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Abstract

In this paper we study several qualitative properties of the Degasperis–Procesi equation. We first es-
tablished the precise blow-up rate and then determine the blow-up set of blow-up strong solutions to this
equation for a large class of initial data. We finally prove the existence and uniqueness of global weak
solutions to the equation provided the initial data satisfies appropriate conditions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, Degasperis and Procesi [21] studied the following family of third order dispersive
conservation laws,

ut + c0ux + γ uxxx − α2utxx = (
c1u

2 + c2u
2
x + c3uuxx

)
x
, (1.1)

where α, c0, c1, c2, and c3 are real constants and indices denote partial derivatives. In [21]
the authors found that there are only three equations that satisfy the asymptotic integrability
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condition within this family: the KdV equation, the Camassa–Holm equation and the Degasperis–
Procesi equation.

If α = c2 = c3 = 0, then Eq. (1.1) becomes the well-known KdV equation which describes the
unidirectional propagation of waves at the free surface of shallow water under the influence of
gravity. In this model u(t, x) represents the wave’s height above a flat bottom, x is proportional
to distance in the direction of propagation and t is proportional to the elapsed time. The KdV
equation is completely integrable and its solitary waves are solitons [22,40]. The Cauchy problem
of the KdV equation has been the subject of a number of studies, and a satisfactory local or global
(in time) existence theory is now in hand (for example, see [30,45]). It is shown that the KdV
equation is globally well-posed for u0 ∈ L2(R), cf. [45]. It is observed that the KdV equation
does not accommodate wave breaking (by wave breaking we understand that the wave remains
bounded but its slope becomes unbounded in finite time [48]).

For c1 = − 3
2c3/α

2 and c2 = c3/2, Eq. (1.1) becomes the Camassa–Holm equation, modeling
the unidirectional propagation of shallow water waves over a flat bottom. Again u(t, x) stands
for the fluid velocity at time t in the spatial x direction and c0 is a nonnegative parameter related
to the critical shallow water speed [3,23,28]. The Camassa–Holm equation is also a model for
the propagation of axially symmetric waves in hyperelastic rods [17,19]. It has a bi-Hamiltonian
structure [25,32] and is completely integrable [3,8]. Its solitary waves are smooth if c0 > 0 and
peaked in the limiting case c0 = 0, see [4]. The orbital stability of the peaked solitons is proved
in [16], and that of the smooth solitons in [18]. The explicit interaction of the peaked solitons is
given in [1].

The Cauchy problem of the Camassa–Holm equation has been studied extensively. It has been
shown that this equation is locally well-posed [10,33,44] for initial data u0 ∈ Hs(R), s > 3

2 . More
interestingly, it has global strong solutions [7,10] and also finite time blow-up solutions [7,10,11,
14,34]. On the other hand, it has global weak solutions in H 1(R) [2,12,15,47,49,50]. It is also
known that if u is the solution of the Camassa–Holm equation with the initial data u0 in H 1(R),
then we have the following a priori estimate

∥∥u(t, ·)∥∥
L∞(R)

�
√

2
∥∥u(t, ·)∥∥

H 1(R)
�

√
2
∥∥u0(·)

∥∥
H 1(R)

for all t > 0. The advantage of the Camassa–Holm equation in comparison with the KdV equa-
tion lies in the fact that the Camassa–Holm equation has peaked solitons and models wave
breaking [4].

If c1 = −2c3/α
2 and c2 = c3 in Eq. (1.1), then, after rescaling, shifting the dependent variable,

and applying a Galilean boost [20], we find the Degasperis–Procesi equation of the form

ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R. (1.2)

Degasperis, Holm and Hone [20] proved the formal integrability of Eq. (1.2) by constructing a
Lax pair. They also showed that Eq. (1.2) has a bi-Hamiltonian structure with an infinite sequence
of conserved quantities and that it admits exact peakon solutions which are analogous to the
Camassa–Holm peakons.

The Degasperis–Procesi equation can be regarded as a model for nonlinear shallow water dy-
namics and its asymptotic accuracy is the same as for the Camassa–Holm shallow water equation.
Dullin, Gottwald and Holm [24] showed that the Degasperis–Procesi equation can be obtained
from the shallow water elevation equation by an appropriate Kodama transformation. Lundmark
and Szmigielski [37] presented an inverse scattering approach for computing n-peakon solutions
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to Eq. (1.2). Vakhnenko and Parkes [46] investigated traveling wave solutions of Eq. (1.2) and
Holm and Staley [27] studied stability of solitons and peakons numerically.

After the Degasperis–Procesi equation (1.2) was derived, many papers were devoted to its
study, cf. [5,26,31,35,36,39,51–54] and the citations therein. For example, Yin proved local well-
posedness of Eq. (1.2) with initial data u0 ∈ Hs(R), s > 3

2 , on the line [51] and on the circle [52].
In these two papers the precise blow-up scenario and a blow-up result were derived. The global
existence of strong solutions and global weak solutions to Eq. (1.2) are also investigated in [53,
54]. Recently, Lenells [31] classified all weak traveling wave solutions. Matsuno [39] studied
multisoliton solutions and their peakon limits. Analogous to the case of Camassa–Holm equa-
tion [9], Henry [26] and Mustafa [42] showed that smooth solutions to Eq. (1.2) have infinite
speed of propagation. Coclite and Karlsen [5] also obtained global existence results for entropy
solutions in L1(R) ∩ BV(R) and in L2(R) ∩ L4(R).

Despite the similarities to the Camassa–Holm equation, it should be emphasized that these
two equations are truly different. One of the important features of Eq. (1.2) is that it has not only
peakon solitons [20], i.e. solutions at the form u(t, x) = ce−|x−ct |, c > 0, but also shock peakons
[6,36] which are given by

u(t, x) = − 1

t + k
sgn(x)e−|x|, k > 0.

It is shown in [36] that the above shock-peakon solutions can be formally obtained by substitut-
ing (x, t) �→ (εx, εt) to Eq. (1.2) and letting ε → 0 so that it becomes the “derivative Burger’s
equation” (ut + uux)xx = 0, from which shock waves form.

On the other hand, the isospectral problem for Eq. (1.2) has the third-order equation in the
Lax pair

ψx − ψxxx − λyψ = 0,

cf. [20]. While the isospectral problem for the Camassa–Holm equation is the second-order
equation

ψxx − 1

4
ψ − λyψ = 0,

cf. [3] (in both cases y = u−uxx ). Another indication of the fact that there is no simple transfor-
mation of Eq. (1.2) into the Camassa–Holm equation is the entirely different form of conservation
laws for that two equations [3,20]. Furthermore, the Camassa–Holm equation is a re-expression
of geodesic flow on the diffeomorphism group [13] or on the Bott–Virasoro group [41]. Up to
now, no geometric derivation of the Degasperis–Procesi equation is available.

The following three conservation laws of the Degasperis–Procesi equation are very useful for
our analysis:

E1(u) =
∫
R

y dx, E2(u) =
∫
R

yv dx, E3(u) =
∫
R

u3 dx.

Here we set y = (1 − ∂2
x )u and v = (4 − ∂2

x )−1u. The corresponding conservation laws of the
Camassa–Holm equation are the following:
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F1(u) =
∫
R

y dx, F2(u) =
∫
R

(
u2 + u2

x

)
dx, F3(u) =

∫
R

(
u3 + uu2

x

)
dx.

It turns out that the conservation laws of the Degasperis–Procesi equation are much weaker than
those of the Camassa–Holm equation. Although the bi-Hamiltonian structure of Eq. (1.2) pro-
vides an infinite number of conservation laws [20], the conservation laws Ei(u) cannot guarantee
the boundedness of the slope of wave, and there is no way to find conservation laws controlling
the H 1-norm, which plays important role in studying the Camassa–Holm equation.

It [35] is shown that the first blow-up must occur as wave breaking and shock waves pos-
sibly appear afterwards. Note that Eq. (1.2) admits peaked solitons which are global weak
solutions [20]. Global weak solutions to Eq. (1.2) have recently been discussed in [54]. The
goal of this paper is to present a new result for global weak solutions in H 1(R) and to study
the blow-up structure for the Degasperis–Procesi equation. We hope that our results shed some
light on important physical phenomena of Eq. (1.2) such as wave breaking and shock waves.
Our methods not only rely on a new conservation law and a very useful a priori estimate of the
L∞-norm of the strong solutions to Eq. (1.2), but also on an approximation procedure used first
for the solutions to the Camassa–Holm equation [15,47], a partial integration result in Bochner
spaces, and Helly’s theorem.

The remainder of the paper is organized as follows. In Section 2, we recall the local well-
posedness of the Cauchy problem of Eq. (1.2) with initial data u0 ∈ Hs(R), s > 3

2 , and the precise
blow-up scenario of strong solutions to Eq. (1.2) from [51,54]. We also recall several results and
definitions on strong solutions and weak solutions to Eq. (1.2). Based on a new conservation
law and a useful a priori estimate of the L∞-norm of the strong solutions to Eq. (1.2), we will
investigate in Section 3 the blow-up rate and the blow-up set of the strong blow-up solutions to
Eq. (1.2). In the last section, we show the existence and uniqueness of global weak solutions to
Eq. (1.2), provided the initial data satisfy appropriate conditions.

Notation. In the following, we denote by ∗ the spatial convolution. We write f̂ for the Fourier
transform of f . We also use (·|·) to represent the standard inner product in L2(R). For 1 �
p � ∞, the norm in the Lebesgue space Lp will be denoted by ‖ · ‖Lp , while ‖ · ‖s , s � 0, will
stand for the norm in the classical Sobolev spaces Hs(R). Given a Banach space X, we denote
its norm by ‖ · ‖X . The duality paring between H 1(R) and H−1(R) is denoted by 〈·,·〉. The space
of all Radon measures on R with bounded total variation is denoted by M(R) and M+(R) is the
subset of all positive measures. Finally, we write BV(R) for the space of functions with bounded
variation and V(f ) for the total variation of f ∈ BV(R).

2. Preliminaries

In this section, we recall the local well-posedness result, some results on blow-up and global
existence of strong solutions, the definitions and some properties of strong and weak solutions
to (1.2) from [35,51,54]. A partial integration result for Bochner spaces from [38] and several
approximation results from [15] are also presented.

With y := u − uxx , Eq. (1.2) takes the form:

{
yt + uyx + 3uxy = 0, t > 0, x ∈ R,

y(0, x) = u (x) − u (x), x ∈ R.
(2.1)
0 0,xx
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Note that if p(x) := 1
2e−|x|, x ∈ R, then (1 − ∂2

x )−1f = p ∗ f for all f ∈ L2(R) and p ∗ (u −
uxx) = u. Using this identity, we can rewrite Eq. (2.1) as a quasi-linear evolution equation of
hyperbolic type: {

ut + uux + ∂xp ∗ ( 3
2u2) = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.
(2.2)

The local well-posedness of the Cauchy problem of Eq. (2.2) with initial data u0 ∈ Hs(R), s > 3
2 ,

can be obtained by applying the Kato’s theorem [29,51]. In fact, we have the following well-
posedness result.

Lemma 2.1. [51] Given u0 ∈ Hs(R), s > 3
2 , there exist a maximal T = T (u0) > 0 and a unique

solution u to Eq. (2.2) (or to Eq. (1.2)), such that

u = u(·, u0) ∈ C
([0, T );Hs(R)

) ∩ C1([0, T );Hs−1(R)
)
.

Moreover, the solution depends continuously on the initial data, i.e. the mapping u0 �→ u(·, u0) :
Hs(R) → C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) is continuous and the maximal time of ex-
istence T > 0 is independent of s.

By using the local well-posedness in Lemma 2.1 and the energy method, one can get the
following precise blow-up scenario of strong solutions to Eq. (2.2).

Lemma 2.2. [51] Given u0 ∈ Hs(R), s > 3
2 , blow-up of the solution u = u(·, u0) in finite time

T < +∞ occurs if and only if

lim inf
t↑T

{
inf
x∈R

[
ux(t, x)

]} = −∞.

Consider now the following differential equation:{
qt = u(t, q), t ∈ [0, T ),

q(0, x) = x, x ∈ R.
(2.3)

Applying classical results in the theory of ordinary differential equations, one can obtain the
following result on q which is crucial in the proof of global existence and blow-up solutions.

Lemma 2.3. [54] Let u0 ∈ Hs(R), s � 3, and let T > 0 be the maximal existence time of the
corresponding solution u to Eq. (2.2). Then Eq. (2.3) has a unique solution q ∈ C1([0, T ) ×
R;R). Moreover, the map q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

( t∫
0

ux

(
s, q(s, x)

)
ds

)
> 0, ∀(t, x) ∈ [0, T ) × R.

Furthermore, setting y := u − uxx , we have

y
(
t, q(t, x)

)
q3
x (t, x) = y0(x), ∀(t, x) ∈ [0, T ) × R.
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Using the above lemmas, we can prove the following blow-up and global existence results.

Lemma 2.4. [35] Let u0 ∈ Hs(R) with s > 3
2 and y0(x) := u0(x) − u0,xx(x). Assume that y0(x)

changes sign and that there exists x0 ∈ R such that{
y0(x) � 0 if x � x0,

y0(x) � 0 if x � x0.

Then the corresponding solution to Eq. (2.2) blows up in finite time.

Lemma 2.5. [35] Assume that u0 ∈ Hs(R), s > 3
2 , and that there exists x0 ∈ R such that{

y0(x) � 0 if x � x0,

y0(x) � 0 if x � x0.

Then Eq. (2.2) has a unique global strong solution

u = u(·, u0) ∈ C
([0,∞);Hs(R)

) ∩ C1([0,∞);Hs−1(R)
)
.

Moreover, E2(u) = ∫
R

yv dx is a conservation law, where y = (1 − ∂2
x )u and v = (4 − ∂2

x )−1u,
and for all t ∈ R+ we have

(i) ux(t, ·) � −|u(t, ·)| on R,
(ii) ‖u‖2

1 � 6‖u0‖4
L2 t

2 + 4‖u0‖2
L2‖u0‖L∞ t + ‖u0‖2

1.

Note that Eq. (1.2) has the soliton interaction property of solitary waves with corners at their
peaks, discovered in [20,21]. Obviously, such solutions are not strong solutions to Eq. (2.1) in
the sense of Lemma 2.1. In order to provide a mathematical framework for the study of peaked
solitons and their interaction, we shall introduce a suitable notion of weak solutions to Eq. (2.2).

Observe that, setting

F(u) =
(

u2

2
+ p ∗

(
3

2
u2

))
,

Eq. (2.2) can be rewritten as the conservation law

ut + F(u)x = 0, u(0, x) = u0, t > 0, x ∈ R.

The following notion was introduced in [12], see also [54].

Definition 2.1. Let u0 ∈ H 1(R) and u ∈ L∞
loc([0, T );H 1(R)) satisfies the following identity:

T∫
0

∫
R

(
uψt + F(u)ψx

)
dx dt +

∫
R

u0(x)ψ(0, x) dx = 0

for all ψ ∈ C∞
c ([0, T )×R). Let C∞

c ([0, T )×R) denote the space of all functions on [0, T )×R,
which may be obtained as the restriction to [0, T ) × R of a smooth function on R

2 with compact
support contained in (−T ,T ) × R, then u is called a weak solution to Eq. (2.2). If u is a weak
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solution on [0, T ) for every T > 0, then it is called global weak solution to Eq. (2.2) (or to
Eq. (1.2)).

The following result proved in [51] clarifies the relation between strong and weak solutions.

Proposition 2.1. [51]

(i) Every strong solution is a weak solution.
(ii) If u is a weak solution and u ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) with s > 3

2 , then
it is a strong solution.

(iii) All nontrivial traveling waves of Eq. (1.2) are not strong solutions.
(iv) The peaked solitons are global weak solutions of Eq. (1.2).

Next, we recall a partial integration result for Bochner spaces.

Lemma 2.6. [38] Let T > 0. If

f,g ∈ L2((0, T );H 1(R)
)

and
df

dt
,
dg

dt
∈ L2((0, T );H−1(R)

)
,

then f,g are a.e. equal to a function continuous from [0, T ] into L2(R) and

〈
f (t), g(t)

〉 − 〈
f (s), g(s)

〉 =
t∫

s

〈
df (τ)

dτ
, g(τ )

〉
dτ +

t∫
s

〈
dg(τ)

dτ
, f (τ )

〉
dτ

for all s, t ∈ [0, T ].
Throughout this paper, let {ρn}n�1 denote the mollifiers

ρn(x) :=
(∫

R

ρ(ξ) dξ

)−1

nρ(nx), x ∈ R, n � 1,

where ρ ∈ C∞
c (R) is defined by

ρ(x) :=
{

e
1

x2−1 , for |x| < 1,

0, for |x| � 1.

Then we have the following auxiliary result.

Lemma 2.7. [15]

(a) Let f : R → R be uniformly continuous and bounded.
(i) If μ ∈ M(R), then

lim
n→∞

[
ρn ∗ (f μ) − (ρn ∗ f )(ρn ∗ μ)

] = 0 in L1(R).
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(ii) If g ∈ L∞(R), then

lim
n→∞

[
ρn ∗ (fg) − (ρn ∗ f )(ρn ∗ g)

] = 0 in L∞(R).

(b) Assume that u(t, ·) ∈ W 1,1(R) is uniformly bounded in W 1,1(R) for all t ∈ R+. Then for a.e.
t ∈ R+

d

dt

∫
R

|ρn ∗ u|dx =
∫
R

(ρn ∗ ut ) sgn(ρn ∗ u)dx

and

d

dt

∫
R

|ρn ∗ ux |dx =
∫
R

(ρn ∗ uxt ) sgn(ρn ∗ ux) dx.

3. Blow-up rate and blow-up set

In this section, we derive a conservation law for strong solutions to Eq. (2.2). Using this
conservation law, we then obtain an a priori estimate of the L∞-norm of strong solutions. This
enables us to investigate the blow-up rate and the blow-up set of strong blow-up solutions to
Eq. (2.1).

Lemma 3.1. If u0 ∈ Hs(R), s > 3
2 , then as long as the solution u(t, x) given by Lemma 2.1

exists, we have

∫
R

y(t, x)v(t, x) dx =
∫
R

y0(x)v0(x) dx,

where y(t, x) = u(t, x) − uxx(t, x) and v(t, x) = (4 − ∂2
x )−1u. Moreover, we have

∥∥u(t)
∥∥2

L2 � 4‖u0‖2
L2 .

Proof. Applying Lemma 2.1 and a simple density argument, it is clear that we may consider the
case s = 3. Let T > 0 be the maximal time of existence of the solution u to Eq. (2.2) with initial
data u0 ∈ H 3(R) such that u ∈ C([0, T );H 3(R)) ∩ C1([0, T );H 2(R)), which is guaranteed by
Lemma 2.1. Applying the operator (1 − ∂2

x ) on both sides of Eq. (2.2), we have

yt + (
1 − ∂2

x

)
∂x

(
u2

2

)
+ ∂x

(
3u2

2

)
= 0.

Multiplying the above equation by v(t, x) and integrating by parts with respect to x on R, in
view of 4v − vxx = u, we obtain
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∫
R

vyt dx = −1

2

∫
R

v
(
1 − ∂2

x

)
∂xu

2 dx − 3

2

∫
R

v∂xu
2 dx

= 1

2

∫
R

vx

(
1 − ∂2

x

)
u2 dx + 3

2

∫
R

vxu
2 dx

= −1

2

∫
R

vx∂
2
xu2 dx + 2

∫
R

vxu
2 dx = 2

∫
R

vxu
2 dx − 1

2

∫
R

vxxxu
2 dx

= 1

2

∫
R

u2∂x

(
4 − ∂2

x

)
v dx = 1

2

∫
R

u2ux dx = 0.

Note that

1

2

d

dt

∫
R

yv dx = 1

2

∫
R

ytv dx + 1

2

∫
R

yvt dx =
∫
R

ytv dx.

Combining the above two relations, we deduce that

1

2

d

dt

∫
R

yv dx =
∫
R

vyt dx = 0.

Consequently, this implies the desired conserved quantity. In view of the above conservation law,
it then follows that

∥∥u(t)
∥∥2

L2 = ∥∥û(t)
∥∥2

L2 � 4
∫
R

1 + ξ2

4 + ξ2

∣∣û(t, ξ)
∣∣2

dξ = 4
(
ŷ(t)|v̂(t)

)

= 4
(
y(t)|v(t)

) = 4(y0|v0) = 4(ŷ0|v̂0)

� 4
∫
R

1 + ξ2

4 + ξ2

∣∣û0(ξ)
∣∣2

dξ � 4‖û0‖2
L2 = 4‖u0‖2

L2 .

This completes the proof of Lemma 3.1. �
The following important estimate is a consequence of Lemma 3.1.

Lemma 3.2. Assume u0 ∈ Hs(R), s > 3
2 . Let T be the maximal existence time of the solution u

to the Eq. (2.2) guaranteed by Lemma 2.1. Then we have

∥∥u(t, x)
∥∥

L∞ � 3‖u0‖2
L2 t + ‖u0‖L∞, ∀t ∈ [0, T ].
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Proof. Applying Lemma 2.1 and a simple density argument, it suffices to consider the case
s = 3 to prove the above result. Let T > 0 be the maximal time of existence of the solution u to
Eq. (2.2) with the initial data u0 ∈ H 3(R). By (2.2), we have

ut + uux = −∂xp ∗
(

3

2
u2

)
= −3p ∗ (uux). (3.1)

Note that

−3p ∗ (uux) = −3

2

+∞∫
−∞

e−|x−η|uuη dη = −3

2

x∫
−∞

e−x+ηuuη dη − 3

2

+∞∫
x

ex−ηuuη dη

= 3

4

x∫
−∞

e−|x−η|u2 dη − 3

4

+∞∫
x

e−|x−η|u2 dη.

By (2.3), we have

du(t, q(t, x))

dt
= ut

(
t, q(t, x)

) + ux

(
t, q(t, x)

)dq(t, x)

dt
= (ut + uux)

(
t, q(t, x)

)
.

It then follows from (3.1) that

−3

4

+∞∫
q(t,x)

e−|q(t,x)−η|u2 dη � du(t, q(t, x))

dt
� 3

4

q(t,x)∫
−∞

e−|q(t,x)−η|u2 dη.

It thus transpires that

∣∣∣∣du(t, q(t, x))

dt

∣∣∣∣ � 3

4

+∞∫
−∞

e−|q(t,x)−η|u2 dη � 3

4

+∞∫
−∞

u2(t, η) dη.

In view of Lemma 3.1, we have

−3‖u0‖2
L2 � du(t, q(t, x))

dt
� 3‖u0‖2

L2 .

Integrating the above inequality with respect to t < T on [0, t] yields

−3‖u0‖2
L2 t + u0(x) � u

(
t, q(t, x)

)
� 3‖u0‖2

L2 t + u0(x).

Thus,

∣∣u(
t, q(t, x)

)∣∣ �
∥∥u

(
t, q(t, x)

)∥∥ ∞ � 3‖u0‖2
2 t + ‖u0‖L∞ . (3.2)
L L
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We use the Sobolev embedding to ensure the uniform boundedness of ux(s, η) for (s, η) ∈ [0, t]×
R with t ∈ [0, T ). In view of Lemma 2.3, we get for every t ∈ [0, T ) a constant C(t) > 0 such
that

e−C(t) � qx(t, x) � eC(t), x ∈ R.

We deduce from the above equation that the function q(t, ·) is strictly increasing on R with
limx→±∞ q(t, x) = ±∞ as long as t ∈ [0, T ). Thus, by (3.2) we can obtain

∥∥u(t, x)
∥∥

L∞ = ∥∥u
(
t, q(t, x)

)∥∥
L∞ � 3‖u0‖2

L2 t + ‖u0‖L∞ . (3.3)

This completes the proof of the lemma. �
We are now concerned with the rate of the blow-up of the slope of blow-up solutions to

Eq. (2.2).
First, we recall the following useful lemma about the evolution of the minimum point of

functions of two variables.

Lemma 3.3. [11] Let T > 0 and v ∈ C1([0, T );H 2(R)). Then for every t ∈ [0, T ), there exists
at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

[
vx(t, x)

] = vx

(
t, ξ(t)

)
.

The function m(t) is absolutely continuous on (0, T ) with

dm

dt
= vtx

(
t, ξ(t)

)
a.e. on (0, T ).

Theorem 3.1. Let T < ∞ be the blow-up time of the corresponding solution u to Eq. (2.2) with
initial data u0 ∈ Hs(R), s > 3

2 . Then we have

lim
t→T

(
inf
x∈R

{
ux(t, x)

}
(T − t)

)
= −1

while the solution u remains bounded.

Proof. Again we may assume s = 3 to prove the above theorem. Differentiating (3.1) with re-
spect to x, we find

utx + uuxx + u2
x = −∂2

x

(
p ∗ 3

2
u2

)
= 3

2
u2 −

(
p ∗ 3

2
u2

)
. (3.4)

By Lemma 2.2, we know that

lim infm(t) = −∞, (3.5)

t→T
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where m(t) := infx∈R{ux(t, x)} for t ∈ [0, T ). Obviously, one can check that the function m is
locally Lipschitz. Moreover, by Lemma 3.3 we have

m(t) = ux

(
t, ξ(t)

)
, t ∈ [0, T ).

Note that uxx(t, ξ(t)) = 0 for a.e. t ∈ (0, T ). Then, from (3.4) we deduce that

d

dt
m(t) = −m2(t) + 3

2
u2(t, ξ) − 3

2
p ∗ (

u2)(t, ξ). (3.6)

By Young’s inequality, in view of Lemma 3.1, we have

∥∥p ∗ u2(t, ·)∥∥
L∞ � ‖p‖L∞

∥∥u2
∥∥

L1 � 1

2

∥∥u(t, ·)∥∥2
L2 � 2‖u0‖2

L2 .

Now Lemma 3.2 and the above equation imply that

∣∣∣∣3

2
u2(t, ξ(t)

) − 3

2
p ∗ u2(t, ξ(t)

)∣∣∣∣
� 3

2

(∥∥u(t, ·)∥∥2
L∞ + ∥∥p ∗ u2(t, ·)∥∥

L∞
)

� 3

2

((
3‖u0‖2

L2 t + ‖u0‖L∞
)2 + 2‖u0‖2

L2

)
� 3

2

((
3‖u0‖2

L2T + ‖u0‖L∞
)2 + 2‖u0‖2

L2

)
, t ∈ [0, T ]. (3.7)

Set

K(T ) = 3

2

((
3‖u0‖2

L2T + ‖u0‖L∞
)2 + 2‖u0‖2

L2

)
.

Combining (3.6) with (3.7), we deduce that

d

dt
m(t) � −m2(t) + K(T ) for a.e. t ∈ [0, T ). (3.8)

Choose now ε ∈ (0,1). Using (3.5), we can find t0 ∈ [0, T ) such that

m(t0) < −
√

K(T ) + K(T )

ε
.

Since m is locally Lipschitz, it follows that m is absolutely continuous. By (3.8) and the absolute
continuity of m, we deduce that if

m(t0) < −
√

K(T ) + K(T )
,

ε
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then m is decreasing on [t0, T ) and

m(t) < −
√

K(T ) + K(T )

ε
< −

√
K(T )

ε
, t ∈ [t0, T ).

Thus, in view of (3.5), we know that limt→T m(t) = −∞.

Again, by (3.6) and (3.7), we obtain that

−m2(t) − K(T ) � d

dt
m(t) � −m2(t) + K(T ) for a.e. t ∈ (t0, T ).

Note that m is locally Lipschitz and less than m(t0) < 0 on (t0, T ). From the above inequality,
we obtain

1 − ε � d

dt

(
1

m(t)

)
� 1 + ε.

Integrating the above relation on (t, T ) with t ∈ [t0, T ) and noticing that limt→T m(t) = −∞,
we get

(1 − ε)(T − t) � − 1

m(t)
� (1 + ε)(T − t).

Since ε ∈ (0,1) is arbitrary, in view of the definition of m(t), the above inequality implies the
desired result of the theorem. �
Remark 3.1. Note that the blow-up rate of breaking waves to the Camassa–Holm equation is
−2, see [7]. Theorem 3.1 shows that the blow-up rate of breaking waves to the Camassa–Holm
is twice as much as that of the Degasperis–Procesi equation.

In the case of breaking waves corresponding to initial profiles satisfying the assumptions of
Lemma 2.4, we have

Theorem 3.2. Let T < ∞ be the blow-up time of the solution corresponding to some initial data
u0 ∈ Hs(R), s > 3

2 , such that the associated potential y0 = u0 − u0,xx satisfies y0(x) � 0 on
(−∞, x0] and y0(x) � 0 on [x0,∞) for some points x0 ∈ R and y0 does not have a constant
sign. Then

lim
t→T

(
inf
x∈R

{
ux(t, x)

}
(T − t)

)
= −1 and lim

t→T

(
sup
x∈R

{
ux(t, x)

}
(T − t)

)
= 0,

while the solution remains uniformly bounded.

Proof. As before we may assume s = 3. Let T < ∞ be the maximal time of existence of the
solution u to Eq. (2.2) with initial data u0 ∈ H 3(R) which is guaranteed by Lemma 2.4. From
Lemma 3.2, we see that the solution u is uniformly bounded, i.e.

sup
∣∣u(t, x)

∣∣ � 3‖u0‖2
L2T + ‖u0‖L∞ . (3.9)
(t,x)∈[0,T ]×R
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By Theorem 3.1, we know that

lim
t→T

(
inf
x∈R

{
ux(t, x)

}
(T − t)

)
= −1.

Note that

u(t, x) = e−x

2

x∫
−∞

eηy(t, η) dη + ex

2

∞∫
x

e−ηy(t, η) dη (3.10)

and

ux(t, x) = −e−x

2

x∫
−∞

eηy(η) dη + ex

2

∞∫
x

e−ηy(η) dη. (3.11)

From (3.10) and (3.11), we deduce that

u(t, x) + ux(t, x) = ex

∞∫
x

e−ηy(t, η) dη,

u(t, x) − ux(t, x) = e−x

x∫
−∞

eηy(t, η) dη. (3.12)

Note that the function q(t, x) is an increasing diffeomorphism of R with qx(t, x) > 0 with respect
to time t . We infer from the assumptions of the theorem and Lemma 2.3 that for t ∈ [0, T ){

y(t, x) � 0 if x � q(t, x0),

y(t, x) � 0 if x � q(t, x0),
(3.13)

and y(t, q(t, x0)) = 0, t ∈ [0, T ).
By (3.12) and (3.13), we obtain for t ∈ [0, T ),{

ux(t, x) � u(t, x) if x � q(t, x0),

ux(t, x) � −u(t, x) if x � q(t, x0).
(3.14)

Therefore, ux(t, ·) � |u(t, ·)| on R for all t ∈ [0, T ). By (3.9), we have

sup
x∈R

{
ux(t, x)

}
� 3‖u0‖2

L2T + ‖u0‖L∞, ∀t ∈ [0, T ].

The above inequality implies

lim
t→T

(
sup
x∈R

{
ux(t, x)

}
(T − t)

)
= 0.

This completes the proof of the theorem. �
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Let us now present some information about the blow-up set of a breaking wave for (2.2) with
a large class of initial data.

Theorem 3.3. Assume that u0 ∈ Hs(R), s > 3
2 , and u0 �≡ 0 is odd such that the associated

potential y0 := u0 − u0,xx is nonnegative on R−. Then the solution to Eq. (2.2) with initial data
u0 blows up in finite time only at zero point.

Proof. As we mentioned before, here we only need to show that the above theorem holds for
s = 3. Let T > 0 be the maximal time of existence of the solution u to Eq. (2.2) with initial data
u0 ∈ H 3(R).

Since u0 �≡ 0 is odd and y0 := u0 − u0,xx is nonnegative on R−, it follows that y0 is odd and
nonpositive on R+. Note that Eq. (1.2) is invariant under the transformation (u, x) → (−u,−x).
If u0 is odd, then t ∈ [0, T ), u(t, ·) is also odd. Therefore, by the continuity of u and uxx with
respect to x, we obtain

u(t,0) = uxx(t,0) = 0, t ∈ [0, T ). (3.15)

Set h(t) = ux(t,0), t ∈ [0, T ). By (3.4) and (3.15), we obtain

dh

dt
(t) = −h2(t) − p ∗

(
3

2
u2

)
(t,0), t ∈ [0, T ). (3.16)

Due to −p ∗ ( 3
2u2)(t,0) � 0 and −h2(t) � 0, it follows from (3.16) that

dh

dt
(t) � −h2(t), t ∈ [0, T ), (3.17)

and

dh

dt
(t) � −

∫
R

p(x)

(
3

2
u2(t, x)

)
dx, t ∈ [0, T ). (3.18)

If there exists some t ′ ∈ (0, T ) such that

∫
R

p(x)

(
3

2
u2(t ′, x)

)
dx = 0,

then we have u(t ′, x) ≡ 0. Using the uniqueness of strong solution guaranteed by Lemma 2.1,
we obtain u0(x) ≡ 0. This contradicts the assumption u0(x) �≡ 0. Thus, in view of the positivity
of p and u2, by (3.18) we have dh/dt(t) < 0, i.e., h(t) is strictly decreasing on [0, T ). Since
h(0) � 0, which is guaranteed by the assumptions of the theorem, it follows that there exists
some t0 ∈ (0, T ) such that h(t0) < 0. Solving inequality (3.17), we can obtain

0 >
1 � 1 + t − t0, t ∈ [t0, T ).
h(t) h(t0)



472 J. Escher et al. / Journal of Functional Analysis 241 (2006) 457–485
Consequently,

T < t0 − 1

h(t0)
and lim

t→T
h(t) = lim

t→T
ux(t,0) = −∞.

Next, we give a precise description of the blow-up mechanism. As noted in (3.9), there is a
uniform bounded on u(t, x) for (t, x) ∈ [0, T ) × R. We will see below that for any x �= 0, the
slope ux(t, x) remains bounded on [0, T ) while ux(t,0) → −∞ as t → T , that is, the wave
breaks in finite time exact at zero and nowhere else.

Since y0 is odd, in view of Lemma 2.3, we see that y(t, x) = u(t, x) − uxx(t, x) is also odd.
Then we have for (t, x) ∈ [0, T ) × R+:

u(t, x) = p ∗ y(t, x) = 1

2

∫
R

e−|x−η|y(t, η) dη

= sinh(x)

∞∫
x

e−ηy(t, η) dη + e−x

x∫
0

sinh(η)y(t, η) dη (3.19)

and

ux(t, x) = ∂x

[
1

2

∫
R

e−|x−η|y(t, η) dη

]

= cosh(x)

∞∫
x

e−ηy(t, η) dη − e−x

x∫
0

sinh(η)y(t, η) dη. (3.20)

Note that y(t, η) � 0 for η � 0. By (3.19) and Lemma 3.2, we obtain for all (t, x) ∈ [0, T )×R+:

∣∣∣∣∣sinh(x)

∞∫
x

e−ηy(t, η) dη

∣∣∣∣∣ �
∣∣u(t, x)

∣∣ � 3‖u0‖2
L2T + ‖u0‖L∞

and

∣∣∣∣∣e−x

x∫
0

sinh(η)y(t, η) dη

∣∣∣∣∣ �
∣∣u(t, x)

∣∣ � 3‖u0‖2
L2T + ‖u0‖L∞ .

Using the above two estimates in (3.20), we obtain

∣∣ux(t, x)
∣∣ �

(
3‖u0‖2

L2T + ‖u0‖L∞
)(

1 + cosh(x)

sinh(x)

)
, t ∈ [0, T ), x > 0.

The above inequality shows that |ux(t, x)| = |ux(t,−x)| is uniformly bounded on t ∈ [0, T ),
x � δ for δ > 0 arbitrarily small. This completes the proof of the theorem. �
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4. Global weak solutions

In this section, we will show that there exists a unique global weak solution to Eq. (2.1),
provided the initial data u0 satisfies a certain sign condition.

We first prove the following useful lemma.

Lemma 4.1. Assume that u0 ∈ Hs(R), s � 3, and there exists x0 ∈ R such that{
y0(x) � 0 if x � x0,

y0(x) � 0 if x � x0.

Let u be the corresponding solution to (2.1) and set y(t, x) = u(t, x) − uxx(t, x). Then

(i) ‖ux(t, ·)‖L∞ � 1
2‖y(t, ·)‖L1 ,

(ii) ‖u(t, ·)‖L1 � ‖y(t, ·)‖L1 ,
(iii) ‖ux(t, ·)‖L1 � ‖y(t, ·)‖L1 .

Moreover, if y0 ∈ L1(R), then we have that y ∈ C1(R+;L1(R)) and

∥∥y(t, ·)∥∥
L1 � e

3t2‖u0(x)‖2
L2 +2t‖u0(x)‖L∞ ‖y0‖L1 .

Proof. Since y(t, x) = u(t, x) − uxx(t, x), it follows that u = p ∗ y and ux = px ∗ y. Note that
‖px‖L∞ = 1

2 , ‖p‖L1 = 1, and ‖px‖L1 = 1. Applying Young’s inequality, one can easily obtain
inequalities (i)–(iii).

By (2.1), we have that yt = −yxu − 3yux . Since y ∈ C(R+;H 1(R)) ∩ C1(R+;L2(R)), it
follows that yt ∈ C(R+;L1(R)). Note that y0 ∈ L1(R) and y ∈ C1(R+;L2(R)). Then one can
easily deduce that y ∈ C1(R+;L1(R)).

Since y(x0) = 0, it follows from Lemma 2.3 that y(t, q(t, x0)) = 0. Using this relation and
yt = −(yu)x − 2yux , in view of Lemmas 3.2 and 2.5, we have

d

dt

∫
R

y+ dx = d

dt

∞∫
q(t,x0)

y dx = −2

∞∫
q(t,x0)

yux dx

� 2 sup
x∈R

{−ux}
∫
R

y+ dx � 2|u|
∫
R

y+ dx

�
(
6
∥∥u0(x)

∥∥2
L2 t + 2

∥∥u0(x)
∥∥

L∞
)∫

R

y+ dx.

By Gronwall’s inequality, we obtain∫
R

y+(t, x) dx � e
3t2‖u0(x)‖2

L2 +2t‖u0(x)‖L∞
∫
R

y+
0 dx.

Repeating the above proof, one can obtain a same estimate for y−. This completes the proof of
the lemma. �
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Let us now present the existence and uniqueness result for global weak solutions to (2.2).

Theorem 4.1. Assume that u0 ∈ H 1(R) and that y0 := (u0 − u0,xx) ∈ M(R). Further assume
that there is a x0 ∈ R such that suppy−

0 ⊂ (−∞, x0) and suppy+
0 ⊂ (x0,∞). Then Eq. (2.2) has

a unique weak solution

u ∈ W
1,∞
loc (R+ × R) ∩ L∞

loc

(
R+;H 1(R)

)
with initial data u(0) = u0 and

y(t, ·) = (
u(t, ·) − uxx(t, ·)

) ∈ L∞
loc

(
R+;M(R)

)
.

Moreover, E1(u) and E2(u) are two conservation laws.

Proof. Assume that u0 ∈ H 1(R) and that y0 := u0 −u0,xx ∈ M(R). Then the relation u0 = p∗y0
holds true. Thus we have

‖u0‖L1(R) = ‖p ∗ y0‖L1(R) = sup
‖f ‖L∞(R)�1

∫
R

f (x)(p ∗ y0)(x) dx

= sup
‖f ‖L∞(R)�1

∫
R

f (x)

∫
R

p(x − ξ) dy0(ξ) dx

= sup
‖f ‖L∞(R)�1

∫
R

(p ∗ f )(ξ) dy0(ξ)

= sup
‖f ‖L∞(R)�1

‖p ∗ f ‖L∞(R)‖y0‖M(R)

� sup
‖f ‖L∞(R)�1

‖p‖L1(R)‖f ‖L∞(R)‖y0‖M(R) = ‖y0‖M(R). (4.1)

We first prove that there exists a u with initial data u0, which belongs to H 1
loc(R+ × R) ∩

L∞
loc(R+;H 1(R)), satisfying Eq. (2.2) in the sense of distributions.

Set

yn
0 = l

(
−1

n

)(
ρn ∗ y+

0

) − l

(
1

n

)(
ρn ∗ y−

0

)
,

where l(r) denotes right translation by r ∈ R, l(r)f (x) = f (x + r). By the definition of ρn and
the assumptions of the theorem, we have

supp
(
ρn ∗ y−

0

) ⊂
(

−∞, x0 + 1

n

]
and supp

(
ρn ∗ y+

0

) ⊂
[
x0 − 1

n
,∞

)
.

Thus, it follows that {
yn

0 � 0 if x � x0,

yn � 0 if x � x .
(4.2)
0 0
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Let us define un
0 := (1 − ∂2

x )−1yn
0 = p ∗ yn

0 ∈ H∞(R) for n � 1. By Theorem 2.5 and (4.2), we
obtain a global strong solution

un = un
(·, un

0

) ∈ C
([0,∞);Hs(R)

) ∩ C1([0,∞);Hs−1(R)
)
,

for every s > 3
2 and for all (t, x) ∈ R+ × R. Note that

p ∗ (
yn±

0

) ∈ H 1(R) and

∥∥∥∥l

(
∓1

n

)
ρn

∥∥∥∥
L1

= 1.

Since supp(l(∓ 1
n
)ρn) → 0, as n → ∞, it follows that

un
0 = p ∗

[
l

(
−1

n

)(
ρn ∗ y+

0

) − l

(
1

n

)(
ρn ∗ y−

0

)]

= l

(
−1

n

)(
ρn ∗ (

p ∗ y+
0

)) − l

(
1

n

)(
ρn ∗ (

p ∗ y−
0

))
→ p ∗ y+

0 − p ∗ y−
0 = u0 in H 1(R) as n → ∞. (4.3)

Using Young’s inequality, in view of (4.1), we have for all n � 1

∥∥un
0

∥∥
L1 = ∥∥p ∗ yn

0

∥∥
L1 �

∥∥yn
0

∥∥
L1

=
∥∥∥∥l

(
−1

n

)(
ρn ∗ (

p ∗ y+
0

)) − l

(
1

n

)(
ρn ∗ (

p ∗ y−
0

))∥∥∥∥
L1

=
∥∥∥∥l

(
−1

n

)(
ρn ∗ (

p ∗ y+
0

))∥∥∥∥
L1

+
∥∥∥∥l

(
1

n

)(
ρn ∗ (

p ∗ y−
0

))∥∥∥∥
L1

�
∥∥∥∥l

(
−1

n

)
ρn

∥∥∥∥
L1

∥∥p ∗ y+
0

∥∥
L1 +

∥∥∥∥l

(
1

n

)
ρn

∥∥∥∥
L1

∥∥p ∗ y−
0

∥∥
L1

� ‖p‖L1

∥∥y+
0

∥∥
M

+ ‖p‖L1

∥∥y−
0

∥∥
M

�
∥∥y+

0

∥∥
M

+ ∥∥y−
0

∥∥
M

= ‖y0‖M. (4.4)

Similarly, one can also obtain the estimates

∥∥un
0

∥∥
L2 � ‖p‖

L
2

∥∥y+
0

∥∥
M

+ ‖p‖L2

∥∥y−
0

∥∥
M

= ‖p‖L2‖y0‖M,

∥∥un
0

∥∥
L∞ � ‖p‖L∞

∥∥y+
0

∥∥
M

+ ‖p‖L∞
∥∥y−

0

∥∥
M

= 1

2
‖y0‖M,∥∥un

0

∥∥
1 � ‖p‖1

∥∥y+
0

∥∥
M

+ ‖p‖1
∥∥y−

0

∥∥
M

= ‖p‖1‖y0‖M. (4.5)

Note that for n � 1 and t � 0

[
un(t, x)

]2 =
x∫

2un(t, ξ)un
x(t, ξ) dξ �

∫ ([
un(t, ξ)

]2 + [
un

x(t, ξ)
]2)

dξ = ∥∥un(t, ·)∥∥2
1.
−∞ R
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In view of Lemma 2.5(i)–(ii) and (4.5), we obtain that

∥∥un(t, ·)∥∥2
L∞ �

∥∥un(t, ·)∥∥2
1 � 6

∥∥un
0

∥∥4
L2 t

2 + 4
∥∥un

0

∥∥2
L2

∥∥un
0

∥∥
L∞ t + ∥∥un

0

∥∥2
1

� 6‖p‖4
L2‖y0‖4

Mt2 + 2‖p‖2
L2‖y0‖3

Mt + ‖p‖2
1‖y0‖2

M. (4.6)

The above inequality implies that

∥∥un(t)un
x(t)

∥∥
L2 �

∥∥un(t)
∥∥

L∞
∥∥un

x(t)
∥∥

L2 �
∥∥un(t)

∥∥2
1

� 6‖p‖4
L2‖y0‖4

Mt2 + 2‖p‖2
L2‖y0‖3

Mt + ‖p‖2
1‖y0‖2

M (4.7)

for all t � 0 and n � 1. By Young’s inequality and (4.6), we get

∥∥∥∥∂xp ∗
(

3

2

[
un(t)

]2
)∥∥∥∥

L2

� 3

2
‖px‖L2

∥∥[
un(t)

]2∥∥
L1 � 3

2
‖p‖1

∥∥un(t)
∥∥2

1

� 9‖p‖1‖p‖4
L2‖y0‖4

Mt2 + 3‖p‖1‖p‖2
L2‖y0‖3

Mt + 3

2
‖p‖3

1‖y0‖2
M (4.8)

for all t � 0 and n � 1.
Using (4.7), (4.8) and Eq. (2.2), we find that

∥∥∥∥ d

dt
un(t, ·)

∥∥∥∥
L2

= ∥∥un
t (t, ·)

∥∥
L2

�
(

1 + 3

2
‖p‖1

)(
6‖p‖4

L2‖y0‖4
Mt2 + 2‖p‖2

L2‖y0‖3
Mt + ‖p‖2

1‖y0‖2
M

)
(4.9)

for all t � 0 and n � 1. For fixed T > 0, by (4.6) and (4.9), we have

T∫
0

∫
R

([
un(t, x)

]2 + [
un

x(t, x)
]2 + [

un
t (t, x)

]2)
dx dt � K, (4.10)

where K is a positive constant depending only on ‖p‖1, ‖p‖L2 , ‖y0‖M and T . Therefore the
sequence {un}n�1 is uniformly bounded in the space H 1((0, T ) × R). Thus we can extract a
subsequence such that

unk ⇀ u weakly in H 1((0, T ) × R
)

for nk → ∞, (4.11)

and

unk → u a.e. on (0, T ) × R for nk → ∞, (4.12)

for some u ∈ H 1((0, T ) × R). Given t ∈ (0, T ), it follows from Lemma 4.1 and (4.4) that
u

nk
x (t, ·) ∈ BV(R) with
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V
[
unk

x (t, ·)] = ∥∥unk
xx(t, ·)

∥∥
L1 �

∥∥unk (t, ·)∥∥
L1 + ∥∥ynk (t, ·)∥∥

L1

� 2
∥∥ynk

∥∥
L1 � 2e

3t2‖un
0‖2

L2 +2t‖un
0‖L∞ ∥∥yn

0

∥∥
L1

� 2e
3t2‖p‖2

L2 ‖y0‖2
M+t‖y0‖M ‖y0‖M.

and

∥∥unk
x (t, ·)∥∥

L∞ � 1

2

∥∥ynk (t, ·)∥∥
L1 � 1

2
e

3t2‖p‖2
L2 ‖y0‖2

M+t‖y0‖M ‖y0‖M.

Applying Helly’s theorem [43], we find a subsequence, again denoted by {unk
x (t, ·)}, which con-

verges at every point to some function v(t, ·) of finite variation with

V
(
v(t, ·)) � 2e

3t2‖p‖2
L2 ‖y0‖2

M+t‖y0‖M ‖y0‖M.

The limit (4.12) implies that u
nk
x (t, ·) → ux(t, ·) in D′(R) for almost all t ∈ (0, T ). Thus it fol-

lows that v(t, ·) = ux(t, ·) for a.e. t ∈ (0, T ). Therefore, we have

unk
x (t, ·) → ux(t, ·) a.e. on (0, T ) × R for nk → ∞ (4.13)

and

V
[
ux(t, ·)

] = ∥∥uxx(t, ·)
∥∥

M(R)
� 2e

3t2‖p‖2
L2 ‖y0‖2

M+t‖y0‖M ‖y0‖M (4.14)

for a.e. t ∈ (0, T ). By (4.6), we have∥∥∥∥3

2

[
un(t)

]2
∥∥∥∥

L2
� 3

2

∥∥un(t)
∥∥

L∞
∥∥un(t)

∥∥
L2 � 3

2

∥∥un
∥∥2

1

� 9‖p‖4
L2‖y0‖4

Mt2 + 3‖p‖2
L2‖y0‖3

Mt + 3

2
‖p‖2

1‖y0‖2
M.

Consequently, given t ∈ (0, T ), the sequence { 3
2 [un(t)]2}n�1 is uniformly bounded in L2(R).

Therefore, there is a subsequence { 3
2 [unk (t)]2}nk�1 which converges weakly in L2(R). By (4.12)

we deduce that the weak L2(R)-limit is 3
2 [u(t, ·)]2. Note that px ∈ L2(R). Thus we conclude that

∂xp ∗
(

3

2

[
unk (t)

]2
)

→ ∂xp ∗
(

3

2
u2

)
for nk → ∞. (4.15)

By (4.12), (4.13) and (4.15), we see that u satisfies Eq. (2.1) in D′((0, T ) × T ).
Fix T > 0. Then the sequences u

nk
t (t, ·) and unk (t, ·) are uniformly bounded in L2(R) and

H 1(R), respectively, for all t ∈ [0, T ) and k ∈ N . Thus, the family t �→ unk (t, ·) ∈ H 1(R)

is weakly equicontinuous on [0, T ]. An application of the Arzela–Ascoli theorem yields that
{unk } has a subsequence, denoted again {unk }, which converges weakly in H 1(R), uniformly in
t ∈ [0, T ). The limit function is u. The above arguments are true for any T > 0. This implies that
u is locally weakly continuous from [0,∞) into H 1(R), i.e.

u ∈ Cw
loc

(
R+;H 1(R)

)
.
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Since unk (t, ·) ⇀ u(t, ·) weakly in H 1(R), it follows from (4.6) that

∥∥u(t, ·)∥∥
L∞ �

∥∥u(t, ·)∥∥1 � lim inf
nk→∞

∥∥unk (t, ·)∥∥1

� 6‖p‖4
L2‖y0‖4

Mt2 + 2‖p‖2
L2‖y0‖3

Mt + ‖p‖2
1‖y0‖2

M

for a.e. t ∈ R+. The above inequality implies that

u ∈ L∞
loc(R+ × R) ∩ L∞

loc

(
R+;H 1(R)

)
. (4.16)

By Lemma 4.1 and (4.14), we have for t ∈ R+ that

∥∥ux(t, ·)
∥∥

L∞ = lim
n→∞

∥∥un
x(t, ·)

∥∥
L∞ � lim inf

n→∞
1

2

∥∥yn(t, ·)∥∥
L1

� 1

2
e

3t2‖p‖2
L2 ‖y0‖2

M+t‖y0‖M ‖y0‖M.

The above inequality shows that ux ∈ L∞
loc(R+ × R). Thus, in view of (4.16), we obtain

u ∈ W
1,∞
loc (R+ × R) ∩ L∞

loc

(
R+;H 1(R)

)
. (4.17)

Next, we prove that (u(t, ·) − uxx(t, ·)) ∈ L∞
loc(R+;M(R)) and that E1(u) is a conservation

law.
Since u solves (2.2) in the distributional sense, we have that

ρn ∗ ut + ρn ∗ (uux) + ρn ∗ ∂xp ∗
(

3

2
u2

)
= 0 (4.18)

for a.e. t ∈ R+. Integrating the above equation with respect to x on R, we obtain

d

dt

∫
R

ρn ∗ udx +
∫
R

ρn ∗ (uux) dx +
∫
R

ρn ∗ ∂xp ∗
(

3

2
u2

)
dx = 0.

Integration by parts yields further

d

dt

∫
R

ρn ∗ udx = 0, t ∈ R+, n � 1.

Applying Lemma 2.6, we get ∫
R

ρn ∗ u(t, ·) dx =
∫
R

ρn ∗ u0 dx.

Note that

lim
∥∥ρn ∗ u(t, ·) − u(t, ·)∥∥

L1(R)
= lim ‖ρn ∗ u0 − u0‖L1(R) = 0.
n→∞ n→∞
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It follows that for a.e. t ∈ R+∫
R

u(t, ·) dx = lim
n→∞

∫
R

ρn ∗ u(t, ·) dx = lim
n→∞

∫
R

ρn ∗ u0 dx =
∫
R

u0 dx.

This proves that E1(u(t)) = ∫
R

udx is a conservation law.
Note that L1(R) ⊂ (L∞(R))∗ ⊂ (C0(R))∗ = M(R). By (4.1), (4.14) and the conservation law

E1(u), we get for a.e. t ∈ R+ that

∥∥u(t, ·) − uxx(t, ·)
∥∥

M(R)
�

∥∥u(t, ·)∥∥
L1(R)

+ ∥∥uxx(t, ·)
∥∥

M(R)

� ‖u0‖L1(R) + ∥∥uxx(t, ·)
∥∥

M(R)

� ‖y0‖M(R) + 2e
3t2‖p‖2

L2 ‖y0‖2
M+t‖y0‖M ‖y0‖M.

The above inequality shows that(
u(t, ·) − uxx(t, ·)

) ∈ L∞
loc

(
R+;M(R)

)
.

Next, we prove that E2(u) is a conservation law.
By (4.18) and the relation u = p ∗ y, we have that

d

dt
ρn ∗ y + (

1 − ∂2
x

)
ρn ∗ (uux) + ρn ∗ (3uux) = 0

for a.e. t ∈ R and n � 1. Multiplying the above equation by v = (4 − ∂xx)
−1u and integrating by

parts with respect to x on R, we obtain that∫
R

v
d

dt
ρn ∗ y dx = −

∫
R

v
(
1 − ∂2

x

)
ρn ∗ (uux) dx −

∫
R

vρn ∗ (3uux) dx

=
∫
R

v∂2
xρn ∗ (uux) dx − 4

∫
R

vρn ∗ (uux) dx

=
∫
R

vxxρn ∗ (uux) dx − 4
∫
R

vρn ∗ (uux) dx (4.19)

for a.e. t ∈ R and n � 1. By (4.19) and the relation vxx = 4v − u, we have that

1

2

d

dt

∫
R

vρn ∗ y dx =
∫
R

v
d

dt
ρn ∗ y dx =

∫
R

(4v − u)ρn ∗ (uux) dx − 4
∫
R

vρn ∗ (uux) dx

= −
∫
R

uρn ∗ (uux) dx = 1

2

∫
R

uxρn ∗ (
u2)dx.

→ 1

2

∫
uxu

2 dx = 0, as n → ∞. (4.20)
R
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Given t ∈ R+ and n � 1. Define

En(t) :=
∫
R

vρn ∗ y dx and Hn(t) :=
∫
R

uxρn ∗ u2 dx.

By (4.20), we get

d

dt
En(t) = Hn(t) and lim

n→∞Hn(t) = 0 (4.21)

for a.e. t ∈ R+ and n � 1. Thus, in view of Lemma 2.6, we have

En(t) − En(0) =
t∫

0

Hn(s) ds, t ∈ R+, n � 1. (4.22)

Note that ux ∈ L∞([0, T ) × R) and u ∈ L∞([0, T );H 1(R)), for all T > 0. Using Young’s in-
equality and Hölder’s inequality, we can obtain that there exists a K(T ) > 0 such that∣∣Hn(t)

∣∣ � K(T ), t ∈ [0, T ), n � 1.

In view of (4.21), (4.22), an application of Lebesgue’s dominated convergence theorem yields
that for fixed t ∈ R+,

lim
n→∞

(
En(t) − En(0)

) = 0.

Let t ∈ R+ be given. By (4.12), we find that

E2
(
u(t)

) = lim
n→∞En(t) = lim

n→∞En(0) = E2(u0).

This proves that E2(u(t)) = ∫
R

yv dx is a conservation law.
Finally, we prove the uniqueness of the global weak solution.
Assume that u,v ∈ W

1,∞
loc (R+ × R) ∩ L∞

loc(R+;H 1(R)) be two global weak solutions of
(2.2) with initial data u0 such that (u(t, ·) − uxx(t, ·)) and (v(t, ·) − vxx(t, ·)) belong to
L∞

loc(R+;M(R)).
Fix T > 0 and set

N(T ) := sup
t∈[0,T ]

{∥∥u(t, ·) − uxx(t, ·)
∥∥

M
+ ∥∥v(t, ·) − vxx(t, ·)

∥∥
M

}
.

By assumption, we have that N(T ) < ∞. Thus, given (t, x) ∈ [0, T ] × R, we have that

∣∣u(t, x)
∣∣ = ∣∣[p ∗ (u − uxx)

]
(t, x)

∣∣
� ‖p‖L∞

∥∥u(t, ·) − uxx(t, ·)
∥∥

M
� N(T )

2
(4.23)

and
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∣∣ux(t, x)
∣∣ = ∣∣[px ∗ (u − uxx)

]
(t, x)

∣∣
� ‖px‖L∞

∥∥(u − uxx)(t, ·)
∥∥

M
� N(T )

2
. (4.24)

Similarly, we may obtain

∣∣v(t, x)
∣∣ � N(T )

2
,

∣∣vx(t, x)
∣∣ � N(T )

2
, (t, x) ∈ [0, T ] × R. (4.25)

In view of (4.1), we can also get that

∥∥u(t, ·)∥∥
L1(R)

= ∥∥[
p ∗ (u − uxx)

]
(t, ·)∥∥

L1(R)
� N(T ),∥∥ux(t, ·)

∥∥
L1 = ∥∥[

px ∗ (u − uxx)
]
(t, ·)∥∥

L1 � ‖px‖L1N(t) = N(T ),∥∥v(t, ·)∥∥
L1 � N(T ), and

∥∥vx(t, ·)
∥∥

L1 � N(T ), t ∈ [0, T ]. (4.26)

Let us set

w(t, x) = u(t, x) − v(t, x), (t, x) ∈ [0, T ] × R.

Convoluting Eq. (2.2) for u and v with ρn and using Lemma 2.7, we obtain for a.e. t ∈ [0, T ] and
all n � 1 that

d

dt

∫
R

|ρn ∗ w|dx =
∫
R

(ρn ∗ wt) sgn(ρn ∗ w)dx

= −
∫
R

ρn ∗ (wux) sgn(ρn ∗ w)dx −
∫
R

ρn ∗ (vwx) sgn(ρn ∗ w)dx

− 3

2

∫
R

(
ρn ∗ px ∗ [

w(u + v)
])

sgn(ρn ∗ w)dx. (4.27)

Using (4.23)–(4.26), Young’s inequality and Lemma 2.7 and following the procedure described
in [15, pp. 56–57], we can deduce that

d

dt

∫
R

|ρn ∗ w|dx = C(T )

∫
R

|ρn ∗ w|dx + C(T )

∫
R

|ρn ∗ wx |dx + Rn(t) (4.28)

for a.e. t ∈ [0, T ] and all n � 1, where C(T ) is a generic constant depending on N(T ). Moreover,
Rn(t) satisfies {

limn→∞ Rn(t) = 0,

|Rn(t)| � C(T ), n � 1, t ∈ [0, T ]. (4.29)

In the following C(T ) stands for a positive constant depending on N(T ) and the H 1(R)-norms
of u(0) and v(0).
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Similarly, convoluting Eq. (2.2) for u and v with ρn,x and using Lemma 2.7, we obtain for
a.e. t ∈ [0, T ] and all n � 1 that

d

dt

∫
R

|ρn ∗ wx |dx =
∫
R

(ρn ∗ wxt ) sgn(ρn,x ∗ w)dx

= −
∫
R

ρn ∗ (
wx(ux + vx)

)
sgn(ρn,x ∗ w)dx

−
∫
R

ρn ∗ (wvxx) sgn(ρn,x ∗ w)dx

−
∫
R

ρn ∗ (uwxx) sgn(ρn,x ∗ w)dx

− 3

2

∫
R

ρn ∗ pxx ∗ (
u2 − v2) sgn(ρn,x ∗ w)dx. (4.30)

Using (4.23)–(4.26), Young’s inequality, Lemma 2.7 and the identity ∂2
x (p ∗ f ) = p ∗ f − f and

following the arguments given in [15, pp. 57–59], we can deduce that

d

dt

∫
R

|ρn ∗ wx |dx = C(T )

∫
R

|ρn ∗ w|dx + C(T )

∫
R

|ρn ∗ wx |dx + Rn(t) (4.31)

for a.e. t ∈ [0, T ] and all n � 1.
Summing (4.28) and (4.31) and using Gronwall’s inequality, we infer that

∫
R

(|ρn ∗ w| + |ρn ∗ wx |
)
(t, x) dx �

t∫
0

e2C(T )(t−s)Rn(s) ds

+ e2C(T )t

∫
R

(|ρn ∗ w| + |ρn ∗ wx |
)
(0, x) dx

for all t ∈ [0, T ] and n � 1. Note that w = u − v ∈ W 1,1(R). In view of (4.29), an application of
Lebesgue’s dominated convergence theorem yields that for all t ∈ [0, T ],∫

R

(|w| + |wx |
)
(t, x) dx � e2C(T )t

∫
R

(|w| + |wx |
)
(0, x) dx.

Since w(0) = wx(0) = 0, it follows from the above inequality that u(t, x) = v(t, x) for a.e.
(t, x) ∈ [0, T ] × R. Recalling that T was chosen arbitrarily, the proof is complete. �
Example. Let

u0(x) = c1e
−|x−x1| + c2e

−|x−x2|, x ∈ R,
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with c1 < 0, c2 > 0 and x1 < x2. One can easily check

y0 = u0 − u0,xx = 2c1δ(x − x1) + 2c2δ(x − x2).

By Theorem 4.1, Eq. (2.2) has a unique global weak solution u with the initial data u0. It has the
explicit form [20]:

u(t, x) = p1(t)e
−|x−q1(t)| + p2(t)e

−|x−q2(t)|, (t, x) ∈ R+ × R,

for some p1,p2, q1, q2 ∈ W
1,∞
loc (R). Actually, u is the sum of a peakon and an antipeakon, the

antipeakon moves off to the left and the peakon moves off to the right so that no collision occurs.
Observe that Theorems 4.1 and 4.5 in [54] cannot be used in the present case.

Remark 4.1. Note that Theorem 4.1 improves considerably the previous results [54, Theorems
4.1 and 4.5]. They are special cases of Theorem 4.1 with x0 = −∞ and x0 = ∞, respectively.

Remark 4.2. Note that the Degasperis–Procesi equation has shock waves. In order to investigate
shock waves of the Degasperis–Procesi equation, Coclite and Karlsen [5] presented recently
another notion of entropy weak solution in L∞(R+,L1(R) ∩ BV(R)) and in L∞(R+,L2(R) ∩
L4(R)) for the Degasperis–Procesi equation. They prove global existence results for entropy
solutions to the equation in L∞(R+,L1(R) ∩ BV(R)) and in L∞(R+,L2(R) ∩ L4(R)).

Their notion of weak solution is much weaker than ours and is designed to study shock waves
to the Degasperis–Procesi equation. However, the above example and [54, Examples 1, 2] show
that our framework of weak solutions is quite suitable for the study of global peakon solutions to
the Degasperis–Procesi equation.
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