
Discrete Applied Mathematics 26 (1990) 193-207

North-Holland

193

THE SELECTIVE TRAVELLING SALESMAN PROBLEM

Gilbert LAPORTE

l%ole des Hautes Etudes Commerciales de Montrt!al, Canada

Silvano MARTELLO

DEIS, University of Bologna, Italy

Received 11 June 1987

Revised 6 June 1988

Given a weighted graph with profits associated with the vertices, the selective travelling sales-

man problem (or orienteering problem) consists of selecting a simple circuit of maximal total

profit, whose length does not exceed a prespecified bound. This paper provides integer linear pro-

gramming formulations for the problem. Upper and lower bounds are then derived and embedded

in exact enumerative algorithms. Computational results are reported.

1. Introduction

Let G = (V;A) be a complete graph with vertex set V= { ut, . . . , u,} and arc set

A = {(ui, uj): vi, Uj E V, uj+ vj}, having a profit p; associated with each vertex ui E I/

and a distance (or cost) cij associated with each arc (u;, Uj) EA (cij=O for all i).
Throughout this paper, we assume that the cost matrix (c,~) satisfies the triangle in-
equality (C;jI Cjk + Ckj for all i, j, k). The selective travehIg salesman problem
(STSP) consists of determining a simple circuit of maximal total profit, which in-

cludes ut and whose length does not exceed a preset value c. More formally, we

want to find an ordered vertex set C*= {Q,, ui2, . . . , Uih} such that

ui, + uis for r,se{l,..., h), rfs,

01 E c*,

P, pi, is maximized.

Note that the triangularity condition is not restrictive since any distance matrix

can be replaced by the corresponding shortest path matrix (in such a case, the STSP

solution relative to the original graph may be a nonsimple circuit). Also, observe

that unprofitable vertices will never be selected in the solution, so we can assume

without loss of generality that p, > 0 for all Ui E I/.

0166-218X/90/$3.50 0 1990, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82707053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

194 G. Laporte, S. Martello

The problem arises in a number of practical contexts. An application to the

delivery of home heating oil is described in Golden, Levy and Vohra [4]. Hayes and

Norman [6] and Tsiligirides [l I] describe it as the orienteering problem because of

its connection with “orienteering”, a treasure-hunt game in which competitors

collect scores by reaching “control points” within a prefixed time limit.

The STSP is NP-hard, as can easily be seen by transformation of its recognition

version from the Hamiltonian circuit problem (HC), which is known to be NP-

complete (see Garey and Johnson [2]). Given any instance of the HC, relative to a

graph Gh = (Vh, A ‘) with vertex set Vh = {u I ,..., o,} and arc set Ah={(Ui,Uj)},

define an instance of STSP having:

(ui, uj)EAh9

I/= I/h; pi= 1 for all vertices; Cij = 1 if

cd = 2 otherwise; c= j V’. Then Gh possesses a Hamiltonian circuit if

and only if the solution value of this instance equals 1 V/1.

Apart from a straightforward dynamic programming formulation by Hayes and

Norman [6], only approximate algorithms seem to have been provided in the litera-

ture for the STSP (Tsiligirides [l 11; Golden, Levy and Vorha [3,4]; Golden, Wang

and Liu [S]). In this paper we develop new theoretical results and exact algorithms

for the problem.

In the following section we provide integer linear programming formulations and

derive a solution approach. In Section 3 we introduce upper and lower bounds for

the problem. Enumerative algorithms are presented in Section 4 and computational

results in Section 5.

2. An ILP-based approach

The problem described in the previous section, relative to a directed graph, can

be formally stated as follows. Let C* be the ordered set of vertices in the optimal

circuit and define a binary variable xij taking the value 1 if and only if Ui and Vj are

two consecutive vertices of C* (the first vertex is assumed to be consecutive to the

last one). The ILP formulation of the STSP is then:

maximize

Pl+it2Pijclx”.

subject to

(1)

(2)

(3) i i CijX,jsc>
i=l j=l

The selective fravelling salesman problem 195

XijE{O,l), i=l,..., n;j=l,..., n; i#j.

Constraints (1) specify that vertex u1 belongs to C*, while (2) are the flow con-

servation conditions for the remaining vertices. Constraint (3) defines the upper

bound on the optimal circuit length. In connectivity constraints (4), for any proper

subset S of V\ {ui >, the left-hand side is equal to 2jStl C*l; the right-hand side

takes the value 0 if in the optimal solution S is disconnected from its complement,

and takes a value not less than 2/S otherwise. Since IStl C*I I ISI, no feasible solu-

tion is eliminated, while any solution containing a subtour in S is prevented.

In the particular case where cij = Cji for all i, j, i.e., when the graph is undirected,

the number of constraints and variables can be considerably reduced as follows.

Variables xti need only be defined for i< j and give the number of times edge (II;, Uj)
is used in the solution. Since C* = {u,, uj} is feasible, these variables can take three

values:

xij=

1:

2, if c*={lJ~‘Ui,Uj},

1, if IC*I >2 and vi, Uj (i<j) are consecutive vertices of C*,

0, otherwise.

By introducing n - 1 additional binary variables y, (i = 2, . . . , n), taking the value

1 if and only if L+E C*, we obtain the following model:

maximize

PI + IfI PiY,t
i=2

subject to

jg2xljz29

k-l

,& X;k+ 2 XkJ=2Yk, k=Z...,n,
J=k+l

~ ~ CijXij I C,
i=l j=i+l

2ukzsYk51sI uTsX,+u;sXij 7 SCV\{UIIF /S/r33

“:G
I >

“, E s

xijE{0,1,2), j=2 ,..., n,

x,~E{O,~), i=2 ,..., n; j=i+l,..., n,

y;~{O,l), i=2 ,..., n.

(5)

(6)

(7)

(8)

196 G. Laporte, S. Martello

Constraints (5)-(8) are the counterparts of (l)-(4), respectively. Note that 1s 12 3

in (8), since no subtour of two edges exists in V\ { oi}. A graphical interpretation

of constraints (8) can be found in Laporte [7].

We used a standard constraint relaxation algorithm to solve the second model

(ILP-based approaches are known to be generally inefficient for asymmetrical

travelling salesman problems). The algorithm starts by relaxing the connectivity

constraints and the integrality conditions on the variables. The resulting problem is

then solved through linear programming and the violated conditions are gradually

introduced through a branch and bound process. Two variants of the algorithm are

obtained according to the order in which connectivity and integrality conditions are

considered. In the first one, violated connectivity constraints are only generated at

an integer solution. In the second variant, they are introduced as soon as a con-

nected (possibly fractional) component disjoint from {u,} is identified, while

branching on fractional variables occurs only when no such component exists.

3. Bounds and approximate algorithms

In this section we introduce upper and lower bounds for the STSP. These will be

used in the enumerative algorithms described in Section 4.

3.1. Upper bounds

The following theorem provides an upper bound on the optimal STSP solution.

Theorem 1. Given any instance of the STSP and a real value (x (05 al l), define
vertex weights

wj=omin{cij}+(l--CX)min{Cjk}, j=l,...,n, (9)
i#j k#j

and let z* be the optimal solution value to the following O-l knapsack problem (KP):

maximize

Z=Pl+ i PjYjT
j=2

subject to

~ WjYj~C- Wl,
j=2

Yj~ (0, l}, j=2, n.

Then z* is no less than the optimal solution of the STSP instance.

Proof. Let Z* = (ofI = o,, u,*, . . . , ulh = ul) be the sequence of vertices in the optimal

The selective traveliing salesman problem 197

solution of the STSP instance, thus giving CT::ptj as optimal value. We prove

that the KP has a feasible solution having the same value. From (3) it must be that

1;:: C,,,,,+,CC, so

h-l

Cl-ak,t,+ c (ac,,~,,,~+(1-~)c,,,,~+,)+ac,,_,,I~c.
j=2

From (9), a~,~_,,~, + (1 - a)~,,,,~,, 2 wIJ for j= 1, . . . , h - 1. Hence the conclusion

follows. 0

Since it is known that ui necessarily belongs to the solution, a tighter bound can

be derived as follows. For any pair of vertices ur, u, (r,s# l), let STSP(r, s) be the

restricted instance of STSP obtained by imposing that arcs (ur, ul) and (ut, o,) belong

to the solution. Let us assume for the moment that r #ts. If cis+ c,, + c,, > c, then

STSP(r,s) is infeasible and we can define Z(T, s) =p, as an upper bound on its solu-

tion value. Otherwise, let H(r, s) = { j # 1, r, s: cis + Csj + Cjr + crl I C} and note that

only vertices vj such that jEH(r,s) can belong to the solution of STSP(r,s). The

minimum cost of including such vertices in the solution becomes

Wj(r,S)=(Y
iEHk$:,-)\(j~ {C"}+(l-cc)k~~(r,~~~)\j;~ {cjkL

jEH(r,S). (10)

Hence, an upper bound for STSP(r, s) can immediately be derived from Theorem 1 as

Z(r,s)=(P*+P,+P,)+max C PjYj9
jsfW,s)

subject to

1 Wj(r,S)_YjIC- Cis+C,i+CX min {C,}+(l-a) min {csk}
.i E H@, 4 (i E H(r, s) k E H(r, s) >

Yje {O, l}, jEH(r9s)*

In the particular case where r = s, we trivially have z(r, s) =p, +pr if clr+ c,i IC

and z(r,s) =p, otherwise. Therefore a valid upper bound for the STSP is

max21r,scn {z(r,s)].
The above bounds require the optimal solution of a KP, which is known to be

NP-hard. However, it is always valid to replace the KP solution value by an upper

bound. A number of such bounds, all requiring O(n) time, can be found in Martello

and Toth [9]. In our implementation, we used the Martello and Toth bound [8,9].

As a result, computing the upper bound for STSP given by Theorem 1 requires

0(n2) time, since this is the complexity of computing the Wj. It follows that the

tighter bound requires 0(n4) time. It is however possible to compute, in O(n3)

time, a relaxation of it by replacing (10) with

Wj(r,s)=o min {Cij] +(l -a) min {Cjk}, jEH(r,s).
i#j, 1,r kzj, 1,s

198 G. Laporte, S. Martello

With this, in fact, we can first determine in 0(n2) time the quadruplets of indices

(i’(j), i”(j), k’(j), k”(j); j = 2, . . . , n) such that

Ci’(j), j= min {Cij}

if I, j
and ci”(j),j = min

i+ 1, j, i’(j)
{ciJ>,

cj, k’(j) = min { Cjk } and cj, k,,(j) = min {cjk}.

k#l,j k+Lj,k’(j)

Using this information, each Wj(ryS) can be immediately computed in O(1) time, so

the overall complexity for the bound is O(n3). Computational experiments proved

that the relaxation introduced has very marginal effects on the tightness of the

resulting bound.

3.2. Approximate algorithms

Approximate algorithms for the STSP can be easily obtained by simple modifica-

tions to known travelling salesman problem (TSP) heuristics. In this paper, which

is mostly concerned with exact algorithms, heuristic methods will only be used to

provide an initial feasible solution in the branch and bound process of Section 4.

We describe two simple schemes which have proved to be computationally efficient

for the STSP.

The first scheme corresponds to the nearest neighbour TSP algorithm (Rosen-

krantz, Stearns and Lewis [lo]). It gradually extends a path I= {u,., . . . , ul, . . . , u,}

by adding, at each iteration, an arc (Di, u,) or (o,, Oj) according to a greedy criterion.

Let I(I) denote the length of the current path. The general scheme can be outlined

as follows.

Algorithm Hl

begin

I:={ol}, /-:=s:= 1;

while F= { vk $ I: &I) + c,k + Ckr 5 C} # 0 do

begin

find Ui and Vj such that

p;/c;,=max{pk/ck,: VkEF) and pj/C,j=lllaX(pk/C,~~ VkEF);

if pi/Cir>Pj/Csj then add Vi to I before r and set r := i
else add Uj to I after s and set s :=j

end;

close the current path by adding arc (o,, u,)

end

The second scheme, derived from the TSP cheapest insertion algorithm [lo],

extends a tour T = { vl, . . . , u,} instead of a path. Let I(T) denote the length of the

current tour.

The selective travelling salesman problem

Algorithm H2

begin

T:= {q};

199

find the maximal ratio Pj/(clj + cj 1) such that j# 1 and Clj + Cj, I c (if

no such j exists then stop);

form the tour T := {u,, Uj, u,};
improve := true;

repeat

find Uj$ T and (or, u,) consecutive vertices in T such that l(T) +
crj + cjs - C, I c and Pj /‘(Cr. + cjs - c,) is maximal;

if no such Uj and (ur, u,) exist then improve := false

else insert Uj in T between u, and v,

until improve = false

end

The time complexities of Algorithms Hl and H2 are the same as those of their

TSP counterparts, i.e., O(n 2, and O(n2 log n), respectively.

4. Enumerative algorithms

We now describe some exact algorithms for the STSP. These consists of gradually

extending a simple path emanating from vertex v1 through a breath-first branch

and bound process.

At the first node of the search tree, we compute the second upper bound described

in Section 3.1 and take as initial feasible solution the better of the two solutions pro-

vided by Algorithms Hl and H2 of Section 3.2. If the value of this solution equals

that of the upper bound, the algorithm terminates. Otherwise, the branching process

is initiated.

Let Z(h) = { ut, = ul, u,,, . . . , u,,} denote the sequence of vertices included in the

current path at a general node h of the search tree. Descendant nodes are generated

by branching on a vertex ui not already in Z(h). Upper bounds on the value of the

optimum and lower bounds on the length of the tour attainable from the current

path are used for fathoming nodes of the search tree.

4. I. Partitioning schemes

We implemented two partitioning schemes. At node h of the decision tree, let

l(h) = C;:,’ ct,,t,+, denote the length of the current path.

4. I. 1. First partitioning scheme
In the first scheme, PI, node h generates one descendant node for each vertex Ui

which can be included in I(h) after u,, and which does not yield a dominated solu-

200 G. Laporte, S. MarteNo

tion. At node h, vertex ui is said to dominate vertex uj (j# i) if c~~,~+ cU = C,,,j,

since the sequence (I+, ui, uj) gives a larger profit than (ut,, uj) at the same cost.

Define F(h) = (Uj $ I(h): l(h) + Cth,j + Cjl I C} and D(h) = {uj E F(h): uj is dominated

by UiEF(h)}. Then branches are cr%ed for each ui E F(h)\D(h).

4. I .2. Second partitioning scheme
The second scheme, P2, requires a more elaborate description. At node h we

select a vertex ui and generate either three or two descendant nodes. In the former

case the generation corresponds to the following decisions:

(h,): ui is included in the current path immediately after u,,;

(h,): Ui will be included in the current path, but at a later stage;

(h,): Ui is permanently excluded from the current path.

At nodes descending from decisions (h,) or (h3), ui will never be reconsidered,

while in those descending from decision (h2) it will reappear in the decision process

(unless fathoming occurs). At that point, clearly, only two nodes corresponding to

(h,) and (h2) will be generated.

In order to formally describe this process, we introduce the following partition

of V at every node h of the search tree:

Z(h): included vertices (= {u,, = ui, u,,, . . . , uth 1);

E(h): excluded vertices;

W(h): waiting vertices (for which decision (h2) was taken);

F(h): free vertices (= V\ (Z(h) U E(h) U W(h))).
(If h is the root node, then Z(h) = {u,}, E(h) = W(h) = 0.)

In order to prevent cyclic selection of waiting vertices for branching, a vertex is

labelled as soon as decision (h2) is taken about it. Only free and unlabelled waiting

vertices are selected for branching. Taking decision (h,) for a vertex results in the

unlabelling of all the waiting vertices. Hence if

Z’(h) = F(h) U { Uj E W(h): Uj is unlabelled} (11)

is empty, node h can be fathomed. Otherwise define the set of dominated vertices

as D(h) = { Uj E P(h): Uj is dominated by ui E P(h)} and select ui from P(h) \D(h) so
as to yield the best improvement to the current solution in the following sense. Since

f(h) + ct,,, 1 is the length of the tour implied by Z(h), Ui will be such that

Pi = max
i

pi

ct,,i+ci1 -Cth,l Ct*.j+CjI-Cf*,I
: UjEP(h)\D(h)

I
a

Vertex Ui belongs either to F(h) or W(h). In the former case, the three nodes h,, h,,
h, generated from h are characterized as follows:

Node h,: Let U(h,)= {uj~F(h)U W(h): I(h)+~,,,i+~~+cjl>~} be the set of ver-

tices which are now unreachable due to the inclusion of Ui. If U(h,)n W(h) #0,
then node h, can be fathomed; otherwise:

The selective travelling salesman problem 201

I(h,) :=l(h)U (q};
E(h,) :=E(h)U U(h1);
IV@,) := W(h) and unlabel all vertices of IV@,);

Hh,) :=JW\((uj) U W,)).

Node hZ:
I(h,) := I(h);
E(h,) := E(h);
W(h,) := W(h)U (vi} and label 0;;
F(h,) :=F(h)\{oi).

Node h,:
I(h,) := I(h);
E(h,) :=E(h)U(ui};
W(h,) := W(h);
F(h,) :=F(h)\(o;}.

If U;E W(h), then node h3 is not created, while for nodes hl and h2, the same
operations apply, except:

W(h,) := ?V(h)\(vi) and unlabel all vertices of W(h,);

F(h,) :=F(h)\ Wh,);
W(h,) := W(h) and label 0;;
F(h,) := F(h).

4.2. Fathoming criteria

4.2.1. Upper bound computation
For both partitioning schemes, at each decision node h generated, we compute,

through Theorem 1, an upper bound z(h) on the solution value attainable from the
subproblem corresponding to the node. In order to provide a unified description,
let us define W(h) = 0 and P(h) = F(h) (see equation (11)) for scheme P 1. Then the
upper bound computation at node h can be described as follows.

First note that the current path I(h) can be considered as a “super-vertex”
6 with profit J?J = CujEl(h)Pj and weight RJ = I(h) + (a min,, E F(~)u IV(~) {Ci I I+

(1 - a) min,, E p(h) {c,,,~}) for some (Y (O<a~l). For all VjEF(h)U W(h), defineA(
F(h) U W(h)\ { vj}; the weights of these vertices are then wj = (Y min,, EA(jjU iufh 1 (c~} +

(1 - a) min okEA(j)U(U1l {Cjk). If ws CujEWCh)~j>~I the node can be fathomed.
Otherwise, the required Z(h) is any upper bound on the solution of the following KP:

maximize

subject to

(12)

202 G. Laporte, S. Martello

Let p* denote the value of the best STSP solution so far obtained. Then, clearly,

node h can be fathomed if Zap*.
When a= 0 or 1, the above bound can be strengthened by exploiting, in the

computation of the Wj, the fact that the vertices uj belonging to C* must be part

of a tour. Consider for example the case where a = 0. Since the two arcs (uk,, Uj)

and (uk,,, uj) cannot both enter the optimal tour if k’# k”, it is then valid to impose

that the indices k yielding min,, EA(j)U iu,l {Cjk} in the computation of the Wj must

all be different. Formally, we must determine the best combination of k’s by

solving a transportation problem (TP) where J(h) = W(h) U (of,} and K(h) =

W(h)UF(h)U{u,}:

minimize

c c
qEJ(fd ukEev\~~,,,J

cjk xjk 9

subject to

c
UkEfwo\~U,~

xjk = 1, ujEJCh),

xjke (0, l}, j#k, UjEJ(h), UkEK(h).

(13)

(14)

Let t*(a) denote the value of the optimal TP solution. Node h can then be

fathomed if I(h) + t*(a)>c and, in the determination of z(h), the right-hand side of

(12) can be replaced by c- (I(h)+ t*(a)). Consider in fact any feasible solution to

the STSP including the current path, all the vertices of W(h) and possibly some ver-

tices of F(h): the total length of the arcs emanating from vertices of I(h)U W(h)

cannot be less than f(h) + t*(a), while the cost of each arc emanating from a vertex

UjEF(h) is no less than the corresponding Wj. Hence this solution is also feasible

for the KP since (12) is automatically satisfied.

A similar reasoning applies to the case where (x = 1. The corresponding TP is then

obtained by redefining J(h) = W(h) U F(h) U {u,, }, K(h) = W(h) U { u1 } and by inter-

changing the “=” and “I” signs in (13) and (14).

4.2.2. Additional criteria for scheme P2
For the second partitioning scheme, node h can also be fathomed if:

(a) P(h) = 0 (see Section 4.1); or

(b) W(h) contains an unreachable node, i.e., if l(h)+Ct,,j+cjl>c for at least

one Uj~ W(h); or

(c) W(h) +0 and a lower bound b(h) on the length of a tour including the current

path as well as all the vertices of W(h) exceeds c. In order to compute such a bound,

consider the super-vertex 0 previously introduced and define the distance matrix

C(h) induced by (0) U W(h) as follows. Given the cost matrix (Cfj), replace the en-

The selective travel&g salesman problem 203

tries of row 1 by the corresponding entries of row th, remove all rows and columns

j such that uj@ W(h)u{~i} and set all diagonal entries equal to infinity. In the

resulting submatrix, the super-vertex is associated with row and column 1, so the

entries Clj for which Uj is labelled can also be set to infinity. The value of b(h) can

then be taken as I(h) + r(h), where r(h) is the optimal solution of the TSP defined

by C(h). Since, however, TSP is NP-hard, t(h) can be replaced by any lower bound

z(h). We have determined z(h) as the optimal solution to the min-sum assignment
problem defined by C(h) and which can be solved in 0(n3) time. (For a recent

survey on assignment problem codes, see Carpaneto, Martello and Toth [l]. In our

implementation, we used the APC Fortran code [l].) Therefore node h can be

fathomed if I(h) + z(h) > c.

5. Computational results

The algorithms described in this paper were tested on a number of problems derived

from complete directed and undirected graphs. Distances and profits were generated

according to a discrete uniform distribution on [l, 1001 and the shortest path lengths

cij were then computed. The value of c was set equal to /3r* where t* is the optimal

value of the TSP defined by (cij) and /I, a parameter in (0, l] controlling the pro-

blem tightness: a low value means that few vertices will be included in C* whereas

a value close to 1 indicates that almost all vertices will appear in the optimal

solution.

All problems were solved on a VAX 1 l/780 computer. The maximum CPU time

allowed for a single problem was 100 seconds.

Limited tests were first conducted on undirected graphs, using the two ILP based

algorithms. Problems involving up to 20 vertices were solved to optimality but for

larger sizes, computing times grew quickly and in almost all cases, the time limit was

reached. Problems with a larger value of j? were, as a rule, easier to solve: the

relaxed problem tended to contain relatively more variables having an integer value,

thus reducing the expansion of the branch and bound tree. Of the two versions of

the algorithm, the first one fared better: it is generally more efficient to check for

violated subtour elimination constraints at integer solutions only.

The two enumerative algorithms (corresponding to branching schemes Pl and P2)

were then applied to a number of problems associated with directed and undirected

graphs. Ten random problems were generated and attempted for several combina-

tions of B between .l and .9 and of nz 10. In all cases, the KP bounds were com-

puted with (-w=+ after having observed, on a series of tests, that bounds generated

with a = 0 or 1 were on the average weaker. The first branching scheme was clearly

faster than the second and is the only one for which results are reported. Tables 1

and 2 give average results over the successful problems when at least 5 problems out

of 10 could be solved to optimality within the set time limit. Otherwise, no results

are reported.

204 G. Laporte, S. MarteNo

Table 1. Computational results for directed graphs.

Heuristic Branch and Bound

P n Time Heuristic/Optimum Time Nodes

.I 10 ,006 1.000 ,002

15 ,004 1.000 ,005

20 ,006 1.000 ,005

25 ,008 ,988 ,005

30 ,007 .988 ,009

40 ,011 .910 ,029

50 ,013 ,947 ,092

60 .019 ,935 ,355

70 .028 ,788 1.394

80 ,041 ,822 4.179

90 ,064 ,799 18.919

4
8

21
68

119

473

10 ,005 ,996 ,006

15 .006 1.000 .005

20 ,010 ,897 ,030

25 ,013 ,902 .142

30 ,014 ,843 .245

40 ,032 ,883 3.339

50 ,045 .797 33.861

5

18

27

185

1285

10 ,005

15 ,008

20 ,013

25 ,021

30 ,027

40 .050

_I ,952 ,011 L

.940 ,031 6

.909 ,218 27

.843 1.574 144

,810 4.808 387

,871 63.666 (5) 2588

.4 10 ,008 ,991 ,020 4

15 ,011 ,899 ,124 17

20 ,017 ,882 1.492 158

25 ,025 ,861 14.054 892

30 ,035 ,794 31.367 (6) 1699

.5 10 ,010 ,911

15 .013 ,953

20 .021 ,933

25 .032 ,867

,054

,465

7.579

47.658 (7)

,090

1.177

32.493 (9)

,180

3.091

13

44

621

2785

.6 10 .009 ,953

15 .014 ,899

20 ,023 .940

17

103

2344

.7 10

15

.8 10

15

.9 10

15

,010 ,928

,015 .929

35

256

,010 ,974 ,288 49

,016 .950 6.155 415

,011 ,961 ,444 69

,019 ,956 11.877 951

The selective travelling salesman problem 205

Table 2. Computational results for undirected graphs.

P n Time

Heuristic Branch and Bound

Heuristic/Optimum Time Nodes

.l 10 ,003 1 .ooo ,007

15 ,005 .951 ,007

20 .007 1.000 ,033

25 ,007 ,953 .013

30 ,011 ,899 .054

40 ,019 ,914 .380

50 ,016 ,930 ,682

60 .032 .789 13.144 (9)

70 .040 ,851 30.518 (5)

.2 10 ,007 ,993 .008

15 .007 ,999 .023

20 ,011 .931 ,557

25 ,013 .888 ,345

30 ,018 ,868 1.992 (9)

40 ,030 ,858 35.490 (6)

.3 10

15

20

25

30

,011

,014

,020

.026

.987

,937

,967

,862

.839

.4 10 .006 ,945

15 ,014 ,975

20 ,016 ,936

25 ,022 .853

.5 10

15

20

.6 10

15

,009 ,961

,014 ,970

,028 ,945

.022

,121

10.441

13.626

31.064 (5)

.044

,634

10.048 (8)

31.310 (6)

,082

2.802

49.062 (6)

.7 10

15

.8 10

15

.9 10

,010

,015

.008

.017

,011

,019

.OlO

1.000 .180

.981 10.821

,993

,968

,975

,980

.286

22.400 (9)

,542

50.102

1.000 ,994

4

2

8

39

52

652

1172

2

71

43

180

2001

4

18

1147

1075

2252

9

84

978

2365

15

332

3304

32

1150

41

2112

80

3861

156

The various column headings can be interpreted as follows.

- Heuristic time: average CPU time required to run the two heuristic algorithms

described in Section 3;

- Heuristic/Optimum: Best heuristic solution value divided by the value of the

optimum;

206 G. Laporte, S. Martello

- Time (): average CPU time required to run the branch and bound algorithm

followed, in brackets, by the number of successful problems when this is less

than 10;
- Nodes: Number of nodes generated during the branch and bound process.

Computational results indicate that the combination of the two heuristics is quite

efficient. It often provided the optimum or a solution within a few percentage points

of the optimum in insignificant CPU time. This is particularly true in problems

where n is small. As expected, problem difficulty increases with j3 as in “loose”

problems, upper bounds become less sharp and fathoming criteria less effective.

Problems generated from directed graphs were easier to solve than symmetrical

problems. This observation is not particular to the STSP, but also applies to several

related routing problems (the TSP, for example).

Overall, our approach appears to have been quite successful. To our knowledge,

this is the first time exact algorithms are published for this difficult problem.

Depending on problem characteristics, instances involving between 10 and 90 vertices

were solved to optimality.

Acknowledgement

This work was supported by the Canadian Natural Science and Engineering

Research Council (grant A4747) and by the Minister0 della Pubblica Istruzione, Italy.

We thank Dr. Matte0 Fischetti and Dr. Antonio Mantani for helpful discussions.

Thanks are also due to HClkne Mercure for her assistance with programming. The

title of this paper was suggested by Prof. John Stafford from the University of

Southampton.

References

[I] G. Carpaneto, S. Martello and P. Toth, Algorithms and codes for the assignment problem, in: B.

Simeone, P. Toth, G. Gallo, F. Maffioli and S. Pallottino, eds., Fortran Codes for Network Op-

timization, Annals of Operations Research 13 (Baltzer, Basel, 1988).

[2] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Complete Problems (Freeman, New York, 1979).

[3] B.L. Golden, L. Levy and R. Vohra, Some heuristics for the generalized traveling salesman pro-

blem, Working Paper MS/S 85-036, College of Business and Management, University of Maryland

(1985).

[4] B.L. Golden, L. Levy and R. Vohra, The orienteering problem, Naval Res. Logist. 34 (1987)

307-3 18.

[5] B.L. Golden, Q. Wang and L. Liu, A multi-faceted heuristic for the orienteering problem, Naval

Res. Logist. 35 (1988) 359-366.

[6] M. Hayes and J.M. Norman, Dynamic programming in orienteering: route choice and siting of con-

trols, J. Oper. Res. Sot. 35 (1984) 791-796.

The selective travelling salesman problem 207

[7] G. Laporte, Generalized subtour elimination constraints and connectivity constraints, J. Oper. Res.

Sot. 37 (1986) 509-514.

[8] S. Martello and P. Toth, An upper bound for the zero-one knapsack problem and a branch and

bound algorithm, European J. Oper. Res. 1 (1977) 169-175.

[9] S. Martello and P. Toth, Algorithms for knapsack problems, in: S. Martello, G. Laporte, M.

Minoux and C. Ribeiro, eds., Surveys in Combinatorial Optimization, Annals of Discrete Mathe-

matics 31 (North-Holland, Amsterdam, 1987) 213-257.

[lo] D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis II, An analysis of several heuristics for the travel-

ing salesman problem, SIAM J. Comput. 6 (1977) 563-581.

[l l] T. Tsiligirides, Heuristic methods applied to orienteering, J. Oper. Res. Sot. 35 (1984) 797-809.

