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a b s t r a c t

Clinical applications of a chemotherapeutic agent, 5-fluorouracil (5-FU) in oral squamous cell
carcinoma (OSCC) have been limited because of drug resistance. This study aimed to identify novel
mechanisms of 5-FU resistance. Here we found increased osteopontin (OPN) gene expression in
OSCC tissues with resistance to 5-FU-based chemoradiotherapy. OPN overexpression in OSCC cells
led to 5-FU resistance and abrogated the prosurvival effect of the drug in a mouse xenograft model.
OPN-induced 5-FU resistance required integrin avb3. Targeting integrin avb3 reversed the resistance
in a 5-FU-resistant clone highly expressing OPN. Our data suggest that the OPN-integrin avb3 axis is
crucial for 5-FU resistance in OSCC.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction radiotherapy for several diseases. Despite the many advantages of
The most common head and neck neoplasm is oral cancer, mainly
oral squamous cell carcinoma (OSCC), which affects about 270000
people throughout the world [1]. Progress in early detection, diagno-
sis, and treatment of head and neck squamous cell carcinoma has
occurred, but the 5-year survival of patients with head and neck
squamous cell carcinoma has stayed at 50% for some 30 years [2].

The widely used 5-fluorouracil (5-FU) is one of the most effec-
tive and commonly used chemotherapeutic agents for OSCC and
many other solid tumors including colon, breast, and stomach
tumors [3]. Inasmuch as the radiosensitizing properties of 5-FU
are well established, this drug is also commonly used for chemo-
5-FU, however, its clinical applications in OSCC have been greatly
limited because of intrinsic or acquired drug resistance. Therefore,
new strategies for therapy and reversal of resistance are urgently
required. In addition, understanding the mechanisms by which
tumors gain resistance to 5-FU is essential for predicting or over-
coming that resistance.

Multiple mechanisms underlying 5-FU resistance have been
described for many types of cancer including OSCC. However, most
preclinical and clinical studies focused on molecules associated
with 5-FU metabolism including dihydropyrimidine dehydroge-
nase and thymidine phosphorylase, or thymidylate synthase, a
well-characterized 5-FU target [4,5]. These studies so far failed to
describe clinically useful predictive biomarkers and produce useful
targeted agents [4]. Better understanding of the molecular signa-
ture of 5-FU-resistant populations is therefore needed. In this
study, we aimed to identify novel, clinically relevant mechanisms
of 5-FU resistance in OSCC patients that may be targeted for over-
coming this resistance.
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Table 2
Clinicopathological characteristics of patients with OSCC whose specimens were
analyzed by means of qRT-PCR.

Characteristic Sensitive patients
(n = 30)

Resistant patients
(n = 19)

Sex (male/female) 18/12 9/10

Age (years,
mean ± S.E.M.)

67.77 ± 11.47 75.36 ± 8.37

Tumor location
Gum 15 5
Tongue 8 6
Buccal area 5 5
Floor 2 3

Tumor size
T1–T2 18 7
T3–T4 12 12

Node stage
N0 11 9
N+ 19 10

Tumor stage
I–II 7 4
III–IV 23 15
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2. Materials and methods

2.1. Clinical characteristics of patients and patient samples

We obtained the initial biopsy specimens for gene expression
microarray analysis from six patients with OSCC and specimens
for real-time quantitative reverse transcription-PCR (qRT-PCR)
from 49 patients with OSCC. All patients were treated at the
Department of Oral and Maxillofacial Surgery, Kumamoto Univer-
sity Hospital, between 1999 and 2004. Tables 1 and 2 provide clin-
icopathological details of the patients. All patients were treated
preoperatively with a total dosage of 30 Gy radiation concurrent
with 5-FU before undergoing curative surgery. With regard to this
chemoradiotherapy, radiation was administered at a daily dose of
2.0 Gy, five times weekly for 15 days, and an oral fluorouracil anti-
cancer agent, S-1, was administered concurrently, at 80, 100, or
120 mg/day that depended on each patient’s body surface area,
for 14 days from the initiation of radiotherapy. We staged all
tumors according to the TNM classification of the Union for Inter-
national Cancer Control [6]. The histological response of OSCC to
the preoperative chemoradiotherapy was evaluated by examining
the surgically resected specimen of the primary tumor. According
to the qualitative 4-stage grading system of Oboshi and Shimosato
using semi-serial sections of the entire surgical specimen [7], we
classified the treatment effect into two groups as follows: sensitive
(grade IV), neither viable nor non-viable cancer cells are observed;
resistant (grade I and IIa), cancer cell damages are noted but viable
cancer cells are frequently observed. This study followed the
guidelines of the Ethical Committee of Kumamoto University. We
explained the nature and aims of the research to all subjects,
who gave informed consent for participation in the study. All tissue
samples were placed in sterile tubes, immediately frozen in liquid
nitrogen, and stored at �80 �C until analysis.

2.2. Cell line and cell culture

The human OSCC cell line SAS and HSC3 were kindly provided
by Dr. Shirasuna (Department of Oral and Maxillofacial Surgery,
Graduate School of Dental Science, Kyushu University, Fukuoka,
Japan). A 5-FU-resistant subline established from these SAS cells
(SAS-FR) was kindly provided by Dr. Nagata (Department of Oral
and Maxillofacial Surgery, Kumamoto University Hospital, Japan)
[8]. Cells were grown in Dulbecco’s modified Eagle’s medium (Gib-
co, Carlsbad, CA, USA) with 10% heat-inactivated fetal bovine
serum (Gibco) in a humidified 5% CO2 incubator at 37 �C. 5-FU
was kindly provided by Nippon Kayaku (Tokyo, Japan). To establish
a stable control SAS cell line and a stable SAS cell line that
overexpressed osteopontin (OPN), pcDNA3 empty vector or the
pcDNA3-OPN-V5 (plasmid 11617; Addgene, Cambridge, MA,
USA), respectively, was transfected by using Lipofectamine 2000
(Invitrogen, Life Technologies, Carlsbad, CA, USA) according to
the manufacturer’s protocol, after which the cells were selected
by using G418 (Invitrogen, Life Technologies, 500 lg/ml).
Table 1
Characteristics of six male patients with tongue SCC whose specimens were evaluated
by means of gene expression microarray analysis.

Patient Age (years) TNM Stage Oboshi–Shimosato
classification grade

Sensitive 1 71 T2N0M0 II IV
Sensitive 2 64 T2N1M0 III IV
Sensitive 3 64 T3N1M0 III IV
Resistant 1 59 T2N0M0 II IIa
Resistant 2 87 T2N2bM0 IV I
Resistant 3 59 T4N0M0 IV IIa
2.3. RNA isolation and qRT-PCR

Total RNA was isolated from tissue specimens and cells by using
the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) and was reverse
transcribed to cDNA by using the ExScript RT reagent kit (Takara
Bio Inc., Otsu, Japan), according to the manufacturers’ instructions.
The LightCycler System (Roche Diagnostics, Basel, Switzerland)
with SYBR Premix DimerEraser (Takara Bio Inc.) was used to
perform all PCR reactions. Primers used for qRT-PCR were as
follows: OPN forward: 50-GCCAGTTGCAGCCTTCTCA-30, OPN
reverse: 50-AAAAGCAAATCACTGCAATTCTCA-30; 18S rRNA forward:
50-CGGCTACCACATCCAAGGAA-30, 18S rRNA reverse: 50-GCTGGA
ATTACCGCGGCT-30. Primers were purchased from Sigma (Tokyo,
Japan). 18S rRNA was used as an internal control.

2.4. Gene expression microarrays

From among the tissues frozen in liquid nitrogen, we selected
three sensitive and three resistant OSCC cases (Table 1). Gel elec-
trophoresis was used to check the integration of the RNA isolated
from these tissues; two bands, 18S and 28S, indicated satisfactory
RNA quality. Affymetrix GeneChip Human Genome U133 Plus 2.0
Array (Affymetrix, Santa Clara, CA, USA) was used for the micro-
array experiments according to the manufacturer’s protocol.
Hybridization and scanning were done according to the standard
Affymetrix procedure. Signals of all probes were scanned and cal-
culated with a Gene Array scanner (GCS3000 system; Affymetrix).
Signals with at least 4.0-fold higher expression and 2.0-fold lower
expression and with P values < 0.05 in Student’s t test were consid-
ered to represent up-regulation and down-regulation in the resis-
tant group, respectively. In addition, a heat map of selected
genes was produced by using Cluster 3.0 and Java Treeview 1.0.12.

2.5. Protein extraction and immunoblotting

Cells were washed once in ice-cold PBS and then lysed by the
addition of CelLytic M Cell Lysis/Extraction Reagent (Sigma) con-
taining freshly added protease inhibitor cocktail (Sigma). Equal
amounts of protein were fractionated via SDS–PAGE and trans-
ferred to nitrocellulose membranes (GE Healthcare, Little Chalfont,
UK). Membranes were blocked with 5% non-fat dried milk and 0.1%
Tween 20 in PBS and were then incubated overnight at 4 �C with
antibodies against OPN (Immuno-Biological Laboratories Co. Ltd.,
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Gunma, Japan) and b-actin (Sigma). After the membranes were
washed, they were incubated for 1 h in horseradish peroxidase-
conjugated secondary antibodies. After a washing, specific protein
bands were detected by using ECL Prime Western Blotting
Detection Reagents (Amersham Life Science, Arlington Heights,
IL) according to the manufacturer’s instructions.

2.6. Cell proliferation assay

The OSCC cells (9 � 104 per well) were seeded on 12-well or 24-
well plates. After 24 h, various concentrations of 5-FU were added to
each well, the cells were incubated at 37 �C for another 48 h, and
viable cells in each well were quantified by using the Luna
Automated Cell Counter (Logos Biosystems, Annandale, VA, USA).
To inhibit integrin avb3, cells were treated with the monoclonal
anti-integrin avb3 antibody LM609 (0.5 lg/ml; Merck Millipore,
Darmstadt, Germany) or isotype-matched control antibody (R&D
systems, Minneapolis, MN, USA).

2.7. Soft agar colony formation assay

The colony formation of OSCC cells was tested using CytoSelect
96-well Cell Transformation Assay Kit (Cell Biolabs, San Diego, CA,
USA) following the manufacturer’s instructions. Briefly, cells were
plated in soft agar in a 96-well plate at 1 � 104 cells per well. After
24 h, culture medium containing 5-FU (0.5 lg/ml) or LM609
(0.5 lg/ml) was added and cells were cultured for 7 days. Colonies
were photographed with a phase-contrast microscope and the
absorbance was measured using Promax5 (Media Cybernetics,
Silver Spring, MD, USA) with a 485/520 nm filter set.

2.8. Animal experiments

BALB/c-nu/nu female mice (nude mice), 4-6 weeks old, were
purchased from Charles River Japan (Yokohama, Japan) and main-
tained at the Center for Animal Resources and Development of
Kumamoto University. The mice were handled in accordance with
the animal care policy of Kumamoto University. SAS and SAS-OPN
cells were harvested and resuspended in PBS, after which 5 � 106

cells were injected subcutaneously into the left axilla of each
mouse. After the mice developed palpable tumors, they were
placed in the 5-FU or PBS treatment group according to their clo-
sely matched tumor volumes. The mice then received intraperito-
neal injections of 5-FU (100 mg/kg) or PBS once weekly. The health
of the mice and evidence of tumor growth were evaluated every 3–
4 days. Tumor development was followed in individual animals by
sequential caliper measurements of length (L) and width (W).
Tumor volume was calculated by means of the formula LW2p=6.

2.9. Statistical analysis

Student’s t test was used to evaluate differences between two
groups. All analyses were performed with JMP software Version
5.1 for Windows (SAS Institute Japan, Tokyo, Japan). Statistical sig-
nificance was defined as P < 0.05.

3. Results

3.1. OPN gene expression was up-regulated in OSCC tissues with
resistance to 5-FU-based preoperative therapy

To clarify the drug resistance mechanism in OSCC tissue, we
first evaluated clinical biopsy tissues by means of microarray gene
expression analysis. Patients with OSCC who received one preoper-
ative S-1 chemoradiation treatment were assigned to one of two
groups on the basis of a pathological evaluation of the response
to treatment of the surgical specimens. We compared, by means
of microarray analysis, the expression of numerous genes in the
specimens from sensitive and resistant groups of patients, whose
information is provided in Table 1. This analysis indicated 187
genes with more than 4-fold higher expression and 2309 genes
with more than 2-fold lower expression in the resistant group
compared with the sensitive group. Fig. 1A provides a heat map
representing the gene expression levels. Our gene ontology (GO)
analysis of the microarray data with DAVID, which is an annotation
and integration tool, identified possible indicators in pathways that
may be associated with drug resistance (P < 0.01, Fig. 1B). With our
therapeutic strategy in mind, we narrowed our search, via our GO
molecular function analysis, for up-regulated genes that encode
secretory proteins, extracellular matrix, and receptors. We discov-
ered several significantly up-regulated genes including trichohya-
lin (TCHH; 34.78-fold, P = 0.0199), OPN (13.96-fold, P = 0.0296),
and plasminogen activator inhibitor-1 (PAI-1; 9.06-fold,
P = 0.0236) in the resistant group (Supplementary Table S1).

Our qRT-PCR analyses of OSCC biopsy samples obtained from 30
sensitive and 19 resistant cases revealed OPN as the only signifi-
cantly up-regulated gene (P < 0.05, Table 2, Fig. 1C and data not
shown). OPN protein, also called SPP1, is a multifunctional binding
glycophosphoprotein that is involved in several pathological pro-
cesses including inflammation and cancer [9]. We confirmed the
involvement of OPN in the main GO terms such as cell adhesion,
biological adhesion, cell–cell adhesion, regulation of response to
external stimulus, and positive regulation of homeostatic process
(Fig. 1B).

3.2. OPN overexpression led to 5-FU resistance in OSCC cells

S-1 is an oral fluorouracil antitumor drug that combines three
pharmacological agents: tegafur, a pro-drug of FU; gimeracil,
which is designed to enhance potency by inhibiting the catabolism
of 5-FU; and oteracil, which is designed to decrease gastrointesti-
nal tract toxicities by inhibiting the activity of 5-FU selectively
within the intestinal lumen. Because antitumor activity of S-1 is
originated from 5-FU, we focused on 5-FU resistance in OSCC cells.
To determine whether OPN is involved in 5-FU resistance in OSCC
cells, we established SAS-OPN, an OPN-overexpressing subclone of
the OSCC cell line SAS (Fig. 2A). No apparent difference in cell
proliferation was observed between SAS-OPN and controls cells
(SAS-vector) (Fig. 2B). As Fig. 2C shows, sensitivity to 5-FU was sig-
nificantly decreased in SAS-OPN cells compared with SAS-vector
cells in vitro, which indicates that OPN overexpression contributed
to 5-FU resistance in OSCC cells.

To further investigate the significance of OPN overexpression
for 5-FU resistance, we injected nude mice subcutaneously with
SAS-OPN and SAS-vector cells. Consistent with our in vitro data,
OPN overexpression by itself did not apparently affect tumor
growth (Fig. 2D). However, although treatment with 5-FU strongly
suppressed the growth of control tumors, as expected (PBS,
1245 mm3 vs. 5-FU, 288 mm3, at day 24; P < 0.01), 5-FU did not
inhibit the growth of OPN-overexpressing tumors (PBS,
1314 mm3 vs. 5-FU, 1080 mm3, at day 24; P = 0.89). Furthermore,
5-FU treatment significantly prolonged survival of mice bearing
control tumors (median survival 5.14 weeks vs. 7.57 weeks
P < 0.05, log-rank test, Fig. 2E), whereas such a prosurvival effect
of 5-FU was abolished in the SAS-OPN group (PBS-treated OPN
group vs. 5-FU-treated OPN group, P > 0.1, log-rank test, Fig. 2E).
OPN overexpression by itself did not affect survival of mice
(Fig. 2E). These data indicate that OPN overexpression in OSCC cells
led to poor survival by inducing 5-FU resistance without apparent
tumor-promoting effects.



Fig. 1. OPN gene expression was up-regulated in OSCC tissues with resistance to 5-FU-based preoperative therapy. (A) Heat map, obtained by means of a microarray analysis,
depicting differential gene expression in 5-FU-sensitive and 5-FU-resistant OSCC tissues (P < 0.05, Student’s t test). Red indicates up-regulated genes; green, down-regulated
genes (see color bar). (B) The number of genes expressed in different cellular mechanisms and pathways as revealed by GO analysis of microarray data with DAVID (P < 0.01).
(C) OPN mRNA expression in 5-FU sensitive (n = 30) and resistant (n = 19) OSCC tissues. OPN mRNA expression in OSCC tissues was determined via qRT-PCR. ⁄P < 0.05. Values
are means ± S.D.
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Fig. 2. OPN overexpression led to 5-FU resistance in OSCC cells. (A) OPN mRNA (left panel) and protein expression (right panels) in SAS-vector (Vector) and SAS-OPN (OPN)
cells was determined via qRT-PCR and western blotting, respectively. ⁄P < 0.001. (B) The number of SAS-vector and SAS-OPN cells was measured. (C) SAS-vector and SAS-OPN
cells were treated with 5-FU at the indicated concentrations for 48 h, after which cell numbers were determined. �P < 0.05; §P < 0.01. Values are means ± S.E.M. of triplicate
samples. (D) SAS-vector and SAS-OPN cells were injected subcutaneously into mice. After 10 days, the tumor-inoculated mice received intraperitoneal injections of 100 mg/kg
5-FU or PBS every 7 days for 24 days. The graph indicates the mean tumor growth rates ± S.D. of six animals per experimental condition. Arrows indicate days of
administration of 5-FU or PBS. �P < 0.05 compared with the other groups. (E) Kaplan–Meier plots of overall survival of each experimental group. �P < 0.05 compared with PBS-
treated vector group (log-rank test).
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Fig. 3. Integrin avb3 was required for 5-FU resistance induced by OPN overexpression in OSCC cells. (A) SAS-vector (Vector) and SAS-OPN (OPN) cells were treated with 5-FU
(0.5 lg/ml) and/or LM609 (0.5 lg/ml) for 48 h, after which cell numbers were determined. ⁄P < 0.005; �P < 0.05. N.S., not significant. (B) Cells were plated in soft agar in a 96-
well plate at 1 � 104 cells per well. After 24 h, culture medium containing 5-FU (0.5 lg/ml) and/or LM609 (0.5 lg/ml) was added and cells were cultured for 7 days.
Absorbance of colonies in each well was measured using a 485/520 nm filter set. ⁄P < 0.005; �P < 0.05; §P < 0.0005. (C) mRNA (left panel) and protein expression (right panels)
of OPN in HSC3 cells transfected with empty vector (Vector) or OPN expression vector (OPN) were determined via qRT-PCR and western blotting, respectively. §P < 0.0005. (D)
HSC3-vector and HSC3-OPN cells were treated with 5-FU (0.5 lg/ml) and/or LM609 (0.5 lg/ml) for 48 h, after which cell numbers were determined. Results are expressed as a
percentage relative to cells without 5-FU in each experimental group. ⁄P < 0.005; ⁄⁄P < 0.01. Values are means ± S.E.M. of triplicate samples.
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3.3. Integrin avb3 was required for 5-FU resistance induced by OPN in
OSCC cells

We next sought to determine the precise mechanisms underlying
OPN-induced 5-FU resistance. OPN was shown to interact with mul-
tiple integrins, which led to activation of various downstream path-
ways. In view of the data showing that, in particular, tumor cell
expression of integrin avb3 correlated with poor prognosis of various
tumor types [10] and our microarray data demonstrated elevated
expression of integrin b3 (Supplementary Table S1), we investigated
the involvement of integrin avb3 in OPN-induced 5-FU resistance by
using the anti-integrin avb3 antibody LM609. LM609 almost com-
pletely blocked OPN-induced 5-FU resistance but did not affect the
basal cytotoxic effects of 5-FU (Fig. 3A). In addition, we confirmed
these results by soft agar colony formation assay (Fig. 3B). Further-
more, in another OSCC cell line HSC3, transient OPN overexpression
(Fig. 3C) induced 5-FU resistance, and this resistance was strongly
reversed by LM609 (Fig. 3D). These data showed that integrin avb3

is critically contributing to OPN-triggered 5-FU resistance.

3.4. The OPN-integrin avb3 axis may be important for acquired 5-FU
resistance in OSCC

Even in cancers that are primarily sensitive to 5-FU, resistance
may ultimately be acquired through continuous drug administra-
tion, which may lead to alterations in gene expression and signal-
ing cascades [11–15]. Thus, we utilized a 5-FU-resistant SAS clone
(SAS-FR), which was previously established via continuous expo-
sure to increasing concentrations of 5-FU for 2 years, to investigate
whether the OPN-integrin avb3 axis was also involved in acquired
5-FU resistance. SAS-FR has the same proliferative activity as the
parental line [8]. We first confirmed a lower sensitivity of SAS-FR
cells to 5-FU compared with the parental SAS cells (SAS-parental)
(Fig. 4A). Our qRT-PCR and western blot analyses revealed signifi-
cantly increased OPN expression in SAS-FR cells compared with
SAS-parental cells (Fig. 4B). Furthermore, neutralizing integrin
avb3 activity by LM609 significantly increased the sensitivity of
SAS-FR cells to 5-FU without an apparent effect on the cell prolif-
eration and the sensitivity of SAS-parental cells (Fig. 4C). Further-
more, the colony formation assay revealed that LM609 abolished
the 5-FU-resistance phenotype of SAS-FR cells (Fig. 4D). These data
suggest that the OPN-integrin avb3 axis is also important for an
acquired 5-FU resistance and that integrin avb3 was a useful target
for overcoming 5-FU resistance in OSCC.
4. Discussion

5-FU-based chemoradiotherapy improves the survival of
patients with OSCC. However, despite the many advantages of this
therapy, development of resistance to 5-FU, whether intrinsic or
acquired, is a major obstacle to its successful clinical application in
OSCC. We demonstrate here, for the first time, that OPN overexpres-
sion contributed to 5-FU resistance in OSCC via integrin avb3 and



Fig. 4. A 5-FU-resistant OSCC cell clone highly expressed OPN, and inhibition of integrin avb3 reversed the resistance. (A) SAS-parental and SAS-FR cells were treated with 5-
FU at the indicated concentrations for 48 h, after which cell numbers were measured. ⁄P < 0.05 compared with SAS-parental cells. (B) OPN mRNA (left panel) and protein
expression (right panels) in SAS-parental and SAS-FR cells was determined via qRT-PCR and western blotting, respectively. �P < 0.001. (C) SAS-parental and SAS-FR cells were
treated with 5-FU (0.5 lg/ml) and/or LM609 (0.5 lg/ml) for 48 h, after which cell numbers were measured. Results are expressed as a percentage relative to cells without 5-
FU in each experimental group. ⁄P < 0.05; �P < 0.001. (D) Cells were plated in soft agar in a 96-well plate at 1 � 104 cells per well. After 24 h, culture medium containing 5-FU
(0.5 lg/ml) and/or LM609 (0.5 lg/ml) was added and cells were cultured for 7 days. Absorbance of colonies in each well was measured using a 485/520 nm filter set.
⁄P < 0.05; §P < 0.005. N.S., not significant. Values are means ± S.E.M. of triplicate samples.
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that pharmacological inhibition of integrin avb3 may be useful for
overcoming resistance to 5-FU-based therapy.

OPN belongs to the small integrin-binding ligand, N-linked
glycoprotein family, with all members having a functional
Arg-Gly-Asp (RGD) domain that interacts with multiple integrins.
OPN also interacts with the CD44 receptor in an RGD-indepen-
dent manner [16–18]. Through these receptors, OPN triggers cell
signaling that leads to promotion of cell adhesion, survival,
migration, and immune regulation [18,19]. Aberrant OPN expres-
sion was said to be involved in many pathophysiological pro-
cesses including cancer [20–25]. In many types of cancer, an
increased OPN level was found in the blood and tumor tissues,
which was correlated with a poor prognosis [26,27]. In addition,
several lines of evidence suggest that OPN is important for inva-
sion, metastasis, and angiogenesis [28]. Plasma OPN is an inde-
pendent prognostic marker for OSCC [29–32]. In particular,
OPN was recently proposed as a surrogate marker for hypoxia,
the most important predictor for a response to radiation, and
thus for radiotherapy outcome in head and neck cancer
[30,33–38]. Our present study using microarray and qRT-PCR
analyses showed that OPN gene expression was significantly
higher in OSCC tissues in patients with pretreatment resistance
to 5-FU-based chemoradiotherapy compared with patients who
had sensitivity to this chemoradiotherapy. In fact, OPN overex-
pression in OSCC cells clearly led to 5-FU resistance in a cell-
autonomous fashion, whereas, unexpectedly, OPN overexpression
by itself did not affect tumor growth both in vitro and in vivo.
Survival data for our mice suggested that 5-FU resistance
induced by OPN did not depend on the tumor-promoting effect.
Further investigation may clarify molecular mechanisms under-
lying OPN overexpression and whether OPN expression is useful
for prediction of response to not only radiotherapy but also 5-FU
treatment.

With regard to mechanisms of 5-FU resistance, we identified
integrin avb3 as a critical mediator of OPN-induced 5-FU resis-
tance. Our finding that inhibition of integrin avb3 alone neither
affected cell proliferation nor improved the cytotoxic efficacy of
5-FU indicates the importance of OPN as a trigger for 5-FU resis-
tance. We also found that pharmacological inhibition of integrin
avb3 reversed the acquired 5-FU resistance in OPN-overexpressing
SAS-FR cells without apparent effects on basal cell proliferation
and colony formation. Together, OPN-integrin avb3 axis might
be important for not only intrinsic but also acquired resistance
to 5-FU. A recent study showed that the binding of OPN to inte-
grin avb3 induced expression of P-glycoprotein, a subfamily of the
ATP-binding cassette transporter in prostate cancer cells [39]. In
addition, OPN-integrin avb3 signaling has been shown to promote
cell survival and prevents apoptosis [40,41]. Importantly, as OPN-
induced 5-FU resistance was more clearly observed in mouse
xenografts than in vitro, synergy between tumor microenviron-
ment and OPN autocrine/paracrine signals also should be consid-
ered [42,43].

Recent clinical trials for several types of cancer demonstrated
the safety and promising feasibility of etaracizumab, a humanized
anti-integrin avb3 antibody developed from LM609, and cilengi-
tide, an RGD-containing cyclic peptide [44–48]. Further in vivo
studies using these drugs combined with 5-FU would contribute
to develop novel therapeutic strategies for OSCC.

In conclusion, we demonstrated here, for the first time, the OPN-
integrin avb3 axis as a crucial signal for 5-FU resistance in OSCC. Our
findings emphasize the need to evaluate OPN expression levels in
tumor tissues in OSCC patients before and during 5-FU-based ther-
apy in relation to outcome. Pharmacological targeting of integrin
avb3 combined with 5-FU-based therapy might improve the progno-
sis of OSCC patients.
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