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Abstract

Within the context of theE8 ×E8 heterotic superstring compactified on a smooth Calabi–Yau threefold with anSU(4) gauge
instanton, we show the existence of simple, realisticN = 1 supersymmetric vacua that are compatible with low-energy par
physics. The observable sector of these vacua has gauge groupSU(3)C ×SU(2)L ×U(1)Y ×U(1)B–L, three families of quarks
and leptons, each with an additionalright-handed neutrino, two Higgs–Higgs conjugate pairs, a small number of unchar
moduli andno exotic matter. The hidden sector contains non-Abelian gauge fields and moduli. In the strong coupling cas
is no exotic matter, whereas for weak coupling there are asmall numberof additional matter multiplets in the hidden sector. T
construction exploits a mechanism for “splitting” multiplets. The minimal nature and rarity of these vacua suggest the
theoretical and experimental relevance of spontaneously brokenU(1)B–L gauge symmetry and two Higgs–Higgs conjug
pairs. TheU(1)B–L symmetry helps to naturally suppress the rate of nucleon decay.
 2005 Elsevier B.V.Open access under CC BY license.
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The discovery of non-vanishing neutrino masses
dicates that, in supersymmetric theories without ex
multiplets, a right-handed neutrino must be added
each family of quarks and leptons[1]. It is well known
that this augmented family fits exactly into the16 spin
representation ofSpin(10), making this group very
compelling from the point of view of grand unificatio
and string theory. Within the context ofN = 1 super-
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symmetricE8 × E8 heterotic string vacua, aSpin(10)
group can arise from the spontaneous breaking of
observable sectorE8 group by anSU(4) gauge in-
stanton on an internal Calabi–Yau threefold[2]. The
Spin(10) group is then broken by a Wilson line to
gauge group containingSU(3)C ×SU(2)L ×U(1)Y as
a factor[3]. To achieve this, the Calabi–Yau manifo
must have, minimally, a fundamental groupZ3 × Z3.

Until now, such vacua could not be construct
since (a) Calabi–Yau threefolds with fundamen
group Z3 × Z3 were not known and (b) it was un
known how to findSU(4) gauge instantons on suc
manifolds. Recently, the first problem was rectifi
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in [4]. We have now solved the second problem,
hibiting a large class ofSU(4) gauge instantons o
the Calabi–Yau manifolds presented in[4]. Generaliz-
ing the results in[5,6], these instantons are obtain
as connections on stable, holomorphic vector bun
with structure groupSU(4). The technical details wil
be given elsewhere[7]. In addition to these consid
erations, we also use a natural method for “splittin
multiplets that was introduced for general bundles
[6]. In this Letter, we present the results of our sea
for realistic vacua in this context.

The results are very encouraging. We findN = 1
supersymmetric vacua whose minimal observable
tor, for both the weakly and strongly coupled hetero
string, has the following properties.

• Observable sector. Weak and strong coupling.
1. Gauge groupSU(3)C × SU(2)L × U(1)Y ×

U(1)B–L.
2. Three familiesof quarks and leptons, each wi

a right-handed neutrino.
3. TwoHiggs–Higgs conjugate pairs.
4. Six geometric moduli and asmall numberof

vector bundle moduli.
5. No exotic matter fields.

These are, to our knowledge, the first vacua in
string theory context whose observable sector cont
no exotic matter. We emphasize that, although v
similar to the supersymmetric standard model, our
servable sector differs in three significant ways. Fi
there is an extra right-handed neutrino in each fam
Closely related to this is the appearance of an a
tional gaugedB–L symmetry. Finally, we find, no
one, but two Higgs–Higgs conjugate pairs.

The structure of the hidden sector depends
whether one is in the weakly or strongly coupl
regime of the heterotic string. In the strongly coup
context, we find the following minimal hidden secto

• Hidden sector. Strong coupling.
1. Gauge groupE7 × U(6).
2. A small numberof vector bundle moduli.
3. No matter fields.

Again, note that this hidden sector has no
otic matter. Combining this with the above, we ha
demonstrated, within the context of the strongly co
pled heterotic string, the existence of realistic va
containing no exotic matter fields. We emphas
that the hidden sector gauge groupE7 × U(6) is
sufficiently large to allow acceptable supersymme
breaking via condensation of its gauginos.

In the weakly coupled context, we find the follow
ing minimal hidden sector (this is also a valid vacuu
in the strongly coupled case).

• Hidden sector. Weak coupling.
1. Gauge groupSpin(12).
2. A small numberof vector bundle moduli.
3. Two matter field multiplets in the12 of

Spin(12).

Note that, in this case, there are a small numbe
exotic matter multiplets in the hidden sector. Aga
the hidden sector gauge groupSpin(12) is sufficiently
large to allow acceptable supersymmetry breaking
gaugino condensation.

The vacua presented above are the result of an
tensive search within the wide context made precis
[7]. They appear to be the minimal vacua, all oth
containing exotic matter fields, either in the obse
able sector, the hidden sector, or both, usually w
a large number of Higgs–Higgs conjugate pairs.
have been unable to find any vacuum in this c
text with only a single pair of Higgs–Higgs conjuga
fields. Furthermore, to our knowledge, phenome
logical vacua in all other string contexts[6,8,10–12]
have substantial amounts of exotic matter, both in
observable and hidden sectors. For all these reas
we refer to the class of vacua presented in this Le
as aheterotic standard modeland speculate that it ma
be of phenomenological significance. In particular
would seem to motivate renewed interest, both theo
ical and experimental, in its characteristic properti
namely, (1) the physics of aU(1)B–L gauge symme
try spontaneously broken at, or above, the electrow
scale and (2) the physics of two pairs of Higgs–Hig
conjugate fields, particularly their experimental i
plications for flavor changing neutral currents. It
immediately clear that theB–L symmetry will help
to naturally suppress the rate of nucleon decay. T
potentially resolves a long-standing problem in p
nomenological string vacua. At the least, our res
go a long way toward demonstrating that realistic p
ticle physics can be the low-energy manifestation
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theE8 × E8 heterotic superstring, as originally envi
aged in[8,9].

We now specify, in more detail, the properties
the these minimal vacua and indicate how they
determined. Following[8], the requisite Calabi–Ya
threefold,X, is constructed as follows. We begin b
considering a simply connected Calabi–Yau threefo
X̃, which is an elliptic fibration over a rational ellip
tic surface,dP9. In a six-dimensional region of modu
space, such manifolds can be shown to admit aZ3×Z3
group action which is fixed point free. It follows tha

(1)X = X̃

Z3 × Z3

is a smooth Calabi–Yau threefold that is torus-fibe
over a singulardP9 and has non-trivial fundament
group

(2)π1(X) = Z3 × Z3,

as desired. It was shown in[4] thatX has

(3)h1,1(X) = 3, h2,1(X) = 3

Kähler and complex structure moduli, respectively.
our knowledge, this is the only Calabi–Yau threefo
with Z3 × Z3 fundamental group that has been co
structed. We note[13] that the transpose of the confi
uration matrix[14] associated with̃X defines anothe
simply connected Calabi–Yau threefold. Interesting
this is precisely the manifold introduced by Tian a
Yau [15] which, when quotiented byZ3, was used
to construct three generation heterotic string va
within the context of the standard gauge embeddin

We now construct a stable, holomorphic vec
bundle,V , onX with structure group

(4)G = SU(4)

contained in theE8 of the observable sector. This bu
dle admits a gauge connection satisfying the Hermi
Yang–Mills equations. The connection spontaneou
breaks the observable sectorE8 gauge symmetry to

(5)E8 → Spin(10),

as desired. We produceV by building stable, holomor
phic vector bundles̃V with structure groupSU(4) over
X̃ that are equivariant under the action ofZ3 × Z3.
This is accomplished by generalizing the method
“bundle extensions” introduced in[5]. The bundleV
is then given as

(6)V = Ṽ

Z3 × Z3
.

Realistic particle physics phenomenology impo
additional constraints oñV . To ensure that there ar
three generations of quarks and leptons after quoti
ing outZ3 × Z3 one must require that

(7)c3(Ṽ ) = ±54,

wherec3(Ṽ ) is the third Chern class of̃V . Recall that
with respect toSU(4)×Spin(10) the adjoint represen
tation ofE8 decomposes as

248 = (1,45) ⊕ (15,1) ⊕ (4,16)

(8)⊕ (4,16) ⊕ (6,10).

The number of16 zero modes is given byh1(X̃, Ṽ ∗)
[6]. Therefore, if we demand that there be no exo
matter fields arising from vector-like16–16 pairs, Ṽ
must be constrained so that

(9)h1(X̃, Ṽ ∗) = 0.

Similarly, the number of10 zero modes ish1(X̃,∧2Ṽ ).
However, since the Higgs fields arise from the deco
position of the10, we must not set the associat
cohomology to zero. Rather, we restrictṼ so that
h1(X̃,∧2Ṽ ) is minimal, but non-vanishing. Subje
to all the constraints that̃V must satisfy, we find

(10)h1(X̃,∧2Ṽ
) = 14.

Finally, for the gauge connection to satisfy the H
mitian Yang–Mills equations the holomorphic bund
Ṽ must be stable. A complete proof of the stability
Ṽ is technically very involved and has not been c
ried out. However, there are a number of non-triv
checks of stability that can be made. Specifically, s
bility constrains the cohomology of̃V to satisfy

h0(X̃, Ṽ ) = 0, h0(X̃, Ṽ ∗) = 0,

(11)h0(X̃, Ṽ ⊗ Ṽ ∗) = 1.

We have shown[7] that vector bundles̃V satisfying
constraints(7), (9), (10)and(11) indeed exist. Hence
forth, we will restrict our discussion to such bundle

We now extend the observable sector bundleV by
adding a Wilson line,W , with holonomy

(12)Hol(W) = Z × Z ⊂ Spin(10).
3 3
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The associated gauge connection spontaneously b
Spin(10) as

Spin(10) → SU(3)C × SU(2)L

(13)× U(1)Y × U(1)B–L,

where SU(3)C × SU(2)L × U(1)Y is the standard
model gauge group. SinceZ3 × Z3 is Abelian and
rank(Spin(10)) = 5, an additional rank one factor mu
appear. For the chosen embedding ofZ3 × Z3, this is
precisely the gaugedB–L symmetry.

As discussed in[6], the zero mode spectrum o
V ⊕W onX is determined as follows. LetR be a rep-
resentation ofSpin(10), and denote the associatedṼ

bundle byUR(Ṽ ). Find the representation ofZ3 × Z3
onH 1(X̃,UR(Ṽ )) and tensor this with the represen
tion of the Wilson line onR. The zero mode spectrum
is then the invariant subspace under this joint gro
action. Let us apply this to the case at hand. First c
sider the16 representation. It follows from Eq.(9)
that no such representations occur. Hence, no ex
SU(3)C × SU(2)L × U(1)Y × U(1)B–L fields arising
from vector-like16–16 pairs appear in the spectrum
as desired. Now examine the16 representation. Th
Atiyah–Singer index theorem, Eqs.(7) and (9)imply
that

(14)h1(X̃, Ṽ ) = 27.

We can calculate theZ3 × Z3 representation on
H 1(X̃, Ṽ ) as well as the Wilson line action on16.
Tensoring these together, we find that the invari
subspace consists of three families of quarks and
tons, each family transforming as

(15)(3,2,1,1), (3,1,−4,−1), (3,1,2,−1)

and

(16)(1,2,−3,−3), (1,1,6,3), (1,1,0,3)

underSU(3)C ×SU(2)L×U(1)Y ×U(1)B–L. We have
displayed the quantum numbers 3Y and 3(B–L) for
convenience. Note from Eq.(16) that each family con
tains a right-handed neutrino, as desired.

Finally, consider the10 representation. Recall from
Eq. (10) that h1(X̃,∧2Ṽ ) = 14. We find that the
representations of the two generators ofZ3 × Z3 in
H 1(X̃,∧2Ṽ ) are given by the 14× 14 matrices

(17)
diag

(
1,1,1,ω1,ω

2
1,ω1,ω

2
1,1,1,1,ω1,ω

2
1,ω1,ω

2
1

)

sand

(18)
diag

(
1,ω2,ω

2
2,1,1,ω2

2,ω2,1,ω2,ω
2
2,1,1,ω2

2,ω2
)

respectively, whereω1 andω2 are third roots of unity.
Furthermore, the Wilson lineW can be chosen so tha

(19)10 = (
ω2

1

)
5 ⊕ (ω1)5

and

(20)10 = (
2 ⊕ (

ω2
2

)
3
) ⊕ (

2 ⊕ (ω2)3
)

are the representations on10 of the first and secon
generators. Tensoring these actions together, one
that the invariant subspace consists oftwo copies of
the vector-like pair

(21)(1,2,3,0), (1,2,−3,0).

That is, there are two Higgs–Higgs conjugate pairs
curring as zero modes of our vacuum.

Putting these results together, we conclude that
zero mode spectrum of the observable sector (1)
gauge groupSU(3)C × SU(2)L × U(1)Y × U(1)B–L,
(2) containsthree familiesof quarks and leptons eac
with a right-handed neutrino, (3) has two Higgs–
Higgs conjugate pairs and (4)contains no exotic field
of any kind. Additionally, there are (5) asmall number
of uncharged vector bundle moduli. These arise fr
the invariant subspace ofH 1(X̃, Ṽ ⊗ Ṽ ∗) under the
action ofZ3 × Z3.

Thus far, we have discussed the vector bundle of
observable sector. However, the vacuum can conta
stable, holomorphic vector bundle,V ′, on X whose
structure group is in theE′

8 of the hidden sector. A
above, one can constructV ′ by building stable, holo-
morphic vector bundles̃V ′ overX̃ which are equivari-
ant underZ3 × Z3 using the method of “bundle exten
sions”.V ′ is then obtained by taking the quotient ofṼ ′
with Z3 × Z3. The requirement of anomaly cancell
tion relates the observable and hidden sector bun
imposing the constraint that

(22)[W] = c2(T X̃) − c2(Ṽ ) − c2(Ṽ
′)

must be an effective class. Herec2 is the second Cher
class. In the strongly coupled heterotic string,[W] is
the class of the holomorphic curve around which
bulk space five-brane is wrapped. In the weakly c
pled case[W] must vanish. We have previously co
structedX̃ and Ṽ and, hence, can computec (T X̃)
2
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andc2(Ṽ ). Then Eq.(22) becomes a constraint on th
hidden sector bundlẽV ′. The easiest possibility is tha
Ṽ ′ is the trivial bundle. However, in this case, we fi
that[W] is not effective.

The next simplest choice is to takẽV ′ to have struc-
ture group

(23)G′ = SU(2)

in E′
8. This spontaneously breaks the hidden sectorE′

8
symmetry to

(24)E′
8 → E7.

Recall that with respect toSU(2)×E7 the adjoint rep-
resentation ofE′

8 decomposes as

(25)248′ = (1,133) ⊕ (3,1) ⊕ (2,56).

We now require that there be no exotic matter fie
in the hidden sector. This imposes the additional c
straint that

(26)h1(X̃, Ṽ ′) = 0.

Finally, the requirement that̃V ′ be stable implies the
conditions

h0(X̃, Ṽ ′) = 0, h0(X̃, Ṽ ′ ∗) = 0,

(27)h0(X̃, Ṽ ′ ⊗ Ṽ ′ ∗) = 1.

It can be shown[7] that vector bundles̃V ′ satisfying
Eqs.(22), (23), (26) and (27)can be constructed. Fo
these bundles[W] is non-vanishing and, hence, this
a vacuum of the strongly coupled heterotic string. T
five-brane wrapped on a holomorphic curve associa
with [W] contributes non-Abelian gauge fields, but
matter fields, to the hidden sector. Following the
sults in[16], we find that the five-brane gauge gro
is

(28)G′
5 = U(6).

Moving in the moduli space of the holomorphic curv
this group can be maximally broken toU(1)6. We
conclude that, within the context of the strongly co
pled heterotic string, our observable sector is con
tent with a hidden sector with gauge groupE7 × U(6)

andno exotic matter. There are, additionally, asmall
numberof uncharged vector bundle moduli that ar
from the invariant subspace ofH 1(X̃, Ṽ ′ ⊗ Ṽ ′ ∗) under
Z × Z , as well as some five-brane moduli.
3 3
We now exhibit a hidden sector, compatible w
our observable sector, that has no five-branes; tha
for which

(29)[W] = 0.

This does not occur for structure groupG′ = SU(2).
From the results in[17], we expect that the appropria
group may be the product of two non-Abelian grou
The simplest choice is

(30)G′ = SU(2) × SU(2).

This bundle, which is the sum of twoSU(2) factors
Ṽ ′ = Ṽ ′

1 ⊕ Ṽ ′
2, spontaneously breaks the hidden sec

E′
8 gauge group to

(31)E′
8 → Spin(12).

With respect toSU(2) × SU(2) × Spin(12) the adjoint
representation ofE′

8 decomposes as

248′ = (3,1,1) ⊕ (1,3,1) ⊕ (1,1,66)

(32)⊕ (1,2,32) ⊕ (2,1,32) ⊕ (2,2,12).

The hidden sector will have no exotic matter fields

(33)h1(X̃, Ṽ ′
1

) = 0, h1(X̃, Ṽ ′
2

) = 0,

and

(34)h1(X̃, Ṽ ′
1 ⊗ Ṽ ′

2

) = 0.

Finally, note that the stability of each bundlẽV ′
i , i =

1,2 implies the conditions

h0(X̃, Ṽ ′
i

) = 0, h0(X̃, Ṽ ′ ∗
i

) = 0,

(35)h0(X̃, Ṽ ′
i ⊗ Ṽ ′ ∗

i

) = 1, i = 1,2.

Subject to Eq.(22) and the condition Eq.(29) that
there be no five-brane, we are unable to simu
neously satisfy all of the constraints in Eqs.(33),
(34) and (35). Demanding that the stability condition
Eq. (35) hold, it is possible to choosẽV ′

i , i = 1,2 so
that only the first condition in Eq.(33) is fulfilled. One
finds that, minimally,

(36)h1(X̃, Ṽ ′
2

) = 4

and

(37)h1(X̃, Ṽ ′
1 ⊗ Ṽ ′

2

) = 18.

However, we can show that theZ3 × Z3 action on
H 1(X̃, Ṽ ′) has no invariant subspace. It follows th
2
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the associated matter fields will be projected out
der the quotient byZ3 × Z3. Unfortunately, this is
not the case forH 1(X̃, Ṽ ′

1 ⊗ Ṽ ′
2). Here, we find tha

the Z3 × Z3 action is two copies of its regular rep
resentation, which leaves a two-dimensional subsp
of H 1(X̃, Ṽ ′

1 ⊗ Ṽ ′
2) invariant. Hence, after quotientin

by Z3 × Z3, one finds two12 multiplets ofSpin(12).
We conclude that, for vacua with no five-branes,
observable sector is consistent with a hidden s
tor with gauge groupSpin(12) and two 12 multiplets
of exotic matter. There are also vector bundle mo
uli arising from theZ3 × Z3 invariant subspace o
H 1(X̃, Ṽ ′ ⊗ Ṽ ′ ∗). These vacua can occur in the co
text of both the weakly and strongly coupled hetero
string.
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M. Cvetič, G. Shiu, A.M. Uranga, Nucl. Phys. B 615 (2001)
hep-th/0107166;
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