‖wn‖N −
∫
Ω

f (x, un)

|x|a wn dx + o(1),

that is,

‖wn‖N =
∫

f (x, un)

|x|a wn dx + o(1). (4.15)
Ω
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Since

‖un‖N <

(
N − a

N

αN

α0

)N−1

,

for n sufficiently large, we can choose q > 1 sufficiently close to 1 such that

α0q‖un‖N/(N−1)/αN + qa/N < 1.

Then, ∫
Ω

( | f (x, un)|
|x|a

)q

dx � C

∫
Ω

eqα0‖un‖N/(N−1)| un‖un‖ |N/(N−1)

|x|a dx � C,

which implies that∫
Ω

f (x, un)

|x|a wn dx � C‖wn‖q′ → 0.

Consequently ‖wn‖ → 0 and the result follows. �
Next, we will prove the existence of a local minimum solution.

Lemma 4.6. For each h ∈ W −1,N ′
with 0 < ‖h‖∗ < δ1 , Eq. (1.2) has a local minimum solution u0 with I(u0) = c0 < 0, where c0 is

defined in (4.1).

Proof. Let ρh be as in Lemma 2.2. We can choose ‖h‖∗ sufficiently small such that

ρh <

(
N − a

N

αN

α0

)(N−1)/N

.

Since Bρh is convex and a complete metric space with the metric given by the norm of W 1,N
0 (Ω), and I is of class C1 and

bounded below on Bρh , by Ekeland’s variational principle there exists a sequence (un) in Bρh such that

I(un) → c0 = inf‖u‖�ρh

I(u) and
∥∥I ′(un)

∥∥∗ → 0.

Observing that

‖un‖N � ρN
h <

(
N − a

N

αN

α0

)N−1

,

by Lemma 4.5, there exists a subsequence of (un) which converges strongly to a weak solution u0 of (1.2). Therefore,
I(u0) = c0 < 0. �
Lemma 4.7. Under the assumptions ( f2) − ( f +

4 ), (1.2) has a mountain-pass type solution uM , provided that ‖h‖∗ < δ1 .

Proof. By Lemmas 2.2 and 2.3, we have that I has a mountain-pass geometry. Thus, using the mountain-pass theorem
without the Palais–Smale condition (see [10]), there exists a sequence (un) in W 1,N

0 (Ω) satisfying

I(un) → cM > 0 and
∥∥I ′(un)

∥∥∗ → 0,

where cM is the mountain-pass level. Now, by Lemma 3.2 and Corollary 3.3, the sequence (un) converges weakly to a weak
solution uM of (1.2). �
Remark 4.1. By Corollary 4.4, we can conclude that

0 < cM < c0 + 1

N

(
N − a

N

αN

α0

)N−1

.

For the critical case we obtain a Palais–Smale sequence converge strongly for level c0, but for level cM we obtain only
that the Palais–Smale sequence converge weakly, then to prove that these two solutions are distinct we shall use the
following result due to Adimurthi and Sandeep [2] (see also [19] for a nonsingular case):
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Lemma 4.8. Let {uk: ‖uk‖ = 1} be a sequence in W 1,N
0 (Ω) converging weakly to a non-zero function u. Then, for every p <

(1 − ‖u‖N)−1/(N−1) and a ∈ [0, N)

sup
k

∫
Ω

epαN
N−a

N |uk|N/(N−1)

|x|a dx < ∞.

We also will use the following convergence result:

Lemma 4.9. Assume that f (x, s) satisfies ( f2) and has critical growth at both +∞ and −∞. If (un) ⊆ W 1,N
0 (Ω) is a Palais–Smale

sequence for I and u0 is its weak limit then, up to a subsequence,

F (x, un)

|x|a → F (x, u0)

|x|a in L1(Ω).

Proof. As a consequence of Lemma 3.2, we get

f (x, un)

|x|a → f (x, u0)

|x|a in L1(Ω).

Thus, there exists g ∈ L1(Ω) such that
| f (x, un)|

|x|a � g almost everywhere in Ω . From ( f2) we can conclude that∣∣F (x, un)
∣∣ � sup

(x,un)∈Ω×[−R,R]
∣∣F (x, un)

∣∣ + M0 f (x, un) almost everywhere in Ω,

thus, by generalized Lebesgue dominated convergence theorem

F (x, un)

|x|a → F (x, u0)

|x|a in L1(Ω). �
Proposition 4.3. If δ2 > 0 is small enough, then the solutions of (1.2) obtained in Lemma 4.6 and Lemma 4.7 are distinct.

Proof. Let (un) be the minimizing sequence and let (vn) be the mountain pass sequence, so that

un ⇀ u0 in W 1,N
0 (Ω) and vn ⇀ uM in W 1,N

0 (Ω),

I(un) → c0 < 0 and I(vn) → cM > 0,〈
I ′(un), un

〉 → 0 and
〈
I ′(vn), vn

〉 → 0. (4.16)

Suppose that u0 = uM . Then from Lemma 4.9

I(un) = 1

N
‖un‖N −

∫
Ω

F (x, u0)

|x|a dx −
∫
Ω

h(x)u0 dx + o(1) = c0

and

I(vn) = 1

N
‖vn‖N −

∫
Ω

F (x, u0)

|x|a dx −
∫
Ω

h(x)u0 dx + o(1) = cM

and subtracting one from the other, we have

‖un‖N − ‖vn‖N → N(c0 − cM) < 0 as n → ∞. (4.17)

Since (un) and (vn) are both Palais–Smale sequences〈
I ′(un), un

〉 = ‖un‖N −
∫
Ω

f (x, un)

|x|a un dx −
∫
Ω

h(x)un dx → 0,

〈
I ′(vn), vn

〉 = ‖vn‖N −
∫
Ω

f (x, vn)

|x|a vn dx −
∫
Ω

h(x)vn dx → 0,

to give
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(‖un‖N − ‖vn‖N) −
∫
Ω

[
f (x, un)

|x|a un − f (x, un)

|x|a vn + f (x, un)

|x|a vn − f (x, vn)

|x|a vn

]
dx

−
∫
Ω

[
h(un − u0) − h(vn − u0)

]
dx → 0 as n → ∞. (4.18)

Notice that the last term in (4.18) tends to zero, because h ∈ W −1,N ′
, un ⇀ u0 and vn ⇀ u0 weakly in W 1,N

0 (Ω).
The second term in (4.18) may be written as:∫

Ω

f (x, un)

|x|a (un − vn)dx −
∫
Ω

f (x, un) − f (x, vn)

|x|a vn dx.

Notice that∫
Ω

f (x, un)

|x|a (un − vn)dx → 0 as n → ∞.

Indeed, we have derived that for ‖h‖∗ in the range (0, δ1), the minimizing sequence (un) must satisfy

‖un‖ <

(
N − a

N

αN

α0

)(N−1)/N

, (4.19)

thus using Lemma 4.5 we can conclude that un → u0 strongly in W 1,N
0 (Ω) and since I is continuous we have I(un) →

I(uo) < 0. Notice that if vn → uM strongly in W 1,N
0 (Ω) we have I(vn) → I(uM) > 0. Therefore, u0 �= uM .

Next, we assume that vn ⇀ u0 weakly in W 1,N
0 (Ω) but vn �→ u0 strongly in W 1,N

0 (Ω). Let vn = u0 + wn , so wn ⇀ 0 and
limn→∞ ‖wn‖ > 0.

Using (4.19), we can choose q > 1 sufficiently close to 1 such that

qα0‖un‖N/(N−1)/αN + aq/N < 1.

Thus ∫
Ω

( | f (x, un)|
|x|a

)q

dx � C

∫
Ω

e(qα0‖un‖N/(N−1)| un‖un‖ |N/(N−1))

|x|aq
dx � C, (4.20)

which together with the Hölder inequality implies that∫
Ω

f (x, un)

|x|a (un − vn) dx � C‖un − vn‖q′ → 0 as n → +∞.

It remains to show that∫
Ω

f (x, un) − f (x, vn)

|x|a vn dx → 0 as n → ∞. (4.21)

Now, (4.21) may be expressed as∫
Ω

f (x, un) − f (x, vn)

|x|a u0 dx +
∫
Ω

f (x, un) − f (x, vn)

|x|a wn dx.

Using the same argument as in the proof of (4.2) in Lemma 4.1, we have that the first term vanishes. Considering the second
of these terms,∫

Ω

f (x, un) − f (x, vn)

|x|a wn dx =
∫
Ω

f (x, un)

|x|a wn dx −
∫
Ω

f (x, vn)

|x|a wn dx.

Using (4.20), the Hölder inequality and Sobolev embedding, we get∫
Ω

f (x, un)

|x|a wn dx �
( ∫

Ω

e(qα0‖un‖N/(N−1)| un‖un‖ |N/(N−1))

|x|aq
dx

)1/q

‖wn‖q′ � C‖wn‖q′ → 0. (4.22)

We are now left with only the term
∫ f (x,vn)

a wn dx.

Ω |x|
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By Corollary 4.4, taking δ2 is sufficiently small, we conclude that

0 < cM < c0 + 1

N

(
N − a

N

αN

α0

)N−1

.

Consequently, for large n

cM − c0 = I(vn) − I(un) + o(1) = 1

N
‖vn‖N − 1

N
‖un‖N + o(1)

= 1

N
‖vn‖N − 1

N
‖u0‖N + o(1)

<
1

N

(
N − a

N

αN

α0

)N−1

.

Thus, there exists s > 1 sufficiently close to 1 such that for large n,

‖vn‖N − ‖u0‖N <

(
N − as

N

αN

sα0

)N−1

.

As a direct implication,

sα0‖vn‖N/(N−1) < αN
N − as

N

(
1 −

∥∥∥∥ u0

‖vn‖
∥∥∥∥)−1/(N−1)

. (4.23)

Define Un = vn‖vn‖ . Thus ‖Un‖ = 1, Un ⇀ U0 = u0
lim‖vn‖ and ‖U0‖ < 1. Now,

∫
Ω

f (x, vn)

|x|a wn dx � C

( ∫
Ω

e(sα0‖vn‖N/(N−1)| vn‖vn‖ |N/(N−1))

|x|as
dx

)1/s

‖wn‖s′ . (4.24)

By Lemma 4.8 and using the information that ‖wn‖s′ → 0, it follows that∫
Ω

f (x, vn)

|x|a wn dx → 0.

Hence expression (4.18) gives that ‖un‖N − ‖vn‖N → 0. But this contradicts (4.17), and thus u0 �≡ uM and the solutions are
distinct. �

Now, the proof of Theorems 1.4 and 1.5 follows directly from Lemmas 4.6, 4.7 and Proposition 4.3.

4.3. Proof of Theorems 1.3 and 1.6

In order to prove Theorems 1.3 and 1.6 in the case h(x) � 0, we redefine f (x, s) as

f̃ (x, s) =
{

f (x, s), if (x, s) ∈ Ω × [0,+∞),

0, if (x, s) ∈ Ω × (−∞,0].
Thus, in the subcritical case ( f1) holds for s � s1 and in the critical case ( f2) holds for s � R . Notice that hypotheses
( f1) and ( f2) was required to help verify the Palais–Smale condition and Lemma 3.2, which is valid also for this modified
nonlinearity.

The proof is a consequence of the following result.

Corollary 4.10. If h(x) � 0 almost everywhere in Ω , then the weak solutions of (1.2) are nonnegative.

Proof. Let u ∈ W 1,N
0 (Ω) be a weak solution of (1.2). Setting u+ = max{u,0}, u− = max{−u,0} and taking v = u− as a

testing function in 〈I ′(u), v〉 = 0, we obtain∥∥u−∥∥N = −
∫
Ω

h(x)u− dx � 0,

because f (x, u(x))u−(x) = 0 in Ω . Consequently, u = u+ � 0. �
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Now, in the case h(x) � 0, in order to prove Theorems 1.3 and 1.6, we redefine f (x, s) as

f̃ (x, s) =
{− f (x,−s), if (x, s) ∈ Ω × (−∞,0),

f (x, s), if (x, s) ∈ Ω × [0,+∞).

In this case, the proof of Theorems 1.3 and 1.6 is given in the following corollary:

Corollary 4.11. Suppose that ( f −
4 ) holds and h(x) � 0 almost everywhere in Ω . Then there exist at least two nonpositive weak solutions

of (1.2).

Proof. Consider the functional defined by

Ĩ(u) = 1

N
‖u‖N −

∫
Ω

F̃ (x, u)

|x|a dx −
∫
Ω

(−h(x)
)
u dx,

where F̃ is the primitive of f̃ . Notice that f̃ satisfies the same hypotheses of f . Since −h(x) � 0 almost everywhere in Ω ,
by Corollary 4.10, Ĩ(u) has two nonnegative and nontrivial critical points. Let ũ be one such critical point, that is∫

Ω

|∇ũ|N−2∇ũ∇v dx −
∫
Ω

f̃ (x, ũ)

|x|a v dx +
∫
Ω

h(x)v dx = 0, ∀v ∈ W 1,N
0 (Ω). (4.25)

Recalling the construction of f̃ , we have that f̃ (x, ũ) = − f (x,−ũ) and replacing v by −v in (4.25), we obtain∫
Ω

|∇(−ũ)|N−2∇(−ũ)∇v dx −
∫
Ω

f (x,−ũ)

|x|a v dx −
∫
Ω

h(x)v dx = 0, ∀v ∈ W 1,N
0 (Ω),

which implies that −ũ is a nonpositive weak solution of (1.2). �
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