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By modifying a construction from Knus et al., we construct all isotropic algebraic
groups of type 3D, and ®D, over an arbitrary field of characteristic # 2. We also
provide a nice isomorphism criterion for such groups. The results of this paper
extend the main results of Allison (using entirely different methods) to fields of
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The four infinite families of absolutely simple affine algebraic groups
(i.e., groups of type 4,, B,, C,, and D,) over a field F of characteristic
# 2 can be considered to be more or less well understood (because of the
correspondence with algebras with involution—see [Wei60], [Mer93], or
[Tit66]), except for the groups of type D,. Such groups have Dynkin
diagram

If F, is a separable closure of F, then the Galois group, I', of F, over F
acts by graph automorphisms on the Dynkin diagram. Since the diagram
has automorphism group isomorphic to .%%;, we have a homomorphism
Z(F,/F) - .%,. The group is said to be of type ‘D, if the image of
Z(F,/F) in %, has order t.

Groups of type *D, and 2D, may also be considered to be well under-
stood, because of the correspondence mentioned previously (see [Bor91,
23.4], [Mer93], [MPW96, pp. 572-585], and [MPW98, Sect. 9]). So we will
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focus our attention on the so-called trialitarian groups, i.e., groups of type
D, and °D,.

The simplest kind of trialitarian group is a quasi-split group (i.e., one
which contains a Borel subgroup defined over our ground field F). We will
show in Application 4.3 that the best-known examples of trialitarian
groups, the “Steinberg groups” [Ste59, p. 887, Sects. 10 and 11], are
quasi-split and we will produce a Borel subgroup defined over the ground
field in the type °D, case.

The conclusion that the Steinberg groups are quasi-split is almost
certainly known, although | have not been able to find it stated anywhere
in the literature. The explicit description of a Borel subgroup seems to
be new.

For any trialitarian group G defined over F there is a separable cubic
field extension L determined up to F-algebra isomorphism, such that G is
of type D, over the Galois closure of L over F. There is a central simple
algebra over L of degree 8, also determined up to F-algebra isomorphism,
called the Allen invariant of G. We will denote this invariant by &.(G).
(The terminology is due to Allison.) We will have more to say about the
Allen invariant in Section 2.

The main results of this paper fully describe the next simplest kind of
trialitarian groups, namely isotropic groups, in terms of their Allen invari-
ants. Recall that an algebraic group is called isotropic over F if it contains
a nontrivial F-split torus [Bor91, 20.1].

MAIN THEOREM 0.1. Let F be a field of characteristic + 2 with a
separable cubic field extension L.

Invariant restriction: If G is an anisotropic trialitarian group over F which is
of type D, or 2D, over L then the Allen invariant &.(G) is F-algebra
isomorphic to M,(Q) for Q a (possibly split) quaternion algebra over L.

Existence: If Q is a quaternion algebra over L then the corestriction of Q
down to F is trivial if and only if M,(Q) is the Allen invariant of an isotropic
trialitarian group defined over F.

Uniqueness. Two isotropic trialitarian groups defined over F are centrally
F-isogenous if and only if their Allen invariants are F-isomorphic.

Our Main Theorem is proven in Lemma 2.4, Proposition 2.5, Applica-
tion 4.7, and Proposition 5.6. The invariant restriction part is an easy
consequence of general facts about central simple algebras and trialities
(see Section 2). One direction of the existence part is also a standard fact
about trialitarian groups, namely that if G is a group of type D, over F,
then

cor, [ &:(G)] is trivial for L the center of &,(G) (0.2)
(see, e.g., [All92, p. 216, Prop. 3.3] or [KMRT, 43.6)).
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The existence and uniqueness parts were proven by Allison for Lie
algebras over fields of characteristic were using structurable algebras (the
existence part is [All92, p. 229, Lemma 6.8] and [AII90, p. 7, Theorem 5.1]
and the uniqueness part is [AlI90, p. 15, Theorem 8.1]). Seligman also
demonstrated the existence part for Lie algebras over fields of characteris-
tic 0 in [Sel88, Chap. 8, especially p. 172, Theorem 8.1].

An important point is that Allison and Seligman both worked with Lie
algebras, whereas we will work with algebraic groups. This allows us to
take a more characteristic free approach, and in particular their methods
do not seem to generalize to fields of positive characteristic. To see how
our Main Theorem corresponds with their results, one first observes that
every Lie algebra g of type D, is the Lie algebra of some algebraic group
G and that the Allen invariant of g as defined by Allen is precisely the
Allen invariant of G. Moreover, one knows in general that if is G is
isotropic then so is g (i.e., g contains a nontrivial abelian subalgebra
whose image under ad is diagonalizable), and that the converse holds in
characteristic 0. Thus our Main Theorem implies the aforementioned
results of Allison and Seligman (in characteristic 0) and we also get that
the Lie algebra version of the existence part of our Main Theorem holds in
all characteristics (except perhaps characteristic 2).

In Section 6 we will apply our Main Theorem to get isotropy criteria for
trialitarian groups over certain fields. This is useful because in general it is
almost never possible to tell whether a given trialitarian group is isotropic
or not. In particular, we show in Corollary 6.3 that over a finite extension
of [,(¢) for p an odd prime (= a global field of odd characteristic) every
trialitarian group is isotropic.

Please see [Dra83] for information about central simple algebras, [Dra83,
Sect. 14] or [Lam73, Chap. I11] for information about quaternion algebras,
[Bor91] for information about algebraic groups, and [Sch85, Chap. 8] or
[KMRT] for information about central simple algebras with involution.

For the rest of the paper, all of our fields will be assumed to have
characteristic not 2. For a base field F, F, will always denote a separable
closure of F and T the absolute Galois group of F (i.e., the Galois group
of F, over F). If G is an affine algebraic group defined over F, then we
write G* for its identity component. If K is an extension field of F, we
write £(K /F) for the Galois group of K over F, G(K) for the K-points of
G, and H'(F,G) for the Galois conomology set H(TI", G(F,)) [Ser94, 1.5].

For any object A4, we write 4™ for 4 X A X A.

If A is an F-algebra and p is a ring automorphism of F, then as in
[Dra83, p. 50, Definition 1] we write 4 for the F-algebra which has the
same underlying ring structure as A but has its F-action twisted by p.
Specifically, if - denotes the twisted F-action and juxtaposition denotes the
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standard F-action, then we define
fra=p(fla forfeFandacA.

For g an invertible element of 4 we write Int(g) for the automorphism

a - qgaq'.

1. DEFINITION OF THE SPLIT OBJECT

Our approach to the construction of isotropic trialitarian groups will be
via Galois descent from the split group over a Galois extension. Thus we
will begin by describing the split simply connected group of type *D,, which
for our purposes is best done in terms of the split Cayley algebra.

Over a fixed base field F, we define the split Cayley algebra, ¢, to be
the F-vector space with basis u,, u,, ..., ug and multiplication given by the
following table, where the entry in the table is x%y and “-” represents 0
for clarity of reading.

y
u, u, Uy u, Ug Ug u, Ug

u, —u, —U, U; —Uy

u, u, —u, . —Uug  —Ug

Uy —uy —U; —Us u,
X u, —U, —Uz Ug . —Ug

Us | Uy - : : Ug —Usg —Ug

Ug | Uy ) —Uy TUg ) ) —Ug

u, | —u; —u, . —u, . Ug

Ug | —ug ug —us . —Ug

There is an involution, 7, on € given by

Usg ifi =4,
m(u;) = uy if i =5,
—u, otherwise.

Remark 1.1. This multiplication is not the usual unital, alternative,
nonassociative, and noncommutative multiplication defined for the split
Cayley algebra (see [Sch66, Chap. 111, Sect. 4] or [KMRT, Sect. 33.C] for a
definition of the standard multiplication). If & denotes the usual multipli-
cation, then the multiplication % is given by

xky = m(x)Om(y).

This (%) multiplication is nonunital, noncommutative, and not even
power-associative [KMRT, p. 464].
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Remark 1.2. The basis we have chosen for our split Cayley algebra
differs from those in the literature. (This is because our basis gives a nice
description of a Borel subgroup of a quasi-split group of type °D,; see
Application 4.3.) Our basis is a permutation of the basis in [KMRT, p.
556], which is itself the basis from [AF68, p. 483] with some vectors
multiplied by a factor of 2 or 1 /2.

There is a symmetric bilinear norm
nmeExE-F

such that n(x*y, z%xy) = n(x, z)n(y, y) and the Gram matrix of 1 with
respect to our basis of € is

S = : (1.3)

It is standard that n induces an involution o, on End.(&) such that
n(fx,y) = n(x, o (f)y) for all f< End.(C€), and that that involution is
given by

o (f) = Sf'S

when we write f as a matrix with respect to the given basis and ¢ denotes
the transpose. We note in passing that o,(7) = 7 € End.(©).

Our first algebraic group is the group of similitudes of (&, n), whose
F-points are

for some A € F*, n(fx, fy) =

GO(E, m)(F) = {fe End(C) An(x,y) forall x,y € G,

={f€ End;(C)|o,(f)f = Al for some A € F¥},

where I denotes the identity matrix. If f is a similitude of (€, n) (.e.,
f e GO(E, n)(F)), then A is called the multiplier of f and is denoted
u(f). Observe that

(det f)* = det(a(f)f) = w(f)°],

so det f = +u(f)*1. The similitude f is called proper if det f = u(f)*I,
and improper otherwise. It is known that the group of proper similitudes is
precisely the identity component of GO(E, n), which we will denote by
GO™ (€, n).

DerINITION 1.4, A triple (¢y,1,,t,) € GO*(C, n)*3 is called related if

-1
p(t;) "t (xky) =1 ,(x) %t o(y)
for all x,y € € and i = 1,2,3 where the subscripts are taken modulo 3.
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Jacobson [Jac64b, p. 135, Definition 2] also defines a related triple, but
he does so in terms of a trilinear form (x, y, z) = n(#7(x)* 7 (y), 7(2)). He
calls a triple (¢zy,1,,¢,) related if for some A € F*, (tyx,t,y,t,2) =
Mx, y, z) for all x,y,z € €. It is an easy check using basic properties of
the trilinear form that a triple is related in our sense if and only if it is
related in his sense with A = 1.

If the formula in our definition holds for one value of i, then it holds for
all values of i by [Jac64b, p. 135, Lemma 3] or [KMRT, 35.4]. Furthermore,
e e ) ulty) = 1.

We make some simple observations about related triples.

ProPOSITION 1.5. (1) If (ty, t;, t,) is a related triple, then so is (t,, t,, t,)
and (wtym, wtym, wtymw).

(2) For A € F*, the triple (1, AI, A" 1) is related, and no other triple
(1, t,,t,) is related.

(3) The set of related triples in GO* (&, n)*? forms a closed subgroup.

Proof. (2) and the first part of (1) are clear from the definition. The
second part of (1) is a straightforward calculation based on the observation
that w(mrt;m) = u(e).

For (3), we note that the set of related triples in GO™(S, n)*® is
certainly Zariski-closed and that Jacobson’s definition of a related triple
makes it clear that it also contains 1 and is closed under multiplication and
inversion. |

Given a reasonably nice similarity #,, we can write down explicitly a
related triple (¢,,¢;,¢,) (such a triple always exists by [Jac64b, p. 135,
Lemma 4] or [KMRT, 35.4]). In particular, if ¢, is a monomial matrix (i.e.,
has precisely one nonzero entry in each row and column) or is ‘“close
enough” to such a matrix, one can find a ¢, and ¢, quite easily by directly
applying the definition of a related triple. We do so and provide a few
examples here which will be of use later.

ExampLE 1.6. Write diag(dy, d,, ..., dg) for the diagonal 8 X 8 matrix
whose (i, i)-entry is d;. Then

) a a a a
ty = d'ag(dl’dz’d3’d4’d_’d_’d_’d_
4 3 2 1

is a similitude with multiplier a for d;, a € F*.
If we take any A € F* and set

1 dydy d, d,
a

gi dpdy d, dy 1
tl—x|ag ad417!

1
’d_4, ad, ’d1d4,d1d4’d_1
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and
dd, d, d, dd, d, d, a

t:Adia 1_7_1 7_1_7_1 1
’ ’ 4y dy' " dydy dy' dy ' dyd,

then ¢, and ¢, are similtudes, ¢, has multiplier

Ndd,
dpds

u(ty) =

and (z,1,,t,) is a related triple. Moreover, any triple with ¢, in the first
position must be of this form.

To see this, suppose we have a related triple (¢,, ¢,,¢,) with ¢, as given.
Then we can apply the definition of a related triple with i = 1 to see that
if uq%v =0for v eC,then

0= /J’(tl)iltl(uj*u) = to(u;)kt,(v).

So u;kt,(v) = 0. For example, if v =u,, then u;%t,(uy) =0 for j =
1,2,3,4. This forces ,(u,) to be a scalar multiple of u,. Similar computa-
tions show that ¢, and ¢, preserve each of the linear subspaces spanned by
the u,’s. Hence ¢, and ¢, are diagonal.

If u;%u, # 0, then the definition of a related triple gives us equations
relating the entries of ¢,, ¢;, and ¢,. For example, u,%u, = —u,, SO

_M(to)ilto(uz) = to(uy) Kkt (ug)
and

d,
o (12)11(11) g1

where (z,),, denotes the (1, 1)-entry of the matrix ¢,. Solving the 32 such
equations simultaneously gives us that ¢, and ¢, are of the desired form. (It
is a straightforward calculation using Mathematica or any similar package
to verify that this and all the rest of the triples which we will assert are
related are in fact related.)

One can see by similar sorts of arguments that if a triple (¢,,,,¢,) is
related with some ¢, a monomial matrix, then so are the other two.

ExampLE 1.7. (S, S, S) is a related triple for S as in (1.3).
ExampLE 1.8. We can create a map
P: % — End;(C)

by setting P(g) to be the endomorphism which sends u; to u,;.
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If we set
t =diag(a,b,c,1,1,¢c,b,a)P((1 2)(3 6)(4 5)(7 8))

for a,b,c € {1, —1}, then (¢, ¢, t) is a related triple if and only if abc = —1.

Those similitudes of (&, n) with multipitier 1 are called isometries, and
they form a closed subgroup O(E, n) of GO(E, n). The identity compo-
nent O (¢, n) of O(E, n) consists of the proper isometries, so

O* (€, n)(F) = {f € ENd,(C) | o,(f)f = det f = 1}.
This is the natural setting for our next example.

ExampLE 1.9. For 1 <i,j < 8, define E;; to be the matrix whose only
nonzero entry is the (i, j)-entry, which is 1. For i # j, we can define a
morphism of algebraic groups

U, G, - 0*(C,n)
by
Ul](r) =1+ r(El-j _E]xl*),

where i* := 9 — . For example,

Up(r) =

Then (Ulz(r)| U35(_r)| U34(r))y (Uzg(r), U23(r)1 Uzg(r))a (Ugl(r)| U53(_r)|
U,(r), and (Us,y(r), Uy, (r), Uy, (r)) are related.

We define another algebraic group Spin(¢, n) whose F-points are given
by
t=(to,t;,1;)isa

Spin(C, m)(F) = r€ 07 (€, n)(F)Xs related triple

}. (1.10)

This is an algebraic group by Proposition 1.5(3). It is known by [KMRT,
35.8] that this group is split simply connected of type 'D,.

There is an obvious map ¢: Spin(€, n) - O*(E, n) given by ¢(¢,, t;, t,)
= t,. Although this map is a surjection of algebraic groups, it is a
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surjection on the F-points only when F is quadratically closed. One can
see this by taking any r € F* and applying Example 1.6 with d, = d, =
dy,=1and d,=r. Then t, € O°(E,n) and if ¢(¢y,¢,,1,) =t, then ¢,
would have multiplier 1, so A? = r.

2. TRIALITIES

One knows that every absolutely simple adjoint nontrialitarian group of
type D, is of the form PGO*(A, o) for A a central simple algebra of
degree 2n and o an orthogonal involution by [Tit66, pp. 56—57] or [Mer93,
pp. 8-9]. This fact can be useful for proving things about such groups (see,
[Mer96, p. 211, Theorem 3], [MPW96], [MPW98], and [MT95, Sect. 2.4]).

Thus it is reasonable to think that an analogous construction for
trialitarian groups would also prove useful. Such a construction is given by
something we call a triality, which is described in [KMRT, sect. 43.A]
(where they are called “trialitarian algebras”). Since [KMRT] is not yet
available to the general public, we will define what a triality is after a few
preparatory definitions.

Cubic Etale Algebras

An c¢tale F-algebra is a finite direct sum of finite separable field
extensions of F (see also [Bou74, Chap. V, Sect. 6] or [KMRT, Sect. 18]).
We will be particularly interested in those of dimension 3 or 2, which are
called cubic and quadratic, respectively. It is known that étale F-algebras
of dimension n are classified by the pointed set H(F,.#,), where the
distinguished element corresponds to a direct sum of n copies of F. This
distinguished element is called the diagonal étale algebra. Furthermore, to
any n-dimensional étale algebra there is an associated quadratic étale
algebra called the discriminant algebra (cf. [Wat87, p. 211]), given by the
map HY(F,%,) - H'(F,.%,) which is induced by the sign map ., —
m, =.%,. We denote the discriminant algebra of L over F by A (L).

Since the Galois action on ., is trivial, one knows that H!(F,.#) is a
quotient of Hom(T',.%,) (for T' the absolute Galois group of F) such that
two maps f, f' € Hom(T',.%,) are equivalent if and only if they differ by an
inner automorphism of .%,. Thus anything equivalent to f has the same
kernel, and if L is an n-dimensional étale F algebra and (f) € H(F, %)
corresponds to the isomorphism class of L, then ker f is an invariant
associated to L. We say that L is of type ¢ if ¢ = [I":ker f]. Also, we
denote by L the subfield of F, fixed by ker f. It is clear for purely Galois
cohomological reasons that if K is an extension of F, then K ®; L is
diagonal over K if and only if K contains L°.
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We will mainly be interested in cubic étale algebras. Here is a table
summarizing the possibilities, where L is a cubic étale algebra and A is
any quadratic field extension of F.

L Type L L

FXFXF 1 F

FXxA 2 A

Galois field extension 3 L
Non-Galois field extension 6 Normal closure of L /F

We point out that in the type 1 and 3 cases the discriminant algebra of L
is just F X F, in the type 2 case it is A, and in the type 3 and 6 cases it is
precisely F[x]/(x* — &) where & is a representative of the standard
discriminant for L as a field extension of F.

Central Simple Algebras with Involution

We need to generalize the idea of a central simple algebra over a field
to algebras over an &tale algebra. If 4 = @, 4, is an F-algebra such
that each of the A,’s is a central simple algebra of degree d with center
Z(A,) a finite separable field extension of F, then we say that A is a
central simple algebra of degree d over the étale F-algebra @, Z(A)).
(In other words, A4 is an Azumaya—a.k.a. central separable—algebra of
constant rank d over an étale algebra.) The A; are called the components
of A4.

Suppose now that we have a central simple algebra E over an étale
algebra L and an L-linear involution a on E. We say that o is orthogonal
if it is restricted to be an orthogonal involution on each component of E.

Trialities Defined [ KMRT, Sect. 43. 4]

“Triality”” shows up in algebraic groups of type D, as an outer automor-
phism of order 3. This corresponds to a phenomenon for central simple
algebras of degree 8 with orthogonal involution: if (A4;, o;) is such an
algebra with center F for i = 0,1,2, and we are given an F-isomorphism

Yot (Co( Ay, Uo)’@) E (Ay, 00) X (A4, 0,),
then there is a recipe for producing F-isomorphisms
7% (CO(Ai' U'i)lﬂ) > (Ais100501) X (Aig2, 042)

for i =1,2 with subscripts taken modulo 3 [KMRT, 42.3]. (Here
(Cy(A4;, 0y), 7;) denotes the even Clifford algebra of (A4;, o;) endowed with
the standard involution o;; for more information, see [Jac64a] or [KMRT,
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Sect. 8], where Cy(A4,, 0;) is denoted by C(A,, o;).) Further, given ; the
same process produces ¢;,, and i.,,. Somehow this corresponds to a
triality automorphism for groups of type 'D,. The objects we call trialities
encode similar information for all groups of type D,.

DerINITION 2.1. A triality over F is a 4-tuple (E, L, o, ) where L is a
cubic étale F-algebra and E is a central simple algebra over L of degree 8
with orthogonal involution o. For p a generator of (L ®. Ap(L)/
Ap(L)), « is an L-algebra isomorphism

a:(Cy(E,0),0)>"((E, o) & Ar(L)),

where ¢ is the canonical involution on Cy(E, o) induced by o. (If L is of
type 1 or 2, then L ®, A (L) =, A.(L)*3 and in that case we take p to
be a cyclic permutation of the components.) There is an added restriction
on « as follows:

If we write (E, L, o, @) for (E,L,0,a) ® L°=(E® L, L & L o
® Id,a ® Id) and F for L° (so we have extended scalars to make L
diagonal), then

*((E, &) & AR(L)) =1 *(E, &) x""(E, 7).

Since L is of type 1, (E, &) =f (A,, o) X (4, 07) X (A, a,) for (4;, 07)
central simple algebras of degree 8 over F with orthogonal involution.
Thus @ restricts to isomorphisms

a@;: (CO(Ai’ U'i):ﬂ) > (Air1,0i01) X (Aiyg, 0742) fori=0,1,2.

Our requirement on « is that @, and @, be the isomorphisms induced by
@, via the triality phenomenon given previously.

We say that a triality is of #ype ¢ if L is of type ¢.

An isomorphism of trialities ¢: (E,L,0,a) » (E', L, o', a') is an
isomorphism ¢: (E, o) —» (E’, o') of F-algebras with involution such that
the following diagram commutes:

(CE, 0),0) — *(E, o) & Ap(L))
Co(@)l lwld
(Co(E', 0"), 0") == "((E', 0") & Ap(L))
By [KMRT, Sect. 44] there is a split triality
T4 = (My(F)*, F*%, 0%, ),

where ¢, denotes a hyperbolic involution on My(F) (if you wish, g, =
Int(S)o ¢ where ¢ denotes the transpose), which has automorphism group
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isomorphic to PGO™(C, n) X.%, [KMRT, 44.2], for PGO*(¢,n) the
image of GO™(E, n) € GL(C) in PGL(E). Over a separably closed field
all trialities are isomorphic to 7. In fact, for any triality T of type ¢, the
group Aut*(T) is absolutely simple adjoint of type ‘D, and we denote it by
PGO™(T). This provides an equivalence of categories between the cate-
gory of trialities over F and the category of absolutely simple adjoint
groups of type D, over F [KMRT, 44.8], where both categories have
isomorphisms for morphisms.

Similarly, there is a canonically associated absolutely almost simple
simply connected group of type ‘D, which is the simply connected cover of
PGO*(T). We denote it by Spin(7T), and point out that Spin(T?) is
precisely the group Spin(E€, 1) defined in the last section.

To illustrate the connection with the classical description of groups of
type 'D, and ?D,, let T = (A X B, L, o X 7, ) be a triality of type 1 or 2
so that the center of B is a quadratic étale F-algebra. Then (A, o) is a
central simple algebra of degree 8 with orthogonal involution o,
Spin(A4, o) =, Spin(T), and the definition of « forces that (B, 1) =,
(Cy(A, o), o). (For a definition of Spin(A, o), see [KMRT, p. 187] or
[MPW96, p. 574].)

Invariants

Trialities provide the natural setting for several invariants of groups of
type D,. If we take such a group G then there is some corresponding
triality T = (E, L, o, o) determined up to F-isomorphism. Then L€ is the
unique smallest field over which G becomes of inner type (i.e., of type
'D,). We call L¢ the inner extension of G. It is clear by the preceding
description of groups of type D, and 2D, in terms of trialities that if
Spin(T) is of type D, or ®D,, then Spin(T) X, L =, Spin(E, o).

The L-algebra E (which the F-isomorphism class of T determines up to
F-algebra isomorphism) is the so-called Allen invariant of G over F,
denoted by &.(G). We say that the Allen invariant is trivial if all of its
components are split.

Remark 2.2. The Allen invariant is in some sense precisely the Tits
algebras associated to G (see [Tit71] for a defintion or [MPW96, Sect. 2]
for an overview of Tits algebras). To see this, let G be a simply connected
cover of G and let L be a cubic étale F-algebra such that L is the inner
extension for G. The cocenter C of G (i.e., the dual of the center of G) is
noncanonically isomorphic to p, X p, with a Galois action on the nontriv-
ial elements which is the same as the Galois action permuting the
connected components of L ®, L = (L°)*3. Tits provides a map for
those elements of C fixed by the Galois action to Br F. Every nontrivial
element ¢ € C has a unique minimal field extension F. over which the
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Galois action fixes c. Tits’ map then provides a central simple algebra A,
over F, associated to c such that if ¢ and ¢’ are in the same I'-orbit in C,
then A, =, A,. Using this notation, we pick a set of representatives
1,¢,,...,c, for the orbits of I" in C and observe that

& (G) = @A,
i=1

When we throw in the involution data, we get a previously studied
invariant [Jac64b, Sect. 4], which | will call the involution invariant,

J(G) = (E, o).
Observe that, for a field K O F,
J1(G) & K=¢ 4(G)
and that an analogous formula holds for the Allen invariant.

ExampLE 2.3. One knows by the description of the quasi-split groups
of type D, [MPW96, p. 572] and >D, [MPW98, Sect. 9] and standard scalar
extension arguments that if G is a quasi-split trialitarian group with inner
extension L, the involution invariant is .7.(G?) = (Mg(L), o) where o is
adjoint to 37 L (1, —§) for 8F*2 = disc, L and .# a hyperbolic plane.

From the standpoint of the theory of algebras with involution, one
would like to say that two trialities over F are isomorphic if and only if
their involution invariants are F-isomorphic. This would say that the
existence of the « is what is important and not any particular choice of «.
However, this does not hold in general as is mentioned in [All67, p. 256]
(or see Example 2.6).

Examples of cases where the involution invariant classifies trialities:

o trialities of type 1 and 2 [Jac64b, pp. 143-144, Theorems 4 and 5]

« the reals or any field with no separable cubic field extensions (since
every triality over such a field is of type 1 or 2)

e number fields (this is an easy consequence of Allison’s injectivity
theorem [AlI92, p. 235, 7.6])

o perfect fields F such that cd F(¥— 1) < 1 (by the Hasse principle
for such fields; see [Sch96] or [Duc96])
In some cases, the Allen invariant alone classifies trialities:

e p-adic fields (= fields complete with respect to a discrete valuation
with finite residue field) [All67, p. 264]

« totally imaginary number fields (by Allison’s injectivity theorem and
the preceding fact about p-adic fields)
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« global fields of characteristic p (= finite extensions of Z (¢)—this
holds by observing that Allison’s proof of his injectivity theorem [All92,
p. 235, 7.6] goes over easily to the prime characteristic case)

A Caveat about Isotropy

In the nontrialitarian case, it is easy to see using the type of arguments
in [Bor91, 23.4] that for (A, o) a central simple algebra with orthogonal
involution over F, PGO"(A, o) is isotropic (i.e., contains a nontrivial
F-split torus) if and only if (A, o) is isotropic (i.e., there is an element
a € A such that o(a)a = 0). In general, there is no similar correspon-
dence in the trialitarian case.

In particular, we point out the interesting phenomenon that one can
have a trialitarian group over F with inner extension L¢ such that the
group is anisotropic over F, but is isotropic (or even split) over L. This is
unexpected because L is a cubic extension, and generally one does not
expect cubic extensions to make anisotropic groups of type D, isotropic.
An example where the group is anisotropic over F but splits over L is
given in Example 2.6.

Just as one uses the Witt index to measure how isotropic a quadratic
form is, there is an analogue for a central simple algebra E over a field
with orthogonal involution o. We say that the Wist index of (E, o),
denoted by w(E, o), is defined to be the maximum of dim,//deg E for
right ideals I of E such that o(I)I = 0. It is clear that w(E, o) > 1 if and
only if o is isotropic, and that in all cases ind E divides w(E, o). If
w(E, o) is as large as possible given E (i.e,, w(E, o) = (deg E)/2), then
we say that o is hyperbolic.

We call a triality isotropic if Spin(T) is isotropic.

LEMMA 24. If T=(E,L, o, a) is an isotropic triality of type 3 or 6,
then w(E, o) > 2.

Proof.  First, since Spin(T) is isotropic, so is Spin(T) X, L = Spin(E,
o), so (E, o) is isotropic and w(E, o) > 1.

To eliminate the possibility that w(E, o) = 1, we examine the Dynkin
diagram of Spin(T'). Since Spin(T) is isotropic, it contains a nontrivial
maximal F-split torus S lying in a maximal torus S’ defined over F. If A is
a set of simple roots for Spin(7T") with respect to S’ (we will also use A to
refer to the Dynkin diagram of Spin(7)), then as in [Tit66, 2.1] we write A,
for the subset of A of roots which vanish on S. Since S is nontrivial and A
is a set of simple roots (so it forms a Q-basis for X(§') ®, @), A, # A.

Tits points out that A\ A, is stable under the Galois action and he
circles those orbits in A which belong to A\ A, in the Dynkin diagram for
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Spin(T) (which he calls the “F-index” [Tit66, 2.3]). Thus the center vertex
of A must be circled or all of the outer vertices must be circled.

Now we have a Dynkin diagram over L (the “L-index’), and every vertex
circled over F must necessarily be circled over L. However, if w(E, o) =1
then the L-index would be

by [Tit66, pp. 56—57], which is a contradiction. |

PrRopPOsITION 2.5 (Invariant Restriction).  If a triality (E, L, o, &) of type
3 or 6 has o isotropic, then E has index at most 2. Further, if o is
hyperbolic, then A is split and L is of type 3.

Proof. Since o is isotropic, E cannot be a skew field, so E cannot have
index 8.

If E has index 4, then since ind E divides w(E, o) < (deg E)/2 = 4, o
must be hyperbolic.

If o is hyperbolic, then C(E, o) =, E X My(L) by [All68, Theorem 3],
[Tit68, Prop. 8], or [MPW96, p. 585, Lemma 5.9]. Since « is an isomor-
phism C,(E, o) = *((E, o) &. Ap(L)), Ap(L) is isomorphic to F X F and
so L is of type 3. Since the two components of C,(E, o) will be ring-
isomorphic to E, E must be split. [l

It follows from [AlI90, Theorems 5.1 and 6.3] that over a field of
characteristic 0, any isotropic triality T of type 3 or 6 has Allen invariant
&-(Spin(T)) a central simple algebra of index at most 2. The preceding
proposition (along with Lemma 2.4) shows that this holds over any field of
characteristic not 2.

ExampLE 2.6. In this example we will produce an anisotropic group
over an appropriately chosen base field F with L of type 3 and with the
same involution invariant as the associated quasi-split group (i.e., a split
algebra with hyperbolic involution; see Example 2.3). Since involution
invariants classify groups of type ‘D, this group will be split over L.

Let F, be a field which supports a nonsplit central simple algebra A4 of
degree 3. If we set F = Fy(x) or F = F,((x)) then we have a nonsplit
central simple algebra A, = A4 ®; F of degree 3 over F such that x is
not a reduced norm from A.. (This is [Jac68, p. 417, Lemma 1] for
F = F,(x) and is easy to prove for F = Fy(x).) Thus the first Tits construc-
tion (see [PR94] or [Jac68, Chap. IX] for this and other undefined Jordan
algebra terms) provides a nonreduced Jordan algebra J :== J(A, x). Now
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Ay contains a cubic Galois field extension L of F and L embeds in J.
Then we write Aut(J/L) for the set of Jordan algebra automorphisms
of J which fix L. This is known to be a simply connected group of type
D, with inner extension L¢ by [Jac60, p. 86], [KMRT, Sect. 38], or [Jac71,
p. 31, Theorem 6].

There is some triality 7 = (M4(L), L, o, a) with Spin(T) =, Aut(J/L).
(T has trivial Allen invariant by [All67, p. 258, Theorem 1].) Moreover, o
is adjoint to the coordinate norm of J (as follows from the Springer
construction [KMRT, Sect. 38], which is hyperbolic since J is a first Tits
construction [PR84, p. 269, Theorem 4.7]. Thus % (Spin(T)) =,
(Mg(L), a;,) for g, a hyperbolic involution on Mg(L).

However, Aut(J/L) injects into Aut(J), the group of Jordan algebra
automorphisms of J. Since J is nonsplit and a first Tits construction, it has
no nonzero nilpotent elements and so by [Tit66, p. 61], Aut(J) is anisotropic.
Thus Aut(J/L) = Spin(T) is anisotropic.

3. QUATERNION ALGEBRAS

It is clear from the invariant restriction part of the Main Theorem
(which we proved in Proposition 2.5) that we should be interested in
guaternion algebras over L cubic separable over F whose corestriction
down to F is trivial. This turns out to be a strong condition. We collect in
this section some useful facts about such algebras.

First, we describe such quaternion algebras fully. This result was proven
by Allison for fields of characteristic 0 in [All92, p. 229, Lemma 6.8] and in
full generality in [KMRT, 43.9]:

LEMMA 3.1 [KMRT, 43.9]. Suppose that Q is a quaternion algebra over L
a cubic étale F-algebra. Then cor, ,z[Q] is trivial if and only if there is some
a € L* such that Ny, ,(a) = 1 and some b € F* such that Q = (a,b/L).

Moreover, we can say that such a quaternion algebra is certain to be
split in one very particular case.

LEMMA 3.2, Suppose that Q is a quaternion algebra over L a separable
cubic field extension of F such that the corestriction of Q down to F is trivial.
If Q is split by L¢, it is split.

Proof (Merkurjev). Let 8F*2 = disc. L, so that L° = L(/§) # L.

Claim. We may assume that Q = (a, 8/L) for some a € L* such that
N, ,r(a) = 1.Since Q is split by L(/8), we can certainly write Q = (b, §/L)
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for some b € L*. The projection formula [Tig87, Theorem 3.2] tells us that

N, b), é
COI’L/F[Q] = [%]
and since this is split by hypothesis, N, ,(b) € NF(‘/g)/F(F(\/E)* ). Setting
a =0b%/N, ,:(b), we get that N, ,.(a) = 1 and that (a, 5/L) =, (b, 5/L)
=, (. This proves the claim.
Let ¢ be an element of order 2 of £(L°/F) such that ¢ is the identity on
L and let p be an element of order 3. Then

1 =ap(a)p®(a) =ap(a)p?(ra) = a( p(a)(p(a))).

Thus ! (and hence a) is a norm from L¢ = L(/§) down to L and so Q
is split. I

This last lemma gives an elementary argument for the following:

COROLLARY 3.3 [All67, p. 263, Corollary]. Let G be a group of type °D,
over F with discriminant 6F*2. Then G has trivial Allen invariant over F
if and only if it has trivial Allen invariant over F(v/5).

Proof. We simply observe that
&/ G) = &p(G) & F(\/E) =&:(G) & L(‘/g)

So &-(G) is Brauer-equivalent to a (possibly split) quaternion algebra,
which (as always) has trivial corestriction down to F by (0.2). The lemma
finishes the proof. |

4. THE DESCENT AND THE EXISTENCE PART

In this section we will produce the existence part of our Main Theorem.
Our construction is a small modification of a descent argument from
[KMRT, 43.11], which itself builds on work of Allen [All67, pp. 4-5] and
Allen and Ferrar [AF68, Sect. 1].

The idea is to take L a separable cubic field extension of F and b € F*
such that b # discy L or 1 mod F*2 start with a split group of type D,
over P := L(Yb ), and descend to a group over F with inner extension L¢
and nontrivial Allen invariant. Of course, doing the descent directly with
the groups is not so easy, so we will instead work with the corresponding
trialities.
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First, we need a little notation. The field P is Galois over F with Galois
group

Ly X P, if L is of type 3,

G =%(P/F) = Py X Wy if L is of type 6.

Set
{=((123),-1) and v=((2 3),1),

so that ¢ permutes L and its conjugates in L° while simultaneously
flipping the sign of V&, and « flips the sign of V& for L(V8) = L¢ but fixes
L and Vb . (Of course, in the type 3 case one should simply ignore ¢.) Note
also that ¢ is of order 6 and v = «Z°.

For the purposes of descent, define F-vector space endomorphisms ¢
and 7 of (€ & P)*3 by -

_{(xo,xl,xz) = ({xy,{xp, {xq)
and
m(Xg, X1, X,) = ((7 @ 1)Xg, (7 ® 1) x,, (7 ® 1) xy).

Note that {7 = @ °. Now we may state our descent result, which axioma-
tizes the argument in [KMRT, 43.11].

DEeSCENT PROPOSITION 4.1, Suppose L is a separable cubic field extension
of F, a € L* such that N, ,(a) = 1, and b € F* such that b # disc L or 1
mod F*2. Then if t = (ty,t,,t,) is a related triple of similarities in (End .
(€ & L))® such that

o u(ty) = a,

e g,(t) =1t fori=0,1,2,

e [t;=t,,,{ forall i (subscripts modulo 3)
and if L is of type 6 we further require

e (@, =t_(m® 1)

then one gets a descent of the split triality T¢ over L°G\Wb) down to a triality
over F with inner extension L° and Allen invariant M,(a, b /L). The associated
Spin group is the set of fixed points in Spin(T?).

The descent is provided by {Int(¢{)) in the type 3 case and by
{nt(z2), Int(ar)) in the type 6 case.

Proof. All of this proof besides the determination of the Allen invari-
ant is paraphrased from [KMRT, 43.11]. (Actually, our descent differs
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slightly in the type 6 case.) We reproduce the material from there here for
the convenience of the reader.

We do the *“generic case”” where L is of type 6, so that P := L°(Vb) is an
(%, X p,)-Galois extension of F. The type 3 case is only easier.

The various conditions on ¢ force ¢t to commute with ¢ and 7 as
F-vector space automorphisms of (€ ®. P)*3. Since ¢ is ¢-semilinear and
a is w-semilinear, one checks that the group {Int(z{), Int(zr)) provides a
descent on the P-algebra with involution -

((End,(C) & P)*°, o).

Since ¢ is a related triple, these automorphisms are actually automor-
phisms of the split triality over P; i.e., they respect the « in the definition
of a triality.

Thus we need only check that the Allen invariant information is correct.
We first examine the center. For (p,, p;, p,) € P*3,

Int(m)( po, p1.P2) = (U Po), t(Py), (1))

and
Int(_té’)(po,pl,pz) = (f(P1)1 {(py), 5(1’0))'

The first equation forces that p, € L and the second equation tells us
that p, = {p,,, for all i. So we have that p, determines p, and p, and
that p, is fixed by ¢ 3 Thus (P*3)¢ = L.

To see that the Allen invariant is the desired one, we need only descend
down the biquadratic extension from P to L and look at the first
component, for there the Allen invariant will be E X C(E, o) if (E, o) is
the involution invariant of our descended group. Thus E is the L-subalge-
bra of End(€) &, P fixed by Int(¢,) ® {3 and Int(7) ® «.

We compute E using Galois cohomology. Let G = Z(P/L) =
{1,0,£3 % and set A = End () ® L. Then there is an exact se-
guence of P-points of algebraic groups

1—-P*— GL,(A)(P) —» Aut(A)(P) — 1,
which induces an exact sequence on cohomology
HY(G,GL,(A)(P)) » HYG,Aut( A)(P)) > H*(G, P*¥).

Now H(G, Aut(A)(P)) classifies central simple algebras of degree 8 over
L which are split by P by [KMRT, Sect. 29.B] or [Ser94, 111.1.3], and as is
standard we can identify H?(G, P*) with Br(P/L), the subgroup of Br L
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consisting of those central simple algebras which are split by P; cf. [Ser79,
X.4, Corollary]. Moreover, the connecting homomorphism ¢ is just the
map which sends a given central simple algebra to its Brauer class.

Since our descent is given by Int(z,) ® ¢* and Int(7) ® 4, the isomor-
phism class of E is represented by the 1-cocycle n: G — Aut(A)(P) given
by (in the notation of [Ser94, 1.5.1])

n, = Int(7), s = Int(t,),

and
M = M = Int(mu(ty)) = Int(t,m).

Since the map GL,(A) — Aut(A) is given by a — Int(a), there is a set
map y: G = GL,(A)(P) which “lifts” n and is given by

v, =, Y3 = 1o, and Yies = Lo

Then the Brauer class of E corresponds to the image of n under the
connecting homomorphism ¢, which by [Ser94, 1.5.6] is the cohomology
class of the 2-cocycle f given by

fs,t = 'Yss'}’t'y;,tl'

Fix some square root of » and define ¢,: G — {0, 1} by

s\/F: (_1)‘%(“)‘/3'

Since P is only a biquadratic extension of L, one can check all the
possible s,z € G to see that » maps to the 2-cocycle f given by f , =
a?®v® (To see this, one makes use of the fact that 2 = u(ty) = a.)
Then by [Spr59, pp. 250—251] or [GTW97, Lemma 3.5(2)], the Brauer class
corresponding to f is [a,b/L]. Alternately, one can observe that for
H=2(LGb)/L) =1{1,(%, f is the inflation from H to G of the
2-cocycle g given by g,s ,s = a. Since g corresponds to the class of the
cyclic algebra (a, L(Vb) /L, £®) = (a,b/L) in Br(L(yYb)/L) and the infla-
tion map on cohomology corresponds to the inclusion Br(L(/b)/L)
Br(P/L) [Dra83, p. 97, Theorem 1], we see again that [E] = [a,b/L]. 1

Our first application of this proposition will be to show that the
Steinberg groups are quasi-split. Our proof will require a good criterion for
being quasi-split over F in terms of the rank of a maximal F-split torus.
The rank of such a torus in a group G over F is called the F-rank, and we
denote it by rank . G (cf. [Bor91, 21.1]).
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Recall that if G is a semisimple group defined over F with a maximal
F-split torus S lying in some maximal torus T defined over F, and A is a
set of simple roots (or Dynkin diagram) for G relative to T, Tits [Tit66,
2.1] denotes by A, the subset of A consisting of roots which vanish on S.
Moreover, every element of a given I'-orbit of A has the same restriction
to S [Tit66, 2.5.1] and Tits circles those orbits of A which do not belong
to A,.

LEMMA 4.2. The notation is as in the preceding paragraph.

(1) The number of orbits circled in the Dynkin diagram of G is the
F-rank of G (= dim S).

(2) Al of the orbits in the Dynkin diagram of G are circled (i.e., A, is
empty) if and only if G is quasi-split.

(3) If G? is the (unique) quasi-split group which is an inner form of G,
then rank, G < rank . G9, with equality if and only if G is quasi-split.

Proof. (1) By/[Tit66, 2.5.1] the set of simple roots of G with respect to
S is in bijection with the set of I'-orbits in A\ A,, i.e., the circled orbits of
A. The size of this set is the rank of the system of roots of G with respect
to S, and by [BT65, p. 96, 5.3] that is the F-rank of G.

(2) This is [KR94, 1.9(ii)]. Or, the uncircled vertices of the Dynkin
diagram of G form the Dynkin diagram for the semisimple anisotropic
kernel of G. So all the vertices are circled iff G has trivial semisimple
anisotropic kernel iff G is quasi-split [Tit66, 2.2].

(3) This is a straightforward consequence of (1) and (2) since the
I'-action on the Dynkin diagrams of G and GY is the same by [BT87, 1.3]
or [MPW96, p. 531, Prop. 1.10]. 1

APPLICATION 4.3.  The trialitarian Steinberg groups are quasi-split, and so
have trivial Allen invariant.

Demonstration. The Steinberg groups are defined to be exactly those
gotten by taking ¢ = (1,1, 1) in the statement of the Descent Proposition;
see [Ste59, p. 887, Sects. 10 and 11] or [Jac64b, p. 140]. So we set ¢ = 1 and
pick some b € F* such that b # disc, L or 1 mod F*2, If there is no such
b, we set A := F(y/disc; L), p to be a generator of £(L°/A), and ¢ a
generator of Z(A/F) (possibly trivial). Then our descent is given by
{Int( p)) or <Int( p), Int(w)) depending on whether L is of type 3 or 6
where we define

P(Xg, X1, %,) = ( pXy, pxy, pXo).
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One sees quickly that this provides a descent of the split triality over L° to
a triality over F which is essentially the same as the descent given in the
proposition, and such that the descended triality corresponds to a Stein-
berg group.
That the Allen invariant of a Steinberg group is trivial will follow from
the fact that it is quasi-split by Example 2.3.
In any case, let G be a Steinberg group. If one looks at the triple each of
whose entries looks like
a b 1 1
diag(a,b, —,1,1, —, —, — fora,b € F*,
b a b a
then by Example 1.6 we see that it is a related triple. The set of such
triples forms a rank 2 split torus in G which is also defined and split over
F by the proposition. Since the Dynkin diagram of G has two orbits under
the Galois action, the preceding lemma shows that G is quasi-split.
However, we promised in the Introduction to produce the Borel subgroup
explicitly if L is Galois over F (i.e., G is of type *D,).
We define a maximal torus T to be the connected component of the
group

{(t5,t,,1,) € Spin(€, 1) |1, is diagonal}.

Now ¢(T) (recall that ¢ is the surjection Spin(¢€, n) - O*(E, n) which
projects ¢ onto the first factor) is a maximal torus in O*(E, n). Its
character group is generated by x;, x,, xs. and x, where y; gives the
(i, D)-entry of the matrix in ¢(7). There is a commonly made choice of
simple roots relative to this torus, namely,

Q= X1~ Xa2» Q; = X2 ~ Xa» 3= X3 = Xa> = X3+ X
The roots «; lift via ¢ to characters of T, which we will also denote by «;
forl<i<4.

Since T is a maximal torus of Spin(C, n), we have uniquely determined

connected one-dimensional unipotent subgroups which are the images of
homomorphisms

U,: G, - Spin(€,n)
such that U, (r)t~ =y, (a()r) for 1 <i<4 and all t €T [Bor9l,
13.18]. Certalnly such a root group would have to map under ¢ to a
corresponding root group in O*(E&, n). Since we have chosen a set of

simple roots with respect to our maximal torus in O*(E, n), the root
groups there are fully determined. Thus we may conclude that

e(imU, ) = im Uy, e(imU, ) = imU,,
e(imU,,) = im Us,, e(imU, ) = im Us.
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What are the images of U,’s? We determine imU, . Since (Uy(r),
Uy, (r), Uys(r)) is a related trlple for all » € L by Example 1.9, and such
triples form a connected, one-dimensional, unipotent subgroup of
Spin(¢, n), we must have

imU, (L) = {(Ups(r), Usg(r), Ups(r)) | r € L}.
Similarly, one sees that

imU,(L) = {(Ulz(r)v Uss(—1),Usy(7)) |7 € L}'
imU,(L) = {(Usg(r), Upy(r), Uss(=1)) |r € L},
imU, (L) = {(Uss(=7), Uss(r), Upp(r)) | € L}.

The choice of the «;’s as our set of simple roots corresponds to a choice
of Borel subgroup B containing T, which is the subgroup generated by T
and the im U, ’s by [Tit66, 1.6] or [Bor91, 14.18]. Again, using the corre-
sponding facts about O* (¢, n), we see that ¢(B) is precisely the upper
triangular matrices in O*(E, n). In fact, B is the inverse image of the
upper triangular matrices in O*(E, n) by [Bor91, 22.6(i)], since ¢ is a
central L-isogeny.

The description of the 7;-action on 7" and on our root groups makes it
clear that if (zy,1,,¢,) is a related triple with to upper triangular, then ¢,
and ¢, are upper triangular as well. Since (z,, ,, t,) and (¢,, t,, t,) are also
related triples by Proposition 1.5(1), we see that a related triple (¢, 7, £,)
consists of upper triangular matrices if and only if one of the ¢, is upper
triangular. Consequently,

B(L) = {(to.11,1,) € Spin(€, n)(L) |
t; is upper triangular for i = 0, 1, 2},

and we see that B is defined over F as desired. |

COROLLARY 4.4. If L is a separable cubic field extension of F lying in J¢,
the split 27-dimensional exceptional Jordan algebra over F, then Aut(J?/L),
the group of Jordan algebra automorphisms of J¢ which fix L, is quasi-split of
type D, with inner extension L°.

Proof. As stated in [Sod66, p. 150], the group described is exactly the
Steinberg group of type D, with inner extension L€, so the preceding
application gives us the claim. ||

This result is to be expected since one knows by [All67, p. 261, Corollary]
that the group Aut(J¢/L) is determined up to F-isomorphism by the
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F-isomorphism class of L and also that Aut(J¢), the group of Jordan
algebra automorphisms of J¢, is itself split of type F,. However, it does not
seem to be in the literature anywhere.

It should also be pointed out that by [Jac60, p. 81] the special Jordan
algebra defined by M,(F) embeds in J¢, so every cubic étale F algebra
embeds in J¢ and thus every quasi-split group of type D, is of the form
Aut(J4/L).

Remark 4.5. We saw that the maximal torus 7 in Application 4.3 is
defined over F, but it is clearly not F-split (it is of rank 4 and the maximal
F-split torus has rank 2). The maximal anisotropic subtorus 7, of T
[Bor91, 8.15] is R, ,-(L*)/F*, where R, ,-(G) denotes the Weil restric-
tion of scalars (a.k.a. the transfer) of the group G defined over L to a
group defined over F.

APPLICATION 4.6. If Q is a quaternion algebra over L a separable cubic
field extension of F such that Q has trivial corestriction down to F, there is a
group of type D, over F with Allen invariant M,(Q).

Demonstration. This is the original descent from Allen and Ferrar
[AF68] and [KMRT, 43.11] combined with Lemma 3.1. We recapitulate it
here for the reader’s convenience. (Note that Allen and Ferrar did not
address the type 6 case, and our descent is slightly different from the one
in [KMRT] in that case.)

If O is split, then we can take the group to be the quasi-split group with
inner extension L°. Otherwise, use Lemma 3.1 to get an a € L* and
b € F* such that Q =, (a,b/L) and N, ,(a) = 1. Since Q is nonsplit,
b#1 mod F* and Lemma 3.2 assures us that b # disc, L mod F*.
Define

m,(a) = diag(1, p'(a), p'(a), p*2(a) ", p'"*(a) ", 1,1,p'(a)).

(We will use this again in the next application.) If we set ¢, = m,(a)S for S
as in (1.3), then by Examples 1.6 and 1.7 and Proposition 1.5(3), ¢ =
(to, 15, 1,) is a related triple. Straightforward calculations show that it
satisfies the criteria of the Descent Proposition. I

This choice of ¢ produces anisotropic groups as well as isotropic ones
(see [AF68, pp. 482—-483] for details), which makes it unsuitable for our
purposes. Our goals are met by the next application.

APPLICATION 4.7 (Existence). If Q is a quaternion algebra over L a
separable cubic field extension of F such that Q has trivial corestriction down
to F, then there is an isotropic group of type D, over F with Allen invariant

MLQ).
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Demonstration. As in the preceding application, we easily reduce to the
case where we have an « and b satisfying the hypotheses of the Descent
Proposition and Q =, (a,b/L).

Set

d= diag(l,l, -1,1,1, —1,1,1)
and
t;=m;(a) dP((1 2)(3 6)(4 5)(7 8)),

where m;(a) is as defined in the preceding application. Then ¢ = (¢,, #;,¢,)
is a related triple by Examples 1.6 and 1.8 and Proposition 1.5(3). Once
one observes that the permutation matrix is fixed by o, and commutes
with d and that d commutes with m,(a), straightforward calculations show
that ¢ satisfies the hypotheses of the Descent Proposition. Furthermore,
the descent given by the proposition fixes elementwise the split torus
consisting of related triples (s, s, s) for s of the form

diag(a,a,1,1,1,1,a a7 %) with a € F*.

Thus the descended group is isotropic. [

Remark 4.8. In the preceding descent, the torus T consisting of triples
(o, 11, 1,) such that every ¢; is diagonal is defined over F and contains the
rank 1 split torus which we produced. As in Remark 4.5, we point out that
the maximal anisotropic subtorus 7, of the maximal torus T is precisely

R, ,»(L(VB) /L¥)

for b as in the application.

5. THE UNIQUENESS PART

In this section we will prove the uniqueness part of the Main Theorem,
i.e., that isotropic trialitarian groups are classified up to central F-isogeny
by their Allen invariants.

One of the reasons this works is by a peculiar phenomenon involving
central simple algebras of degree 4 with orthogonal involution, which is
that if (A, o) is such an algebra with Cy(A,0) = Q, X Q, for Q, a
quaternion algebra with unique symplectic involution vy, for ii = 1, 2, then
(A,0) =(Q4,v,) ®(Q,,7,) [KPS91, Theorem 5.2]. A version which in-
cludes the case where the center of C,(A, o) is a field can be found in
[KMRT].
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LEMMA 5.1 [KMRT, 15.7]. Suppose that (A, o) and (A, o') are two
central simple algebras of degree 4 with orthogonal involutions such that
C(A, o) and C(A', o') are isomorphic as F-algebras. Then (A, o) =
(A4, o).

We must necessarily work with central simple algebras of degree 8, so
we need a way to get algebras of smaller degree.

Suppose that D is a skew field over F with orthogonal involution “~". A
hermitian form h over (D, -) is a biadditive map &: V' X V' — D for some
right D-vector space V' such that

h(xd,,yd,) =dh(x,y)d, forall d;,d, e D,x,y €V,

and h(x,y) = h(y, x).

We require also that & is nondegenerate, i.e., that there is no nonzero
x € V such that h(x,y) =0 for all y € V. Then h induces its adjoint
involution o, on End,(}") defined by

h(fe,y) =h(x,0,(f)y) forall fe Endy(V)and x,y € V.

We say that £ is associated to (A, o) if (A4, o) = (End,(V), g,); given
(A, o) such an & always exists by [Sch85, p. 302].

If & is isotropic, i.e., h = ' 1 7 for some hermitian form A’ over (D, -)
and # the hyperbolic form on (D, -) (cf. [Sch85, Sect. 7.7]), then we say
that /' is obtained from A by splitting off a hyperbolic plane. By Witt
cancellation [Sch85, 7.9.2], /' is determined up to isometry. Since # = {(A)#
for any A € F*, if h is associated to (A, o) (in which case (A4, o) is
isotropic) we get a well-determined central simple algebra with involution
(B, 1) such that 4 is associated to (B, 7). We say that one gets (B, 7) from
(A, o) by splitting off a hyperbolic plane. If (A4, o) is any central simple
algebra with isotropic orthogonal involution, then one can always apply
this construction to get an algebra of smaller degree with orthogonal
involution.

DerFINITION 5.2. If (A, o) and (B, 7) are central simple algebras with
orthogonal involution such that one gets (B, 1) from (A, o) by splitting off
one or more hyperbolic planes, then we say that (A4, o) is a hyperbolic
extension of (B, 7).

Certainly in that case 4 and B will be Brauer-equivalent. Better yet, we
can say something about their even Clifford algebras.

LEMMA 5.3.  If (A, o) is a hyperbolic extension of (B, 1), then Co(A, o)
is F-algebra isomorphic to some size matrices over Cy(B, 7).

Proof. Note that the centers of C,(A, o) and Cy(B, 1) are F-isomor-
phic.
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One knows that the conclusion holds if o (and hence 7) has trivial
discriminant (i.e., Co(A, o) has center isomorphic to F X F) by [MPW96,
pp. 584-585, Lemmas 5.8 and 5.9] if A4 is nonsplit and by [Lam73, p. 121,
(3.13)] otherwise. So we may suppose that both of the even Clifford
algebras have center Z a quadratic field extension of F.

Since C, is compatible with scalar extension [Tit68, p. 32, Corollary 2]

CO((A,O') ® Z) =, Co(A,0) & Z=; Co(A,0) X'Cy(A,a),

where ¢ is the nontrivial F-automorphism of Z. A similar formula holds
for (B, 7). Thus by the trivial discriminant case Cy(A4, o) is Z-isomorphic
to some size matrices over Cy(B, 7) or ‘Co(B, 7) =, Co(B, 7). Hence the
conclusion. |

LEMMA 5.4, Two central simple algebras over F of degree 8 with orthogo-
nal involutions of Witt index > 2 are isomorphic (as F-algebras with involu-
tion) if and only their even Clifford algebras are isomorphic (as F-algebras).

Proof. Clearly we need only show “if.”

Since the involutions in question have Witt index at least 2, there are
two central simple algebras of degree 4 with orthogonal involutions (A, o)
and (A, ¢’) such that the original algebras in question are hyperbolic
extensions of these. Then our hypothesis and the preceding lemma imply
that Cy(A4, o) =, Co(A', o'). By Lemma 5.1, (4, o) =, (A4, d"). |

What this means for us is that if we have two trialities (E, L, o, o) and
(E, L, o', a') (so that they have the same Allen invariant E) of type 3 or 6
and with involution of Witt index at least 2, then we know that actually
(E, o) =, (E,g'), so that E determines o. We will use this property to
describe the involution o explicitly.

For convenience of notation, set A := A (L). If ¢ is the unique F-alge-
bra automorphism of A and (A, =) is a central simple algebra over A with
orthogonal involution =, then since 4 and ‘4 have the same underlying
ring structure = is also an involution on ‘A. It is easy to see that this
induces an involution on cor, ,.(A4) and we denote this algebra with
involution by cor, , (4, *).

ProposITION 5.5. If (E,L, o, a) is a triality of type 3 or 6 such that
w(E, a) = 2 (which occurs if the triality is isotropic), then E =, M,(Q) for
some (possibly split) quaternion algebra Q and (E, o) is a hyperbolic
extension of

COr 1 onyr P((Q,7) & A)

for vy the unique symplectic involution on Q and p an element of order 3 in
Z(L & A)/A).
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Proof. Certainly (E, o) is a hyperbolic extension of (M,(Q), 6) for
some orthogonal involution 6. Since « gives us an isomorphism

Co(E, o) =, P (M,(Q) & A),
Lemma 5.3 tells us that
Co(My(Q),0) =, 7(Q & A).

We set (B, 7) = COr gy s "(Q, ) & A). We want to show that
(M,(Q), 6) =, (B, 7). We have by [KMRT, Sect. 15.B] that = and 6 have
the same discriminant, meaning that the centers of C,(B,7) and
Co(M,(Q), 0) can both be identified with A.

If L is of type 3 (i.e., A =, F X F) and we set p to be induced by some
nontrivial F-automorphism of L, then

“((Q.7) & A) =, ("0.7) x (" Q.v).
Thus
(B.7) =, (*Q.v) &.("0.7),
and so by [Tao95, p. 202, Theorem 4.16] or [KMRT, 8.19],

Co(B,7) =, "0 XPZQ =, Co(My(Q). 0).

By Lemma 5.1, (B, 7) =, (M,(Q), 6).

If L is of type 6 (i.e., A is a quadratic field extension of F) then
L ® A=, L° and we set p to be a nontrivial F-automorphism of L¢
which restricts to the identity on A. Then

Co(B,7) X'Cy(B, 1) =, Co(B,7) & A

e Co(M,(Q),0) ® A by the type 3 case
1 P(Q 8 A) X (0 & A).

So Co(B,7) =, P(Q & A) =, Co(My(Q), 6) and we are done. |

ProposITION 5.6 (Uniqueness). Two isotropic algebraic groups of type
3D, or °D, lie in the same central F-isogeny class if and only if their Allen
invariants are the same.

Il

Il

Proof. Clearly we only need to show “if”.

By hypothesis, we have two isotropic groups, say G, and G,, which are
defined over F. We would like to show that they lie in the same central
F-isogeny class. Since it is equivalent to show that their associated simply
connected groups are F-isomorphic by [Tit66, 2.6.1], we proceed under the
assumption that G, and G, are simply connected and show that they are
isomorphic.
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If G, and G, are quasi-split, then since their Allen invariants are
isomorphic, they have the same inner extension and hence are inner forms
of each other. But in that case we are done, as two quasi-split groups
which are inner forms of each other are isomorphic by [BT87, 1.3] or
[MPW096, Prop. 1.10]. Thus we can assume that at least one of our groups
is not quasi-split.

Fix a maximal F-split torus S; in G, and denote by G; the derived group
of Z;(S,) (= the centralizer of S; in G)). Tits calls G; the semisimple
anisotropic kernel of G, [Tit66, 2.2].

The idea of the proof is to produce an F-isomorphism

y: Gy > G,
and an F,-isomorphism
¢:G, — G,

such that ¢ and ¢ satisfy certain compatibility conditions. This will allow
us to apply Tits' “Witt-type theorem™ [Tit66, p. 43, 2.7.1] to get our
conclusion.

Fix a cubic field extension L of F such that L = Z(&.(G,)) for i = 1,2,
By the invariant restriction part of the Main Theorem and the fact that G,
and G, have the same Allen invariant, there is some (possibly split)
quaternion algebra Q over L such that M,(Q) =, &.(G,) for i = 1,2.

Step 1. We show that the semisimple anisotropic kernel G; of G, is
F-isomorphic to R, ,-(SL(Q)) fori =1,2. For the moment suppose that
G, is not quasi-split. Then §; has rank 1 by Lemma 4.2 since the Galois
action on the Dynkin diagram of G, has precisely two orbits. So we see
that the Dynkin diagrams A; and A, for G, and G respectively are

[ ]
G. ° G

where the Galois action on the uncircled vertices in each case is the same
and transitive. (By [Tit66, p. 58], or observe that the only other possibility
for the Dynkin diagram of G; is

E*

)

:
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which cannot occur, as mentioned in [Tit66, 3.2.3] or see [Sel76, p. 45,
3.2.3] for more discussion. This can also be seen by using Jordan algebra
techniques.) The Galois action tells us that G is the transfer from L to F
of a group of type A4, over L [Tit66, 3.1.2].

To find out what group that is, we look at G; X, L, where G, X, L is of
type A;3. Since G, X, L = Spin(.%(G,)), we will look at O*(_%(G))) to
see that one of the three components of G! X. L is exactly SL,(Q).
Specifically, we write .%(G,) = (M,(Q), o;) and since o; is isotropic we
can do a change of basis so that

1

a,.=lnt( A
-1

for = the conjugate transpose on M,(Q) and some A € GL,(Q). Then
0" (My(Q). 0;)(L) = {m € M,(Q) | 0;(m)m = Nrd(m) = 1}

and this group has a (maximal) L-split torus whose elements are of the
form diag(A, 1,1, A1) for A € L*. The corresponding semisimple
anisotropic kernel consists of elements of the form

q
B
q

for all ¢ € SL,(Q) and B in some subset of GL,(Q). Thus the semisimple
anisotropic kernel of O*(#.(G,)) has one component isomorphic to
SL,(Q). Since the map Spin(_%(G,)) — O*(7#(G),)) is a central L-isogeny,
it restricts to be a central L-isogeny on the semisimple anisotropic kernels
by [Bor9l, 22.6]. Since SL,(Q) is simply connected and some simple
component of the anisotropic kernel of Spin(_%.(G,)) maps onto it, that
component of Spin(_#(G,)) must be isomorphic to SL,(Q). Thus

G; = RL/F(SLl(Q))'

Now we know that one of our groups, say G,, is not quasi-split. So
Gy = R, ,;(SL(Q)), and since G is anisotropic it is not quasi-split. As
the transfer of a quasi-split group is quasi-split, SL,(Q) is not quasi-split
and so Q is nonsplit. Thus G, has nontrivial Allen invariant since
&:(G,) =, &:(G,) = M,(Q). Hence G, is also not quasi-split, since
quasi-split groups have trivial Allen invariant as mentioned in Example 2.3.
Thus G, = R, ,(SL(Q)) =, G} and we set ¢ to be any F-isomorphism
G| - G).
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(Incidentally, the preceding shows that an isotropic trialitarian group
with trivial Allen invariant is quasi-split.)

Step 2: We produce a map ¢. Since G, and G, are both split of type D,
over F,, there is certainly an isomorphism ¢: G, — G, defined over F;.
However, this ¢ need not satisfy our compatibility conditions so we will
have to modify it.

Step 3. We modify our ¢ to be compatible with . The condition
required for the application of Tits’ theorem is that the restriction of ¢ to
the index of G is induced by . We first sort out what this means and
then modify ¢ so that it is satisfied.

Taking 7, to be a maximal torus of G, defined over F and containing
S,, and taking B, to be a Borel subgroup of G, containing 7;, we can set
A, to be the induced set of simple roots of G, with respect to 7. Then
T; = T, N G is a maximal torus of G [Tit66, 2.2] and B; == B, N G is
a Borel subgroup of G’ [Bor91, 21.13()]. We set T, == (7)), T, == ¢(T)),
B, = ¢/(B}), and B, = ¢(B,). By [Bor91, 21.13(ii)], we can modify ¢ by
an inner automorphism of G, if necessary so that 7, = T, N G, and
B, = B, N G,. We set A, to be the set of simple roots of G, with respect
to 7, given by the Borel B,. Clearly ¢ induces a uniquely determined map
Ay > A, and ¢ induces a uniquely determined map A, > A,.

Tits points out in [Tit66, 2.2] that A; can be canonically identified as the
set of roots in A; which vanish on §;. Since ¢ must map the central vertex
of A, to the central vertex of A,, ¢ restricts to a uniquely determined map

A, > X,. Our compatibility condition is that the map ¢y~ € Aut(A,) is
the identity.

The map Aut(G,)XF,) — Aut(A,) is surjective by [MPW96, p. 530,
Lemma 1.9] since G, is simply connected, and the map Aut(A,) — Aut(4A,)
is clearly surjective, so there is some T € Aut(G,)(F,) such that = maps to
the inverse of ¢! in Aut(A,). The map 7¢ satisfies our compatibility
criterion. ||

6. COROLLARIES

In Section 2 we mentioned that there are some fields over which
trialities are classified by their involution invariants (= algebraic groups of
type D, are classified up to central isogeny by their involution invariants).
For such fields our Main Theorem has a nice consequence.

COROLLARY 6.1. If F is a field over which trialitarian groups are classified
up to central F-isogeny by their involution invariants (e.g., a number field),
then such a group G is isotropic if and only if w(.%:(G)) = 2.
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Proof. The = direction is Lemma 2.4. For the other direction, we
know by the existence part of the Main Theorem there is an isotropic
triality (E, L, o, @) for E = &.(G). By Lemma 5.4 we see that (E, o) =,
#(G), so by hypothesis the trialities are isomorphic. I

If trialitarian groups are classified by their Allen invariants the result is
even stronger.

COROLLARY 6.2. If F is a field over which trialitarian groups are classified
up to central F-isogeny by their Allen invariants, then such a group G is
isotropic if and only if ind &.(G) < 2.

Proof. Since ind &:(G) < 2, the existence part of the Main Theorem
says that there is another group with the same Allen invariant which is
isotropic. |

COROLLARY 6.3.  Quer any finite extension of F,(t) for p an odd prime
(i.e., a global field of odd characteristic) or a totally imaginary number field,
all trialitarian groups are isotropic.

Proof. Let(E, L, o, a) be a triality of type 3 or 6. Since E supports an
orthogonal involution it has exponent 1 or 2 in the Brauer group [Dra83, p.
114, Theorem 1], and since exponent = index over any global field [Rei75,
32.19], ind E < 2. As mentioned in Section 2, trialities over our field are
classified by their Allen invariants, so we apply the preceding corollary. |

For number fields this last corollary is also a consequence of [All92,
Corollary 9.4]. I do not know if this result is known for global fields of odd
characteristic.
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