THE SELECTIVE TRAVELLING SALESMAN PROBLEM

Gilbert LAPORTE
École des Hautes Études Commerciales de Montréal, Canada
Silvano MARTELLO
DEIS, University of Bologna, Italy

Received 11 June 1987
Revised 6 June 1988

Abstract

Given a weighted graph with profits associated with the vertices, the selective travelling salesman problem (or orienteering problem) consists of selecting a simple circuit of maximal total profit, whose length does not exceed a prespecified bound. This paper provides integer linear programming formulations for the problem. Upper and lower bounds are then derived and embedded in exact enumerative algorithms. Computational results are reported.

1. Introduction

Let $G=(V, A)$ be a complete graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and arc set $A=\left\{\left(v_{i}, v_{j}\right): v_{i}, v_{j} \in V, v_{i} \neq v_{j}\right\}$, having a profit p_{i} associated with each vertex $v_{i} \in V$ and a distance (or cost) $c_{i j}$ associated with each arc $\left(v_{i}, v_{j}\right) \in A\left(c_{i i}=0\right.$ for all i). Throughout this paper, we assume that the cost matrix ($c_{i j}$) satisfies the triangle inequality ($c_{i j} \leq c_{i k}+c_{k j}$ for all i, j, k). The selective travelling salesman problem (STSP) consists of determining a simple circuit of maximal total profit, which includes v_{1} and whose length does not exceed a preset value c. More formally, we want to find an ordered vertex set $C^{*}=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{h}}\right\}$ such that

$$
\begin{aligned}
& v_{i_{r}} \neq v_{i_{s}} \text { for } r, s \in\{1, \ldots, h\}, r \neq s, \\
& v_{1} \in C^{*}, \\
& \sum_{r=1}^{h-1} c_{i_{r}, i_{r}, 1}+c_{i_{h}, i_{1}} \leq c, \\
& \sum_{r=1}^{h} p_{i_{r}} \text { is maximized. }
\end{aligned}
$$

Note that the triangularity condition is not restrictive since any distance matrix can be replaced by the corresponding shortest path matrix (in such a case, the STSP solution relative to the original graph may be a nonsimple circuit). Also, observe that unprofitable vertices will never be selected in the solution, so we can assume without loss of generality that $p_{i}>0$ for all $v_{i} \in V$.

The problem arises in a number of practical contexts. An application to the delivery of home heating oil is described in Golden, Levy and Vohra [4]. Hayes and Norman [6] and Tsiligirides [11] describe it as the orienteering problem because of its connection with "orienteering", a treasure-hunt game in which competitors collect scores by reaching "control points" within a prefixed time limit.

The STSP is NP-hard, as can easily be seen by transformation of its recognition version from the Hamiltonian circuit problem (HC), which is known to be NPcomplete (see Garey and Johnson [2]). Given any instance of the HC, relative to a graph $G^{h}=\left(V^{h}, A^{h}\right)$ with vertex set $V^{h}=\left\{v_{1}, \ldots, v_{n}\right\}$ and arc set $A^{h}=\left\{\left(v_{i}, v_{j}\right)\right\}$, define an instance of STSP having: $V=V^{h} ; p_{i}=1$ for all vertices; $c_{i j}=1$ if $\left(v_{i}, v_{j}\right) \in A^{h}, c_{i j}=2$ otherwise; $c=|V|$. Then G^{h} possesses a Hamiltonian circuit if and only if the solution value of this instance equals $|V|$.

Apart from a straightforward dynamic programming formulation by Hayes and Norman [6], only approximate algorithms seem to have been provided in the literature for the STSP (Tsiligirides [11]; Golden, Levy and Vorha [3,4]; Golden, Wang and Liu [5]). In this paper we develop new theoretical results and exact algorithms for the problem.

In the following section we provide integer linear programming formulations and derive a solution approach. In Section 3 we introduce upper and lower bounds for the problem. Enumerative algorithms are presented in Section 4 and computational results in Section 5.

2. An ILP-based approach

The problem described in the previous section, relative to a directed graph, can be formally stated as follows. Let C^{*} be the ordered set of vertices in the optimal circuit and define a binary variable $x_{i j}$ taking the value 1 if and only if v_{i} and v_{j} are two consecutive vertices of C^{*} (the first vertex is assumed to be consecutive to the last one). The ILP formulation of the STSP is then:
maximize

$$
p_{1}+\sum_{i=2}^{n} p_{i} \sum_{j=1}^{n} x_{i j}
$$

subject to

$$
\begin{align*}
& \sum_{i=2}^{n} x_{i 1}=\sum_{j=2}^{n} x_{1 j}=1 \tag{1}\\
& \sum_{i=1}^{n} x_{i k}=\sum_{j=1}^{n} x_{k j} \leq 1, \quad k=2, \ldots, n \tag{2}\\
& \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \leq c \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \sum_{v_{k} \in S}\left(\sum_{i=1}^{n} x_{i k}+\sum_{j=1}^{n} x_{k j}\right) \leq|S|\left(\sum_{\substack{v_{i} \in S \\
v_{j} \oplus S}} x_{i j}+\sum_{\substack{v_{i} \notin S \\
v_{j} \in S}} x_{i j}\right), \quad S \subset V \backslash\left\{v_{1}\right\},|S| \geq 2, \tag{4}\\
& x_{i j} \in\{0,1\}, \quad i=1, \ldots, n ; j=1, \ldots, n ; i \neq j
\end{align*}
$$

Constraints (1) specify that vertex v_{1} belongs to C^{*}, while (2) are the flow conservation conditions for the remaining vertices. Constraint (3) defines the upper bound on the optimal circuit length. In connectivity constraints (4), for any proper subset S of $V \backslash\left\{v_{1}\right\}$, the left-hand side is equal to $2 \mid S \cap C^{*}$; the right-hand side takes the value 0 if in the optimal solution S is disconnected from its complement, and takes a value not less than $2|S|$ otherwise. Since $\left|S \cap C^{*}\right| \leq|S|$, no feasible solution is eliminated, while any solution containing a subtour in S is prevented.

In the particular case where $c_{i j}=c_{j i}$ for all i, j, i.e., when the graph is undirected, the number of constraints and variables can be considerably reduced as follows. Variables $x_{i j}$ need only be defined for $i<j$ and give the number of times edge (v_{i}, v_{j}) is used in the solution. Since $C^{*}=\left\{v_{1}, v_{j}\right\}$ is feasible, these variables can take three values:

$$
x_{i j}= \begin{cases}2, & \text { if } C^{*}=\left\{v_{1} \equiv v_{i}, v_{j}\right\}, \\ 1, & \text { if }\left|C^{*}\right|>2 \text { and } v_{i}, v_{j}(i<j) \text { are consecutive vertices of } C^{*}, \\ 0, & \text { otherwise. }\end{cases}
$$

By introducing $n-1$ additional binary variables $y_{i}(i=2, \ldots, n)$, taking the value 1 if and only if $v_{i} \in C^{*}$, we obtain the following model:
maximize

$$
p_{1}+\sum_{i=2}^{n} p_{i} y_{i}
$$

subject to

$$
\begin{align*}
& \sum_{j=2}^{n} x_{1 j}=2, \tag{5}\\
& \sum_{i=1}^{k-1} x_{i k}+\sum_{j=k+1}^{n} x_{k j}=2 y_{k}, \quad k=2, \ldots, n, \tag{6}\\
& \sum_{i=1}^{n} \sum_{j=i+1}^{n} c_{i j} x_{i j} \leq c, \tag{7}\\
& 2 \sum_{v_{k} \in S} y_{k} \leq|S|\left(\sum_{\substack{v_{i} \in S \\
v_{j} \notin S}} x_{i j}+\sum_{\substack{v_{i} \notin S \\
v_{j} \in S}} x_{i j}\right), \quad S \subset V \backslash\left\{v_{1}\right\},|S| \geq 3, \tag{8}\\
& \quad x_{1 j} \in\{0,1,2\}, \quad j=2, \ldots, n, \\
& \quad x_{i j} \in\{0,1\}, \quad i=2, \ldots, n ; j=i+1, \ldots, n, \\
& y_{i} \in\{0,1\}, \quad i=2, \ldots, n .
\end{align*}
$$

Constraints (5)-(8) are the counterparts of (1)-(4), respectively. Note that $|S| \geq 3$ in (8), since no subtour of two edges exists in $V \backslash\left\{v_{1}\right\}$. A graphical interpretation of constraints (8) can be found in Laporte [7].

We used a standard constraint relaxation algorithm to solve the second model (ILP-based approaches are known to be generally inefficient for asymmetrical travelling salesman problems). The algorithm starts by relaxing the connectivity constraints and the integrality conditions on the variables. The resulting problem is then solved through linear programming and the violated conditions are gradually introduced through a branch and bound process. Two variants of the algorithm are obtained according to the order in which connectivity and integrality conditions are considered. In the first one, violated connectivity constraints are only generated at an integer solution. In the second variant, they are introduced as soon as a connected (possibly fractional) component disjoint from $\left\{v_{1}\right\}$ is identified, while branching on fractional variables occurs only when no such component exists.

3. Bounds and approximate algorithms

In this section we introduce upper and lower bounds for the STSP. These will be used in the enumerative algorithms described in Section 4.

3.1. Upper bounds

The following theorem provides an upper bound on the optimal STSP solution.
Theorem 1. Given any instance of the STSP and a real value $\alpha(0 \leq \alpha \leq 1)$, define vertex weights

$$
\begin{equation*}
w_{j}=\alpha \min _{i \neq j}\left\{c_{i j}\right\}+(1-\alpha) \min _{k \neq j}\left\{c_{j k}\right\}, \quad j=1, \ldots, n, \tag{9}
\end{equation*}
$$

and let z^{*} be the optimal solution value to the following 0-1 knapsack problem (KP):
maximize

$$
z=p_{1}+\sum_{j=2}^{n} p_{j} y_{j}
$$

subject to

$$
\begin{aligned}
& \sum_{j=2}^{n} w_{j} y_{j} \leq c-w_{1} \\
& \quad y_{j} \in\{0,1\}, \quad j=2, \ldots, n .
\end{aligned}
$$

Then z^{*} is no less than the optimal solution of the STSP instance.
Proof. Let $I^{*}=\left(v_{t_{1}} \equiv v_{1}, v_{t_{2}}, \ldots, v_{t_{h}} \equiv v_{1}\right)$ be the sequence of vertices in the optimal
solution of the STSP instance, thus giving $\sum_{j-1}^{h-1} p_{t_{j}}$ as optimal value. We prove that the KP has a feasible solution having the same value. From (3) it must be that $\sum_{j=1}^{h-1} c_{t_{j}, t_{j+1}} \leq c$, so

$$
(1-\alpha) c_{1, t_{2}}+\sum_{j=2}^{n-1}\left(\alpha c_{t_{j-1}, t_{j}}+(1-\alpha) c_{t_{j}, t_{j+1}}\right)+\alpha c_{t_{h-1}, 1} \leq c .
$$

From (9), $\alpha c_{t_{j-1}, t_{j}}+(1-\alpha) c_{t_{j}, t_{j+1}} \geq w_{t_{j}}$ for $j=1, \ldots, h-1$. Hence the conclusion follows.

Since it is known that v_{1} necessarily belongs to the solution, a tighter bound can be derived as follows. For any pair of vertices $v_{r}, v_{s}(r, s \neq 1)$, let $\operatorname{STSP}(r, s)$ be the restricted instance of STSP obtained by imposing that arcs $\left(v_{r}, v_{1}\right)$ and $\left(v_{1}, v_{s}\right)$ belong to the solution. Let us assume for the moment that $r \neq s$. If $c_{1 s}+c_{s r}+c_{r 1}>c$, then $\operatorname{STSP}(r, s)$ is infeasible and we can define $z(r, s)=p_{1}$ as an upper bound on its solution value. Otherwise, let $H(r, s)=\left\{j \neq 1, r, s: c_{1 s}+c_{s j}+c_{j r}+c_{r 1} \leq c\right\}$ and note that only vertices v_{j} such that $j \in H(r, s)$ can belong to the solution of $\operatorname{STSP}(r, s)$. The minimum cost of including such vertices in the solution becomes

$$
\begin{align*}
& w_{j}(r, s)=\alpha \min _{i \in H(r, s) \cup\{s\} \backslash\{j\}}\left\{c_{i j}\right\}+(1-\alpha) \min _{k \in H(r, s) \cup\{r\} \backslash\{j\}}\left\{c_{j k}\right\}, \\
& j \in H(r, s) . \tag{10}
\end{align*}
$$

Hence, an upper bound for $\operatorname{STSP}(r, s)$ can immediately be derived from Theorem 1 as

$$
z(r, s)=\left(p_{1}+p_{r}+p_{s}\right)+\max \sum_{j \in H(r, s)} p_{j} y_{j},
$$

subject to

$$
\begin{aligned}
& \sum_{j \in H(r, s)} w_{j}(r, s) y_{j} \leq c-\left(c_{1 s}+c_{r 1}+\alpha \min _{i \in H(r, s)}\left\{c_{i r}\right\}+(1-\alpha) \min _{k \in H(r, s)}\left\{c_{s k}\right\}\right) \\
& \quad y_{j} \in\{0,1\}, \quad j \in H(r, s) .
\end{aligned}
$$

In the particular case where $r=s$, we trivially have $z(r, s)=p_{1}+p_{r}$ if $c_{1 r}+c_{r 1} \leq c$ and $z(r, s)=p_{1}$ otherwise. Therefore a valid upper bound for the STSP is $\max _{2 \leq r, s \leq n}\{z(r, s)\}$.

The above bounds require the optimal solution of a KP, which is known to be NP-hard. However, it is always valid to replace the KP solution value by an upper bound. A number of such bounds, all requiring $\mathrm{O}(n)$ time, can be found in Martello and Toth [9]. In our implementation, we used the Martello and Toth bound [8,9]. As a result, computing the upper bound for STSP given by Theorem 1 requires $\mathrm{O}\left(n^{2}\right)$ time, since this is the complexity of computing the w_{j}. It follows that the tighter bound requires $\mathrm{O}\left(n^{4}\right)$ time. It is however possible to compute, in $\mathrm{O}\left(n^{3}\right)$ time, a relaxation of it by replacing (10) with

$$
w_{j}(r, s)=\alpha \min _{i \neq j, 1, r}\left\{c_{i j}\right\}+(1-\alpha) \min _{k \neq j, 1, s}\left\{c_{j k}\right\}, \quad j \in H(r, s) .
$$

With this, in fact, we can first determine in $\mathrm{O}\left(n^{2}\right)$ time the quadruplets of indices $\left(i^{\prime}(j), i^{\prime \prime}(j), k^{\prime}(j), k^{\prime \prime}(j) ; j=2, \ldots, n\right)$ such that

$$
\begin{aligned}
& c_{i^{\prime}(j), j}=\min _{i \neq 1, j}\left\{c_{i j}\right\} \quad \text { and } \quad c_{i i^{\prime \prime}(j), j}=\min _{i \neq 1, j, i^{\prime}(j)}\left\{c_{i j}\right\}, \\
& c_{j, k^{\prime}(j)}=\min _{k \neq 1, j}\left\{c_{j k}\right\} \quad \text { and } \quad c_{j, k^{\prime \prime}(j)}=\min _{k \neq 1, j, k^{\prime}(j)}\left\{c_{j k}\right\} .
\end{aligned}
$$

Using this information, each $w_{j}(r, s)$ can be immediately computed in $O(1)$ time, so the overall complexity for the bound is $\mathrm{O}\left(n^{3}\right)$. Computational experiments proved that the relaxation introduced has very marginal effects on the tightness of the resulting bound.

3.2. Approximate algorithms

Approximate algorithms for the STSP can be easily obtained by simple modifications to known travelling salesman problem (TSP) heuristics. In this paper, which is mostly concerned with exact algorithms, heuristic methods will only be used to provide an initial feasible solution in the branch and bound process of Section 4. We describe two simple schemes which have proved to be computationally efficient for the STSP.

The first scheme corresponds to the nearest neighbour TSP algorithm (Rosenkrantz, Stearns and Lewis [10]). It gradually extends a path $I=\left\{v_{r}, \ldots, v_{1}, \ldots, v_{s}\right\}$ by adding, at each itcration, an arc (v_{i}, v_{r}) or (v_{s}, v_{j}) according to a greedy criterion. Let $l(I)$ denote the length of the current path. The general scheme can be outlined as follows.

```
Algorithm H1
begin
    \(I:=\left\{v_{1}\right\}, r:=s:=1 ;\)
    while \(F=\left\{v_{k} \boxminus I: l(I)+c_{s k}+c_{k r} \leq c\right\} \neq \emptyset\) do
        begin
            find \(v_{i}\) and \(v_{j}\) such that
            \(p_{i} / c_{i r}=\max \left\{p_{k} / c_{k r}: v_{k} \in F\right\}\) and \(p_{j} / c_{s j}=\max \left\{p_{k} / c_{s k}: v_{k} \in F\right\}\);
            if \(p_{i} / c_{i r}>p_{j} / c_{s j}\) then add \(v_{i}\) to \(I\) before \(r\) and set \(r:=i\)
            else add \(v_{j}\) to \(I\) after \(s\) and set \(s:=j\)
        end;
    close the current path by adding arc \(\left(v_{s}, v_{r}\right)\)
end
```

The second scheme, derived from the TSP cheapest insertion algorithm [10], extends a tour $T=\left\{v_{1}, \ldots, v_{1}\right\}$ instead of a path. Let $l(T)$ denote the length of the current tour.

```
Algorithm H2
begin
    \(T:=\left\{v_{1}\right\} ;\)
    find the maximal ratio \(p_{j} /\left(c_{1 j}+c_{j 1}\right)\) such that \(j \neq 1\) and \(c_{1 j}+c_{j 1} \leq c\) (if
    no such \(j\) exists then stop);
    form the tour \(T:=\left\{v_{1}, v_{j}, v_{1}\right\}\);
    improve := true;
    repeat
        find \(v_{j} \notin T\) and \(\left(v_{r}, v_{s}\right)\) consecutive vertices in \(T\) such that \(l(T)+\)
        \(c_{r j}+c_{j s}-c_{r s} \leq c\) and \(p_{j} /\left(c_{r j}+c_{j s}-c_{r s}\right)\) is maximal;
        if no such \(v_{j}\) and ( \(v_{r}, v_{s}\) ) exist then improve \(:=\) false
        else insert \(v_{j}\) in \(T\) between \(v_{r}\) and \(v_{s}\)
    until improve \(=\) false
end
```

The time complexities of Algorithms H 1 and H 2 are the same as those of their TSP countcrparts, i.c., $\mathrm{O}\left(n^{2}\right)$ and $\mathrm{O}\left(n^{2} \log n\right)$, respectively.

4. Enumerative algorithms

We now describe some exact algorithms for the STSP. These consists of gradually extending a simple path emanating from vertex v_{1} through a breath-first branch and bound process.

At the first node of the search tree, we compute the second upper bound described in Section 3.1 and take as initial feasible solution the better of the two solutions provided by Algorithms H1 and H2 of Section 3.2. If the value of this solution equals that of the upper bound, the algorithm terminates. Otherwise, the branching process is initiated.

Let $I(h)=\left\{v_{t_{1}} \equiv v_{1}, v_{t_{2}}, \ldots, v_{t_{t}}\right\}$ denote the sequence of vertices included in the current path at a general node h of the search tree. Descendant nodes are generated by branching on a vertex v_{i} not already in $I(h)$. Upper bounds on the value of the optimum and lower bounds on the length of the tour attainable from the current path are used for fathoming nodes of the search tree.

4.1. Partitioning schemes

We implemented two partitioning schemes. At node h of the decision tree, let $l(h)=\sum_{i=1}^{h-1} c_{i,}, i_{i+1}$ denote the length of the current path.

4.1.1. First partitioning scheme

In the first scheme, P1, node h generates one descendant node for each vertex v_{i} which can be included in $I(h)$ after $v_{t_{h}}$ and which does not yield a dominated solu-
tion. At node h, vertex v_{i} is said to dominate vertex $v_{j}(j \neq i)$ if $c_{t_{h}, i}+c_{i j}=c_{t_{h}, j}$, since the sequence ($v_{t_{h}}, v_{j}, v_{j}$) gives a larger profit than $\left(v_{t_{h}}, v_{j}\right)$ at the same cost. Define $F(h)=\left\{v_{j} \notin I(h): l(h)+c_{t_{h}, j}+c_{j 1} \leq c\right\}$ and $D(h)=\left\{v_{j} \in F(h): v_{j}\right.$ is dominated by $\left.v_{i} \in F(h)\right\}$. Then branches are croated for each $v_{i} \in F(h) \backslash D(h)$.

4.1.2. Second partitioning scheme

The second scheme, P2, requires a more elaborate description. At node h we select a vertex v_{i} and generate either three or two descendant nodes. In the former case the generation corresponds to the following decisions:
$\left(h_{1}\right): v_{i}$ is included in the current path immediately after $v_{t_{h}}$;
$\left(h_{2}\right): v_{i}$ will be included in the current path, but at a later stage;
$\left(h_{3}\right): v_{i}$ is permanently excluded from the current path.
At nodes descending from decisions $\left(h_{1}\right)$ or $\left(h_{3}\right), v_{i}$ will never be reconsidered, while in those descending from decision (h_{2}) it will reappear in the decision process (unless fathoming occurs). At that point, clearly, only two nodes corresponding to $\left(h_{1}\right)$ and (h_{2}) will be generated.

In order to formally describe this process, we introduce the following partition of V at every node h of the search tree:
$I(h)$: included vertices $\left(=\left\{v_{t_{1}} \equiv v_{1}, v_{t_{2}}, \ldots, v_{t_{h}}\right\}\right.$);
$E(h)$: excluded vertices;
$W(h)$: waiting vertices (for which decision $\left(h_{2}\right)$ was taken);
$F(h)$: free vertices $(=V \backslash(I(h) \cup E(h) \cup W(h))$).
(If h is the root node, then $I(h)=\left\{v_{1}\right\}, E(h)=W(h)=\emptyset$.)
In order to prevent cyclic selection of waiting vertices for branching, a vertex is labelled as soon as decision $\left(h_{2}\right)$ is taken about it. Only free and unlabelled waiting vertices are selected for branching. Taking decision (h_{1}) for a vertex results in the unlabelling of all the waiting vertices. Hence if

$$
\begin{equation*}
P(h)=F(h) \cup\left\{v_{j} \in W(h): v_{j} \text { is unlabelled }\right\} \tag{11}
\end{equation*}
$$

is empty, node h can be fathomed. Otherwise define the set of dominated vertices as $D(h)=\left\{v_{j} \in P(h): v_{j}\right.$ is dominated by $\left.v_{i} \in P(h)\right\}$ and select v_{i} from $P(h) \backslash D(h)$ so as to yield the best improvement to the current solution in the following sense. Since $l(h)+c_{t_{h}, 1}$ is the length of the tour implied by $I(h), v_{i}$ will be such that

$$
\frac{p_{i}}{c_{t_{h}, i}+c_{i 1}-c_{t_{h}, 1}}=\max \left\{\frac{p_{j}}{c_{t_{h}, j}+c_{j 1}-c_{t_{h}, 1}}: v_{j} \in P(h) \backslash D(h)\right\} .
$$

Vertex v_{i} belongs either to $F(h)$ or $W(h)$. In the former case, the three nodes h_{1}, h_{2}, h_{3} generated from h are characterized as follows:

Node h_{1} : Let $U\left(h_{1}\right)=\left\{v_{j} \in F(h) \cup W(h): l(h)+c_{t_{h}, i}+c_{i j}+c_{j 1}>c\right\}$ be the set of vertices which are now unreachable due to the inclusion of v_{i}. If $U\left(h_{1}\right) \cap W(h) \neq \emptyset$, then node h_{1} can be fathomed; otherwise:

```
\(I\left(h_{1}\right):=I(h) \cup\left\{v_{i}\right\} ;\)
\(E\left(h_{1}\right):=E(h) \cup U\left(h_{1}\right) ;\)
\(W\left(h_{1}\right):=W(h)\) and unlabel all vertices of \(W\left(h_{1}\right)\);
\(F\left(h_{1}\right):=F(h) \backslash\left(\left\{v_{i}\right\} \cup U\left(h_{1}\right)\right)\).
Node \(h_{2}\) :
\(I\left(h_{2}\right):=I(h)\);
\(E\left(h_{2}\right):=E(h)\);
\(W\left(h_{2}\right):=W(h) \cup\left\{v_{i}\right\}\) and label \(v_{i}\);
\(F\left(h_{2}\right):=F(h) \backslash\left\{v_{i}\right\}\).
Node \(h_{3}\) :
\(I\left(h_{3}\right):=I(h)\);
\(E\left(h_{3}\right):=E(h) \cup\left\{v_{i}\right\} ;\)
\(W\left(h_{3}\right):=W(h)\);
\(F\left(h_{3}\right):=F(h) \backslash\left\{v_{i}\right\}\).
```

If $v_{i} \in W(h)$, then node h_{3} is not created, while for nodes h_{1} and h_{2}, the same operations apply, except:
$W\left(h_{1}\right):-W(h) \backslash\left\{v_{i}\right\}$ and unlabel all vertices of $W\left(h_{1}\right)$;
$F\left(h_{1}\right):=F(h) \backslash U\left(h_{1}\right) ;$
$W\left(h_{2}\right):=W(h)$ and label v_{i};
$F\left(h_{2}\right):=F(h)$.

4.2. Fathoming criteria

4.2.1. Upper bound computation

For both partitioning schemes, at each decision node h generated, we compute, through Theorem 1, an upper bound $\bar{z}(h)$ on the solution value attainable from the subproblem corresponding to the node. In order to provide a unified description, let us define $W(h)=\emptyset$ and $P(h)=F(h)$ (see equation (11)) for scheme P1. Then the upper bound computation at node h can be described as follows.

First note that the current path $I(h)$ can be considered as a "super-vertex" \bar{v} with profit $\bar{p}=\sum_{v_{j} \in I(h)} p_{j}$ and weight $\bar{w}=l(h)+\left(\alpha \min _{v_{i} \in F(h) \cup W(h)}\left\{c_{i 1}\right\}+\right.$ $\left.(1-\alpha) \min _{v_{k} \in P(h)}\left\{c_{t_{h}, k}\right\}\right)$ for some $\alpha(0 \leq \alpha \leq 1)$. For all $v_{j} \in F(h) \cup W(h)$, define $A(j)=$ $F(h) \cup W(h) \backslash\left\{v_{j}\right\}$; the weights of these vertices are then $w_{j}=\alpha \min _{v_{i} \in A(j) \cup\left\{v_{h_{k}}\right\}}\left\{c_{i j}\right\}+$ $(1-\alpha) \min _{v_{k} \in A(j) \cup\left\{u_{1}\right\}}\left\{c_{j k}\right\}$. If $\bar{w}+\sum_{v_{j} \in W(h)} w_{j}>c$, the node can be fathomed. Otherwise, the required $\bar{z}(h)$ is any upper bound on the solution of the following KP:
maximize

$$
z(h)=\left(\bar{p}+\sum_{v_{j} \in W(h)} p_{j}\right)+\sum_{v_{j} \in F(h)} p_{j} y_{j}
$$

subject to

$$
\begin{align*}
& \sum_{v_{j} \in F(h)} w_{j} y_{j} \leq c-\left(\bar{w}+\sum_{v_{j} \in W(h)} w_{j}\right), \tag{12}\\
& y_{j} \in\{0,1\}, \quad v_{j} \in F(h)
\end{align*}
$$

Let p^{*} denote the value of the best STSP solution so far obtained. Then, clearly, node h can be fathomed if $\bar{z}(h) \leq p^{*}$.

When $\alpha=0$ or 1 , the above bound can be strengthened by exploiting, in the computation of the w_{j}, the fact that the vertices v_{j} belonging to C^{*} must be part of a tour. Consider for example the case where $\alpha=0$. Since the two arcs $\left(v_{k^{\prime}}, v_{j}\right)$ and ($v_{k^{\prime \prime}}, v_{j}$) cannot both enter the optimal tour if $k^{\prime} \neq k^{\prime \prime}$, it is then valid to impose that the indices k yielding $\min _{v_{k} \in A(j) \cup\left\{v_{1}\right\}}\left\{c_{j k}\right\}$ in the computation of the w_{j} must all be different. Formally, we must determine the best combination of k 's by solving a transportation problem $(T P)$ where $J(h)=W(h) \cup\left\{v_{t_{h}}\right\}$ and $K(h)=$ $W(h) \cup F(h) \cup\left\{v_{1}\right\}:$
minimize

$$
\sum_{v_{j} \in J(h)} \sum_{v_{k} \in K(h) \backslash\left\{v_{j}\right\}} c_{j k} x_{j k},
$$

subject to

$$
\begin{align*}
& \sum_{v_{k} \in K(h) \backslash\left\{v_{j}\right\}} x_{j k}=1, \quad v_{j} \in J(h), \tag{13}\\
& \sum_{v_{j} \in J(h) \backslash\left\{v_{k}\right\}} x_{j k} \leq 1, \quad v_{k} \in K(h), \tag{14}\\
& x_{j k} \in\{0,1\}, \quad j \neq k, \quad v_{j} \in J(h), \quad v_{k} \in K(h) .
\end{align*}
$$

Let $t^{*}(\alpha)$ denote the value of the optimal TP solution. Node h can then be fathomed if $l(h)+t^{*}(\alpha)>c$ and, in the determination of $\bar{z}(h)$, the right-hand side of (12) can be replaced by $c-\left(l(h)+t^{*}(\alpha)\right)$. Consider in fact any feasible solution to the STSP including the current path, all the vertices of $W(h)$ and possibly some vertices of $F(h)$: the total length of the arcs emanating from vertices of $I(h) \cup W(h)$ cannot be less than $l(h)+t^{*}(\alpha)$, while the cost of each arc emanating from a vertex $v_{j} \in F(h)$ is no less than the corresponding w_{j}. Hence this solution is also feasible for the KP since (12) is automatically satisfied.

A similar reasoning applies to the case where $\alpha=1$. The corresponding TP is then obtained by redefining $J(h)=W(h) \cup F(h) \cup\left\{v_{t_{h}}\right\}, K(h)=W(h) \cup\left\{v_{1}\right\}$ and by intcrchanging the " $=$ " and " \leq " signs in (13) and (14).

4.2.2. Additional criteria for scheme P2

For the second partitioning scheme, node h can also be fathomed if:
(a) $P(h)=\emptyset$ (see Section 4.1); or
(b) $W(h)$ contains an unreachable node, i.e., if $l(h)+c_{t_{h}, j}+c_{j 1}>c$ for at least one $v_{j} \in W(h)$; or
(c) $W(h) \neq \emptyset$ and a lower bound $b(h)$ on the length of a tour including the current path as well as all the vertices of $W(h)$ exceeds c. In order to compute such a bound, consider the super-vertex \bar{v} previously introduced and define the distance matrix $C(h)$ induced by $\{\bar{v}\} \cup W(h)$ as follows. Given the cost matrix $\left(c_{i j}\right)$, replace the en-
tries of row 1 by the corresponding entries of row t_{h}, remove all rows and columns j such that $v_{j} \notin W(h) \cup\left\{v_{1}\right\}$ and set all diagonal entries equal to infinity. In the resulting submatrix, the super-vertex is associated with row and column 1 , so the entries $c_{1 j}$ for which v_{j} is labelled can also be set to infinity. The value of $b(h)$ can then be taken as $l(h)+\tau(h)$, where $\tau(h)$ is the optimal solution of the TSP defined by $C(h)$. Since, however, TSP is NP-hard, $\tau(h)$ can be replaced by any lower bound $\underline{\tau}(h)$. We have determined $\underline{\tau}(h)$ as the optimal solution to the min-sum assignment problem defined by $C(h)$ and which can be solved in $\mathrm{O}\left(n^{3}\right)$ time. (For a recent survey on assignment problem codes, see Carpaneto, Martello and Toth [1]. In our implementation, we used the APC Fortran code [1].) Therefore node h can be fathomed if $l(h)+\underline{\tau}(h)>c$.

5. Computational results

The algorithms described in this paper were tested on a number of problems derived from complete directed and undirected graphs. Distances and profits were generated according to a discrete uniform distribution on $[1,100]$ and the shortest path lengths $c_{i j}$ were then computed. The value of c was set equal to $\beta \tau^{*}$ where τ^{*} is the optimal value of the TSP defined by ($c_{i j}$) and β, a parameter in (0,1$]$ controlling the problem tightness: a low value means that few vertices will be included in C^{*} whereas a value close to 1 indicates that almost all vertices will appear in the optimal solution.
All problems were solved on a VAX 11/780 computer. The maximum CPU time allowed for a single problem was 100 seconds.

Limited tests were first conducted on undirected graphs, using the two ILP based algorithms. Problems involving up to 20 vertices were solved to optimality but for larger sizes, computing times grew quickly and in almost all cases, the time limit was reached. Problems with a larger value of β were, as a rule, easier to solve: the relaxed problem tended to contain relatively more variables having an integer value, thus reducing the expansion of the branch and bound tree. Of the two versions of the algorithm, the first one fared better: it is generally more efficient to check for violated subtour elimination constraints at integer solutions only.
The two enumerative algorithms (corresponding to branching schemes P1 and P2) were then applied to a number of problems associated with directed and undirected graphs. Ten random problems were generated and attempted for several combinations of β between .1 and .9 and of $n \geq 10$. In all cases, the KP bounds were computed with $\alpha=\frac{1}{2}$ after having observed, on a series of tests, that bounds generated with $\alpha=0$ or 1 were on the average weaker. The first branching scheme was clearly faster than the second and is the only one for which results are reported. Tables 1 and 2 give average results over the successful problems when at least 5 problems out of 10 could be solved to optimality within the set time limit. Otherwise, no results are reported.

Table 1. Computational results for directed graphs.

β	n	Heuristic		Branch and Bound		
		Time	Heuristic/Optimum	Time		Nodes
. 1	10	. 006	1.000	. 002		1
	15	. 004	1.000	. 005		1
	20	. 006	1.000	. 005		1
	25	. 008	. 988	. 005		1
	30	. 007	. 988	. 009		1
	40	. 011	. 910	. 029		4
	50	. 013	. 947	. 092		8
	60	. 019	. 935	. 355		21
	70	. 028	. 788	1.394		68
	80	. 041	. 822	4.179		119
	90	. 064	. 799	18.919		473
. 2	10	. 005	. 996	. 006		1
	15	. 006	1.000	. 005		1
	20	. 010	. 897	. 030		5
	25	. 013	. 902	. 142		18
	30	. 014	. 843	. 245		27
	40	. 032	. 883	3.339		185
	50	. 045	. 797	33.861		1285
. 3	10	. 005	. 952	. 011		2
	15	. 008	. 940	. 031		6
	20	. 013	. 909	. 218		27
	25	. 021	. 843	1.574		144
	30	. 027	. 810	4.808		387
	40	. 050	. 871	63.666	(5)	2588
. 4	10	. 008	. 991	. 020		4
	15	. 011	. 899	. 124		17
	20	. 017	. 882	1.492		158
	25	. 025	. 861	14.054		892
	30	. 035	. 794	31.367	(6)	1699
. 5	10	. 010	. 911	. 054		13
	15	. 013	. 953	. 465		44
	20	. 021	. 933	7.579		621
	25	. 032	. 867	47.658	(7)	2785
. 6	10	. 009	. 953	. 090		17
	15	. 014	. 899	1.177		103
	20	. 023	. 940	32.493	(9)	2344
. 7	10	. 010	. 928	. 180		35
	15	. 015	. 929	3.091		256
. 8	10	. 010	. 974	. 288		49
	15	. 016	. 950	6.155		415
. 9	10	. 011	. 961	. 444		69
	15	. 019	. 956	11.877		951

Table 2. Computational results for undirected graphs.

β	n	Heuristic		Branch and Bound		
		Time	Heuristic/Optimum	Time		Nodes
. 1	10	. 003	1.000	. 007		1
	15	. 005	. 951	. 007		1
	20	. 007	1.000	. 033		4
	25	. 007	. 953	. 013		2
	30	. 011	. 899	. 054		8
	40	. 019	. 914	. 380		39
	50	. 016	. 930	. 682		52
	60	. 032	. 789	13.144	(9)	652
	70	. 040	. 851	30.518	(5)	1172
. 2	10	. 007	. 993	. 008		2
	15	. 007	. 999	. 023		3
	20	. 011	. 931	. 557		71
	25	. 013	. 888	. 345		43
	30	. 018	. 868	1.992	(9)	180
	40	. 030	. 858	35.490	(6)	2001
. 3	10	. 004	. 987	. 022		4
	15	. 011	. 937	. 121		18
	20	. 014	. 967	10.441		1147
	25	. 020	. 862	13.626		1075
	30	. 026	. 839	31.064	(5)	2252
. 4	10	. 006	. 945	. 044		9
	15	. 014	. 975	. 634		84
	20	. 016	. 936	10.048	(8)	978
	25	. 022	. 853	31.310	(6)	2365
. 5	10	. 009	. 961	. 082		15
	15	. 014	. 970	2.802		332
	20	. 028	. 945	49.062	(6)	3304
. 6	10	. 010	1.000	. 180		32
	15	. 015	. 981	10.821		1150
. 7	10	. 008	. 993	. 286		41
	15	. 017	. 968	22.400	(9)	2112
. 8	10	. 011	. 975	. 542		80
	15	. 019	. 980	50.102		3861
. 9	10	. 010	1.000	. 994		156

The various column headings can be interpreted as follows.

- Heuristic time: average CPU time required to run the two heuristic algorithms described in Section 3;
- Heuristic/Optimum: Best heuristic solution value divided by the value of the optimum;
- Time (): average CPU time required to run the branch and bound algorithm followed, in brackets, by the number of successful problems when this is less than 10 ;
- Nodes: Number of nodes generated during the branch and bound process.

Computational results indicate that the combination of the two heuristics is quite efficient. It often provided the optimum or a solution within a few percentage points of the optimum in insignificant CPU time. This is particularly true in problems where n is small. As expected, problem difficulty increases with β as in "loose" problems, upper bounds become less sharp and fathoming criteria less effective. Problems generated from directed graphs were easier to solve than symmetrical problems. This observation is not particular to the STSP, but also applies to several related routing problems (the TSP, for example).

Overall, our approach appears to have been quite successful. To our knowledge, this is the first time exact algorithms are published for this difficult problem. Depending on problem characteristics, instances involving between 10 and 90 vertices were solved to optimality.

Acknowledgement

This work was supported by the Canadian Natural Science and Engineering Research Council (grant A4747) and by the Ministero della Pubblica Istruzione, Italy. We thank Dr. Matteo Fischetti and Dr. Antonio Mantani for helpful discussions. Thanks are also due to Hélène Mercure for her assistance with programming. The title of this paper was suggested by Prof. John Stafford from the University of Southampton.

References

[1] G. Carpaneto, S. Martello and P. Toth, Algorithms and codes for the assignment problem, in: B. Simeone, P. Toth, G. Gallo, F. Maffioli and S. Pallottino, eds., Fortran Codes for Network Optimization, Annals of Operations Research 13 (Baltzer, Basel, 1988).
[2] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPComplete Problems (Freeman, New York, 1979).
[3] B.L. Golden, L. Levy and R. Vohra, Some heuristics for the generalized traveling salesman problem, Working Paper MS/S 85-036, College of Business and Management, University of Maryland (1985).
[4] B.L. Golden, L. Levy and R. Vohra, The orienteering problem, Naval Res. Logist. 34 (1987) 307-318.
[5] B.L. Golden, Q. Wang and L. Liu, A multi-faceted heuristic for the orienteering problem, Naval Res. I.ogist. 35 (1988) 359-366.
[6] M. Hayes and J.M. Norman, Dynamic programming in orienteering: route choice and siting of controls, J. Oper. Res. Soc. 35 (1984) 791-796.
[7] G. Laporte, Generalized subtour elimination constraints and connectivity constraints, J. Oper. Res. Soc. 37 (1986) 509-514.
[8] S. Martello and P. Toth, An upper bound for the zero-one knapsack problem and a branch and bound algorithm, European J. Oper. Res. 1 (1977) 169-175.
[9] S. Martello and P. Toth, Algorithms for knapsack problems, in: S. Martello, G. Laporte, M. Minoux and C. Ribeiro, eds., Surveys in Combinatorial Optimization, Annals of Discrete Mathematics 31 (North-Holland, Amsterdam, 1987) 213-257.
[10] D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis II, An analysis of several heuristics for the traveling salesman problem, SIAM J. Comput. 6 (1977) 563-581.
[11] T. Tsiligirides, Heuristic methods applied to orienteering, J. Oper. Res. Soc. 35 (1984) 797-809.

