
Web- and Cloud-based Software Infrastructure for

Materials Design

Janos Sallai1, Gergely Varga1, Sara Toth1, Christopher Iacovella2, Christoph
Klein2, Clare McCabe2, Akos Ledeczi1, and Peter T. Cummings2

1 Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
janos.sallai@vanderbilt.edu

2 Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA

Abstract
Molecular dynamics (MD) simulations play an important role in materials design. However,
the effective use of the most widely used MD simulators require significant expertise of the
scientific domain and deep knowledge of the given software tool itself. In this paper, we present
a tool that offers an intuitive, component-oriented approach to design complex molecular sys-
tems and set up initial conditions of the simulations. We integrate this tool into a web- and
cloud-based software infrastructure, called MetaMDS, that lowers the barrier of entry into MD
simulations for practitioners. The web interface makes it possible for experts to build a rich
library of simulation components and for ordinary users to create full simulations by param-
eterizing and composing the components. A visual programming interface makes it possible
to create optimization workflows where the simulators are invoked multiple times with various
parameter configurations based on results of earlier simulation runs. Simulation configurations
including the various parameters, the version of tools utilized and the results are stored in a
database to support searching and browsing of existing simulation outputs and facilitating the
reproducibility of scientific results.

Keywords: modeling, molecular dynamics simulation, code generation, scientific workflows

1 Introduction

Understanding and controlling the assembly of nanoparticles into arbitrarily sized and shaped
functional structures underpins the evolving field of nanotechnology. An emerging philosophy
is to use tethered nanoparticles (TNPs). If the tethers and the NPs dislike each other, these
building blocks behave akin to surfactants, leading them to assemble into anisotropic structures.
By changing the shape of the nanoparticle, even more complex structures are possible. The

The work presented in this paper was supported by the National Science Foundation grants NSF CBET-
1028374 and NSF OCI-1047828.

Procedia Computer Science

Volume 29, 2014, Pages 2034–2044

ICCS 2014. 14th International Conference on Computational Science

2034 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

doi: 10.1016/j.procs.2014.05.187 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82707153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.187&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.187&domain=pdf


resulting assemblies potentially have broad utility across the physical sciences and biology. The
ability to assemble metal particles into percolating structures allows us to dramatically increase
the electrical conductivity of typically insulating polymers. Similarly, these TNP constructs
might be particularly useful as membranes for water purification. The power to control particle
self-assembly facilitates the synthesis of a range of biomimetic materials.

Typically, one starts with a given nanoparticle (or ”product formulation”) and then uses
theory/simulation to examine the final assembled superstructure. The properties of the result-
ing nanoparticle assemblies (”Product Performance”) are then determined. These predictions
are validated against experiment as a means of calibrating the fidelity of the models and the
simulations/theory tools used.

There are several different MD simulator packages that can be used within this domain.
While these simulators conceptually do the same thing, there are differences between their
feature sets and performance. Typically, all of them mandate using a tool-specific file format
to represent the input system, and there are syntactic and semantic differences between the
force-fields they support (e.g. different functional forms may be used to describe the behavior
of a bond). The syntax and the expressiveness of the simulator scripts also vary significantly
across simulators. For instance, HOOMD blue [1] uses Python as its scripting language, while
LAMMPS [1] has a custom syntax with just rudimentary support for loops and conditionals.
Often, there is no clear separation between the scripts and the data they operate on: while the
particles, their positions and chemical properties, as well as their relations (bonds, angles, etc.)
are defined in a data file, the force-field specific parameters (bond, angle values, particle-specific
Lennard-Jones parameters, etc.) must often be specified in the script file. Because of all this,
a common API for MD simulators has remained quite elusive.

Given this extreme heterogeneity, how does a typical research group manage their MD
workflows? Clearly, setting up an input datafile, even if it contains several instances of the same
molecule type, is not possible by hand, due to the large number of particles and interactions
involved. As a result, research groups typically write their own codes to generate the systems
of particles, enumerate bonds, angles, etc., and tag them with their appropriate parameters
coming from published force-fields. If the research group uses multiple simulator platforms,
custom code is written to convert between input and output file formats. Similarly, custom
code is written to extract the quantities of interest from the trajectory dump files and the final
output file generated by the simulators. Writing such code is very tedious, error prone, and
last but not least, extremely time consuming. Unfortunately, these scripts are often one-shot
solutions, that are subject to opportunistic reuse, with no programming and naming conventions
or well-defined interfaces. They tend to lack proper documentation, and the knowledge is often
lost if the codes author leaves the research group. Still, this ”shared” code captures an immense
amount of domain-specific and simulator-specific knowledge that is of great value to the research
group.

To address these challenges, we have adopted Model-Integrated Computing (MIC) [6], an
established methodology in systems engineering. The underlying idea behind MIC is to facilitate
the design of Domain-Specific Modeling languages (DSMLs) for various engineering, science,
and other applications. DSMLs are meant to capture the essential functionalities and features
of the individual components of a given process they are modeling, at the level of abstraction
that is appropriate for the end users (i.e., domain experts). The models, in turn, are used to
analyze the system, provide input to simulators, create documentation, and synthesize (parts
of) the system software. MIC has been successfully used in diverse scientific and engineering
domains.

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2035



1.1 Overview

In this paper, we present a novel approach to improve the current state of authoring MD sim-
ulation workflows. First, we describe a hierarchical, component-based approach to build large
systems of particles and enumerate the particles’ relations in a structured way. This component-
based approach promotes structuring the system into reusable units, employs composition op-
erators that automatically carry out coordinate transformations to stitch components together,
allows for parameterization of components through generative modeling (e.g. specifying a car-
bon chain of length n, n being a parameter), provides a simple interface to export the particle
positions and interactions into simulator-specific file formats, as well as to parse back the tra-
jectories into the same component structure to simplify the computation of derived quantities
from simulator outputs.

We then put the component-based particle generation technique into context through a
case study that uses MetaMDS [12], a web-based MIC environment to define a MD simulation
workflow. MetaMDS aims at capturing simulator-specific knowledge by allowing simulator ex-
perts to capture common concepts as reusable basic operations, that can be subsequently used
as the basic (parameterizable) building blocks of simulations in a simulator-agnostic manner.
Domain experts work on this higher level of abstraction to build more complex, domain spe-
cific simulation steps. Simulation steps capture knowledge in a particular domain (e.g. tethered
nanoparticles, or tribology), without requiring the domain experts to have expertise in a partic-
ular simulator tool. Simulations are built from these reusable (and parameterizable) simulation
steps, and can be included in workflows specified in a visual orchestration language similar to
Scratch. The language supports variables and control structures common to imperative lan-
guages (loops, branching, etc.) and treats metaprogrammed simulations as first-class language
elements. Variables of the orchestration language can be used as parameters of the simulation
statements, and conversely, the results of the simulation can be extracted into variables through
simulator-specific evaluators (specified by the metaprogrammer). The web-based interface also
allows for submitting the simulation workflows to remote HPC clusters, polling the job status,
and downloading the outputs.

1.2 Related Work

MIC has been used in many engineering and scientific domains. The main novelty of its ap-
plication to materials science is that instead of the standard desktop-based toolsuite called the
Generic Modeling Environment [7], here we use a new web-based toolset specifically developed
for this domain. Within the MD simulation domain, the approach most closely related to our
work is the Nanohub [9]. The Nanohub provides a web-based interface for a variety of simulation
softwares. However, the interface is somewhat unusual. Each simulator has its own front-end
and Nanohub serves them up via a Java-based VNC (screen sharing) client. The complexity
of the variety of simulators is addressed through simplified user interfaces: the user is only
presented with a limited subset of options to help guide the simulations. Most of the modules
have a consistent look and feel, so the learning curve is reasonable. Visualization and plotting
tools are often built into the GUIs. Jobs are submitted to clusters and the results copied back
to the Nanohub space. Unfortunately, Nanohub has its set of limitations. The VNC-based user
interface is not very responsive. User-level customization is not supported. The user can only
change the parameters that Nanohub includes in its simplified interface. There is no interac-
tion supported between various tools: the output of one simulator cannot be trivially fed to the
input of another. Similarly, the primary mode of operation is interactive, since most tools have
been developed with education in mind, and thus submitting a large set of jobs is not easily

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2036



accomplished. The Atomic Simulation Environment (ASE) [2] is a Python-based tool that can
connect to many different simulation codes as calculators you plug into the environment. It
has thus far been primarily developed for quantum mechanical calculations and thus, in its
current state, is not suited for most MD simulations. The power of ASE lies in its ability to
bring in many different codes and tools that can be linked together in a common interface. The
use of the Python programming language makes it potentially easy to expand and interface
with other math toolkits, plotting and visualization libraries, etc. However, using ASE has a
steep learning curve for those with limited or no programming experience. For example, since
each calculator may in fact be very different, the functions required to use a given calculator
are often unique, so tool integration with ASE is not seamless at all. MDAPI [8] is similar
to ASE, however developed for biophysical simulation, where the interface and computational
engines are separated. However, similar to ASE, a steep learning curve is required and it no
longer appears to be actively developed. Etomica [4] is a molecular simulation code written in
Java, enabling it to be easily used and distributed via the web. While it does not allow end
users to directly create custom simulations via the web, nevertheless, the user can run a variety
of prewritten modules with custom parameter settings, similar to Nanohub. Etomica has de-
fined a molecular simulation API, enabling simulations to be constructed from generic pieces,
however, the API contains many specifications that are related to Java and the interactive
frontend development, rather than generic simulation elements. In contrast to these existing
efforts, our approach provides an extensible, fully customizable, web-based environment where
simulator experts can build a library of simulation components, define how these components
are mapped to (potentially multiple) simulation platforms, create full simulation templates that
can be customized and run by domain experts without the need to write computer programs.
There are a number of reports on systems with similar objectives in the literature outside the
MD simulation domain – e.g. the SAFE framework for automating network simulations [10],
or WorMS [11], a workflow framework for modeling and simulation in general.

2 Building complex systems of particles

The inputs of an MD simulator can be divided into three conceptual groups: 1.) initial con-
figuration of the system of particles, which includes particle types, their masses, charges and
other intrinsic properties, the geometry of the initial configuration (3-dimensional positions),
velocities and accelerations, as well as a bounding box, often with periodic boundaries; 2.)
the interactions between the particles. This includes bonds, which is a binary relation, angles
(a 3-ary relation), and dihedrals (4-ary relation), and also non-bonded interactions, e.g. the
Lennard-Jones potential, that can be described by particle-specific parameters. Each of these
relations have a functional form associated with them, and a set of parameters, specific to a
particular bond, angle and dihedral type; and 3.) the simulation script, that describes a series
of steps to be performed on the system (loading/saving the system state, changing the box
dimensions, maintaining or changing pressure/temperature/volume, etc.)

Creating the input data files for MD simulators is a tedious and error prone task. While
generating a desired particle geometry is relatively manageable programatically, properly enu-
merating the interactions is not trivial. One common approach is to identify a repetitive
pattern in the desired system, which is created by hand and cloned iteratively to fill up a given
3-dimensional box. This works well if there repetitive pattern is a standalone molecule, but
becomes immensely complicated when there are bonds (or angles or dihedrals) between atoms
in different clones (e.g. for carbon chains attached to a crystalline surface). In such cases, these
bonds (angles, and dihedrals) are external to the repeating cell, and have to be added to the

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2037



system in a second pass after repetitively cloning the cells in a first pass. Periodic boundaries
(what flies out on one side flies in on the opposite side) can further complicate this: in an
extreme case, there might be a dihedral involving all four of its atoms in four different corners
of the box.

Researchers designing MD simulators face such and similar problems every day, and signif-
icant effort is put into solving them over and over again. Unfortunately, however, there is not
much opportunity for reuse within this framework. Even a small change in a basic building block
of the system (e.g. changing the chain length, or replacing hydrocarbons with fluorocarbons)
could require a drastic rewrite of the code that clones and stitches them together.

To attack this problem, we propose mBuild, a hierarchical, component-based approach to
building complex systems of particles. Following the composite pattern [5] commonly applied
in MIC, a component can contain particles and other components, recursively, which generates
a hierarchical structure with the particles being the leaves of the hierarchy. A component has
its own reference coordinate system. When two components are composed to form a composite
component, their respective particles are imported into the composite’s coordinate system with
their coordinates unchanged (a simple union operation). In most cases, this is not the desired
behavior, therefore, we define the following composition operators that are applied to the child
component before adding it to the composite: translation to a point, rotation around the x, y
and z axes, reflection around a point or plane, and the equivalence operator (described later in
detail). For convenience, we also allow for deleting and renaming particles at composition.

The equivalence operator allows for designating points in the composite’s local coordinate
system that are declared equivalent to points in the child’s coordinate system. Using these
point pairs, it is possible to compute a rigid transformation (an affine coordinate transformation
conserving scaling and orientation) that, when applied to the child component, will transform
the child’s designated points to the composite’s respective points. Specifying three or more
pairs of non-collinear points is sufficient to compute an unambiguous transformation matrix.

The rigid transformation F that maps a point (vector) v to its image F (v) in a different
coordinate system can be expressed as a multiplication by a rotation matrix R ∈ R

3×3) and a
translation with vector t ∈ R

3×1.

F (v) = Rv + t (1)

Given three or more points Pi(xi, yi, zi) and their images P
′
i (x

′
i, y

′
i, z

′
i) in the target coordi-

nate system, we can solve the following system for R and t using the singular value decompo-
sition to get the pseudoinverse:

⎡
⎢⎢⎣
x

′
1 x

′
2 ... x

′
n

y
′
1 y

′
2 ... y

′
n

z
′
1 z

′
2 ... z

′
n

1 1 ... 1

⎤
⎥⎥⎦ =

[
R t
0 1

]
⎡
⎢⎢⎣
x1 x2 ... xn

y1 y2 ... yn
z1 z2 ... zn
1 1 ... 1

⎤
⎥⎥⎦ (2)

The equivalence operator has proved tremendously useful for the domain scientists. Instead
of having to manually compute how two fragments of a molecule need to be rotated and trans-
lated so that they attach properly to one another, now it is sufficient to extend one of the
fragments with three particles from the other one, and then to specify the equivalence operator
over those three particles and their images in the other fragment. Consider Figure 1 as an
example, described in 2-dimensions with unit distances between the atoms for simplicity. Com-
ponent C1 represents an end of a carbon chain: a CH3 group with the image of a CH2 group
(marked with dashed lines). Component C2 represents a fragment of an alcohol molecule, a
hydroxyl group and a CH2 group. In order to compose the two to form an ethanol molecule,

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2038



Figure 1: Component composition. C3 is a composition of C1 and C2 with equivalence
relations involving three atom pairs.

we express that the atoms of the CH2 image in C1 are piecewise equivalent to the atoms of the
CH2 group in C2. The atom positions in the composite component C3 are computed as follows.
The atom coordinates of the first child component that is added (in this case: C1) are imported
without modification. However, subsequent child components that are part of an equivalence
relation with already added parts will be subject to a coordinate transformation: the atoms
of C2 have to be rotated and translated (rigid transformation) such that the CH2 group lines
up with the CH2 image in the already added subcomponent. The transformation matrix and
translation vector are computed by solving Equation 2.

Taking this a step forward, we introduced the concept of ports to mBuild. Port (see Figure 2)
is a component containing three ghost particles in a fixed, triangular arrangement. Ghost
particles are used exclusively for equivalence-based compositions and are discarded thereafter.
With the help of ports, attaching molecule fragments to one another becomes even simpler
(see Figure 2). Each component representing a fragment can now include a port as a child
component, rotated and translated to a desired position within the fragment’s own coordinate
system. Joining the two fragments is done by defining an equivalence relation between their
respective ports – no adding of image particles are required. This ensures that components
contain no information about their context, therefore they are easier to reuse across multiple
simulation designs.

Figure 2 illustrates how to use ports to build an ethanol molecule from two fragments: C1

containing a CH3 group and C2 containing a CH2 group and an OH group, respectively. To
attach C1 and C2 together, we add a port to C1 translated halfway towards the direction where
C2 should be attached, i.e. to (0.5, 0, 0). Similarly, we need to add a port to C2, rotated
by 90 degrees and translated to (0, -0.5, 0). To construct the ethanol component (referred
to as C3), we compose instances of C1 and C2 with the equivalence relation expressing that
C1.port ≡ C2.port.

With the help of ports, generative modeling of systems of particles with recurring patterns
becomes feasible. For instance, consider the example generating alcohol molecules with alkyl
chains of length n. Extending the previous example with component C4 representing a CH2

group, the repetitive part of the carbon chain, with two ports (one on each side of the carbon
atom), we can describe an arbitrary long chain by inserting C4 between C1 and C2 multiple
times. Obviously, the equivalence operator must be used iteratively in this case, whenever a
new subcomponent is created and added to the composite component.

Currently, mBuild components are specified as Python classes, derived from a base class that
provides functionality for adding subcomponents or atoms to the component, as well as for the
composition operators, including translation, rotation, reflection and equivalence. To create a
new component, the user has to override the create method of the base class, implementing how

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2039



Figure 2: Component composition using ports. A port is a component with 3 ghost
particles. C1 and C2 are composite components, both contain several atoms and a port as a
subcomponent. C3 is a composition of C1 and C2 with equivalence relations involving their
ports.

Figure 3: XML definitions of the above components. Carbon, hydrogen, and oxygen
atoms are denoted with the C, H and O tags. G tags denote ghost particles. Subcomponents
are added with the compound tag, with optional coordinate transformations defined on them
in child tags.

child components are instantiated and transformed. For simple component definitions, where a
fixed number of atoms or subcomponents are composed, we provide an XML-based language to
describe the internals of the component (subcomponents, atoms, composition operators), avoid-
ing the need to write Python code. Figure 3 shows the XML-based specification of the ethanol
composition example shown in Figure 2. For complex cases, e.g. when the component includes
repetitive structures, we support Python-based component specification only. For convenience,
we support wrapping legacy chemical file formats (e.g. XYZ) into mBuild components, this
way a large set of already existing molecules can be used as components in an mBuild based
system.

Notice that mBuild components only describe atom positions. Relations between atoms,
such as bonds, angles and dihedrals, are added to the system of particles in a postprocessing
step after the system has been assembled recursively from its components and all atom positions
become known. We use a rule-based approach to do this. Rules are simple Python methods
that add a bond (or angle, or dihedral) to the system if a predicate over two (or three, or four)
particles holds true. For instance, a rule may describe to add a bond of type ”C-H” between
a carbon and a hydrogen atom if their distance is in the interval [0.9,1.1]. A rule that adds
an angle of type ”C-C-H” over two carbons and a hydrogen can require that the hydrogen
is bonded to a carbon, which, in turn, is bonded to the other carbon. Necessarily, the rules
adding the angles to the system would need to run after the bond rules. After all the rules have
completed, the system can be exported to file formats that can be read by the simulator tools.

To avoid the polynomial complexity of rule execution (e.g. enumerating all O(n2) pairs of
particles for bond generation), mBuild constructs a kd-tree data structure to spatially index
the particles. Kd-tree allows for querying the k nearest neighbors of a point in Euclidean space

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2040



in O(logn) time, reducing the complexity of bond rule execution to O(nlogn). As a result,
currently, mBuild can handle systems with the number of particles in the 100,000 range, with
the memory available to the Python interpreter being the limiting factor.

3 Case Study

3.1 Simulations and workflows

The MetaMDS environment was introduced in [12]. Here we present a brief overview of how
simulations and optimization workflows are specified in MetaMDS.

Typically, simulations consist of the same conceptual building blocks, regardless of the MD
simulator used, representing elementary operations such as reading or writing a data file, resizing
the box, setting up integrators or evolving the system for a number of time steps. Their syntax
is tool-specific, but semantically they are often similar or equivalent.

Expert users (metaprogrammers) are expected to create a rich library of these commonly
used simulation steps. A simulation step has an identifier, a textual description, zero or more
parameters with predefined default values, and a set of code templates for each supported sim-
ulator target (e.g. LAMMPS/2011.08, HOOMD-Blue 0.10.1). The textual description provides
information for potential users of the given block on what functionality the step implements.
Its semantics are captured in the code templates, which describe what code snippets will be
generated from it and its parameters for a particular MD simulator target.

Simulation steps can have multiple parameters with name, type, default value, environment
and visibility properties. Parameter values can be set or overridden at higher levels of the
design hierarchy where the steps serve as building blocks. The visibility attribute may be used
to mark a particular parameter as private, which means that its value cannot be altered outside
of this definition.

The next level of the hierarchy groups simulations steps together in a well-defined order to
specify an entire simulation. Parameter values that are public in the simulation steps can still
be altered by the users prior to running the simulation. The simulator script for the selected
MD simulator target is automatically generated from the simulation specification.

The workflow is the top level entity that connects simulation logic with particle data and
server profiles. The user can load simulations into a workflow, define custom parameters, and
set up a program flow that controls simulation execution. This is supported through a visual
programming language built on top of Blockly [3]. An example workflow is shown in Figure 4.
The next section will present a detailed explanation of this sample workflow.

To run a simulation, we need to set up specific simulators on local servers or use remote
systems. To achieve this, MetaMDS maintains a list of server profiles where configuration
settings (e.g. credentials to access the job manager (e.g. PBS), number of cores used, etc.) are
stored.

Once the simulation has been designed, it is the workflow specification that aggregates all
the required information: 1) the prototype of the particles used in the simulation and the
description of how it will be replicated throughout the simulation box, 2) the specification of
the simulation consisting of simulation steps, 3) the visual workflow specification describing
how the simulation needs to be repeatedly run with all parameter values specified by the user
including the selected simulation engine and finally, 4) the necessary information about the
target server.

The orchestration engine is an extensible interpreter that executes the Blockly code. It can
process a) control flow blocks (conditional branching, loops, function definitions and calls), b)

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2041



arithmetic and c) logic operator blocks, d) list and string handling blocks, as well as e) variable
assignment and evaluation blocks, translating it into executable Python code.

Simulation blocks are handled by interpreter plugins, specific to the simulator platform on
which the simulation is chosen to run. When the orchestration engine encounters a simulation
block in the workflow specification, it locates the interpreter plugin registered for that particular
block type, and invokes it with the following parameters: 1) the relevant part of the abstract
syntax tree, including the extrinsic block itself and all of its descendants, and 2) the actual
variable assignments that are used within the simulation block, as a key-value map. With this
information at hand, the interpreter plugin invokes the simulator specific script generation and
starts up the simulator.

Simulator blocks, along with their descendant simulation steps, are treated as opaque ex-
pressions in the visual language. The value of the expression is a handle, with which the
orchestration engine can reference the outputs of the corresponding simulation run.

Introspection of simulation outputs is achieved through the concept of evaluators. Evalua-
tors are Python functions, defined by the metaprogrammer for each supported simulator, that
read the simulator outputs (identified by a simulation handle) to extract and return values of
interest.

3.2 Isobar computation example

Figure 4: Isobar computation
workflow in MetaMDS.

We demonstrate how MetaMDS is used to build MD
simulation workflows through a simple example.

A large molecular system of tethered nanoparticles
(called Sample particle config), specified in mBuild
XML format, is added to the particle configurations
database of the MetaMDS environment, and the prop-
erty we need to compute is the isobar curve: the rela-
tionship between temperature and volume for a fixed
number of particles.

The simplest way to solve this task is to execute
an MD simulation that run an NPT integrator (con-
serving moles (N), pressure (P) and temperature (T))
iteratively at a series of temperatures within the tem-
perature range of interest. The MD simulator script,
after equilibrating the system, runs it in equilibrium
state for a while to collect and log the system’s vol-
ume at regular interval. The logged values are then
averaged, and the pressure is computed, dividing the
number of particles with the average volume.

In MetaMDS, the isobar workflow is expressed as
follows. Variables are declared for the temperature
range of interest (Tlow and Thigh), and the granularity
of the computation (nsteps = 10). In a loop, we itera-
tively compute the 10 temperature values (Tcurrent) at
which we intend to identify the pressures through MD
simulation. The NPT simulation (dark brown block)
is executed within the loop’s body. Notice that the
input particle configuration is a property of the simulation block, which is set to the Sample

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2042



particle config database entry. The simulation is built up of two conceptual simulation steps: i.)
System initialization step, that reads the particles from an XML file and sets the parameters for
the bonded and non-bonded interactions defined therein, and ii.) NPT integration step, that
sets the target temperature to Tcurrent for the NPT ensemble, runs the simulator to equilibrate
the system, then turns on logging and evolves the system to collect the volume information.

Notice that the simulation block behaves like an expression in the workflow language. The
value of this expression is a simulation handle, with which we can refer to the simulation later
during program execution to access simulation results. One example of using the simulation
handle is the avg volume block: avg volume is an evaluator that reads the logged volume values
output by the simulator and returns their average.

Finally, the density is computed by dividing the number of particles by the average volume,
and is printed to the standard output along with the current temperature. By the end of the
last iteration, therefore, all 10 points of the isobar will be written out.

4 Conclusion

The key advantage of the presented approach to users is that the computational design of ma-
terials is decoupled from the design and implementation of simulation-based experiments. The
MIC-based technique adopted here required multidisciplinary cooperation of various experts
in putting together the modeling environment and the code generators on the back-end, as
well as in building the component models. Users of the resulting environment interact with
the web-based front end only, and hence, they only need to be experts in their own domain,
e.g., nanoscale materials. They are able to design new structures from the provided building
blocks and composition rules, adjust their attributes, specify the kind of simulation, property
analyses and visualization they desire, pick from the available target hardware platforms - the
tool environment then will automatically assemble the necessary simulation and other software
components, execute them on the appropriate available platform(s), store the results in the
database and display them on the front-end. Further, the availability of the system, software
and hardware models creates the potential for the automatic tuning/configuration of key par-
allel code components for different designs/experiments. Since the results of these simulations
are stored in a database, over time, this cyber-infrastructure will become a clearinghouse for
NBB designs and their properties thus facilitating further scientific discovery.

References

[1] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose molecular dynamics
simulations fully implemented on graphics processing units. Journal of Computational Physics,
227(10):5342 – 5359, 2008.

[2] Atomic Simulation Environment web page. https://wiki.fysik.dtu.dk/ase/.

[3] Blockly web page. http://code.google.com/p/blockly/.

[4] Etomica web page. http://etomica.org/.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[6] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-integrated development
of embedded software. Proceedings of the IEEE, 91(1):145–164, 2003.

[7] A. Lédeczi, A. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom, J. Sprinkle, and G Karsai. Composing
domain-specific design environments. IEEE Computer, pages 44–51, 2001.

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2043



[8] MDAPI web page. http://www.ks.uiuc.edu/Development/MDTools/mdapi.

[9] NanoHUB web page. http://www.nanohub.org/.

[10] L Felipe Perrone, Christopher S Main, and Bryan C Ward. Safe: simulation automation framework
for experiments. In Proceedings of the Winter Simulation Conference, page 249. Winter Simulation
Conference, 2012.

[11] Stefan Rybacki, Jan Himmelspach, Fiete Haack, and Adelinde M Uhrmacher. Worms-a framework
to support workflows in m&s. In Proceedings of the Winter Simulation Conference, pages 716–727.
Winter Simulation Conference, 2011.

[12] Gergely Varga, Sara Toth, Christopher R. Iacovella, Janos Sallai, Peter Volgyesi, Akos Ledeczi, and
Peter T. Cummings. Web-based metaprogrammable frontend for molecular dynamics simulations.
In 3rd International Conference on Simulation and Modeling Methodologies, Technologies and
Applications (SIMULTECH), Reykjavik, Iceland, 07/2013 2013.

Web- and Cloud-based Software Infrastructure for Materials Design Sallai et al.

2044


