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Given a weighted graph with profits associated with the vertices, the selective travelling sales- 

man problem (or orienteering problem) consists of selecting a simple circuit of maximal total 

profit, whose length does not exceed a prespecified bound. This paper provides integer linear pro- 

gramming formulations for the problem. Upper and lower bounds are then derived and embedded 

in exact enumerative algorithms. Computational results are reported. 

1. Introduction 

Let G = (V;A) be a complete graph with vertex set V= { ut, . . . , u,} and arc set 

A = {(ui, uj): vi, Uj E V, uj+ vj}, having a profit p; associated with each vertex ui E I/ 

and a distance (or cost) cij associated with each arc (u;, Uj) EA (cij=O for all i). 
Throughout this paper, we assume that the cost matrix (c,~) satisfies the triangle in- 
equality (C;jI Cjk + Ckj for all i, j, k). The selective travehIg salesman problem 
(STSP) consists of determining a simple circuit of maximal total profit, which in- 

cludes ut and whose length does not exceed a preset value c. More formally, we 

want to find an ordered vertex set C*= {Q,, ui2, . . . , Uih} such that 

ui, + uis for r,se{l,..., h), rfs, 

01 E c*, 

P, pi, is maximized. 

Note that the triangularity condition is not restrictive since any distance matrix 

can be replaced by the corresponding shortest path matrix (in such a case, the STSP 

solution relative to the original graph may be a nonsimple circuit). Also, observe 

that unprofitable vertices will never be selected in the solution, so we can assume 

without loss of generality that p, > 0 for all Ui E I/. 

0166-218X/90/$3.50 0 1990, Elsevier Science Publishers B.V. (North-Holland) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82707053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


194 G. Laporte, S. Martello 

The problem arises in a number of practical contexts. An application to the 

delivery of home heating oil is described in Golden, Levy and Vohra [4]. Hayes and 

Norman [6] and Tsiligirides [l I] describe it as the orienteering problem because of 

its connection with “orienteering”, a treasure-hunt game in which competitors 

collect scores by reaching “control points” within a prefixed time limit. 

The STSP is NP-hard, as can easily be seen by transformation of its recognition 

version from the Hamiltonian circuit problem (HC), which is known to be NP- 

complete (see Garey and Johnson [2]). Given any instance of the HC, relative to a 

graph Gh = ( Vh, A ‘) with vertex set Vh = {u I ,..., o,} and arc set Ah={(Ui,Uj)}, 

define an instance of STSP having: 

(ui, uj)EAh9 

I/= I/h; pi= 1 for all vertices; Cij = 1 if 

cd = 2 otherwise; c= j V’. Then Gh possesses a Hamiltonian circuit if 

and only if the solution value of this instance equals 1 V/1. 

Apart from a straightforward dynamic programming formulation by Hayes and 

Norman [6], only approximate algorithms seem to have been provided in the litera- 

ture for the STSP (Tsiligirides [l 11; Golden, Levy and Vorha [3,4]; Golden, Wang 

and Liu [S]). In this paper we develop new theoretical results and exact algorithms 

for the problem. 

In the following section we provide integer linear programming formulations and 

derive a solution approach. In Section 3 we introduce upper and lower bounds for 

the problem. Enumerative algorithms are presented in Section 4 and computational 

results in Section 5. 

2. An ILP-based approach 

The problem described in the previous section, relative to a directed graph, can 

be formally stated as follows. Let C* be the ordered set of vertices in the optimal 

circuit and define a binary variable xij taking the value 1 if and only if Ui and Vj are 

two consecutive vertices of C* (the first vertex is assumed to be consecutive to the 

last one). The ILP formulation of the STSP is then: 

maximize 

Pl+it2Pijclx”. 

subject to 

(1) 

(2) 

(3) i i CijX,jsc> 
i=l j=l 
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XijE{O,l), i=l,..., n;j=l,..., n; i#j. 

Constraints (1) specify that vertex u1 belongs to C*, while (2) are the flow con- 

servation conditions for the remaining vertices. Constraint (3) defines the upper 

bound on the optimal circuit length. In connectivity constraints (4), for any proper 

subset S of V\ {ui >, the left-hand side is equal to 2jStl C*l; the right-hand side 

takes the value 0 if in the optimal solution S is disconnected from its complement, 

and takes a value not less than 2/S otherwise. Since IStl C*I I ISI, no feasible solu- 

tion is eliminated, while any solution containing a subtour in S is prevented. 

In the particular case where cij = Cji for all i, j, i.e., when the graph is undirected, 

the number of constraints and variables can be considerably reduced as follows. 

Variables xti need only be defined for i< j and give the number of times edge (II;, Uj) 
is used in the solution. Since C* = {u,, uj} is feasible, these variables can take three 

values: 

xij= 

1: 

2, if c*={lJ~‘Ui,Uj}, 

1, if IC*I >2 and vi, Uj (i<j) are consecutive vertices of C*, 

0, otherwise. 

By introducing n - 1 additional binary variables y, (i = 2, . . . , n), taking the value 

1 if and only if L+E C*, we obtain the following model: 

maximize 

PI + IfI PiY,t 
i=2 

subject to 

jg2xljz29 

k-l 

,& X;k+ 2 XkJ=2Yk, k=Z...,n, 
J=k+l 

~ ~ CijXij I C, 
i=l j=i+l 

2ukzsYk51sI uTsX,+u;sXij 7 SCV\{UIIF /S/r33 

“:G 
I > 

“, E s 

xijE{0,1,2), j=2 ,..., n, 

x,~E{O,~), i=2 ,..., n; j=i+l,..., n, 

y;~{O,l), i=2 ,..., n. 

(5) 

(6) 

(7) 

(8) 
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Constraints (5)-(8) are the counterparts of (l)-(4), respectively. Note that 1s 12 3 

in (8), since no subtour of two edges exists in V\ { oi}. A graphical interpretation 

of constraints (8) can be found in Laporte [7]. 

We used a standard constraint relaxation algorithm to solve the second model 

(ILP-based approaches are known to be generally inefficient for asymmetrical 

travelling salesman problems). The algorithm starts by relaxing the connectivity 

constraints and the integrality conditions on the variables. The resulting problem is 

then solved through linear programming and the violated conditions are gradually 

introduced through a branch and bound process. Two variants of the algorithm are 

obtained according to the order in which connectivity and integrality conditions are 

considered. In the first one, violated connectivity constraints are only generated at 

an integer solution. In the second variant, they are introduced as soon as a con- 

nected (possibly fractional) component disjoint from {u,} is identified, while 

branching on fractional variables occurs only when no such component exists. 

3. Bounds and approximate algorithms 

In this section we introduce upper and lower bounds for the STSP. These will be 

used in the enumerative algorithms described in Section 4. 

3.1. Upper bounds 

The following theorem provides an upper bound on the optimal STSP solution. 

Theorem 1. Given any instance of the STSP and a real value (x (05 al l), define 
vertex weights 

wj=omin{cij}+(l--CX)min{Cjk}, j=l,...,n, (9) 
i#j k#j 

and let z* be the optimal solution value to the following O-l knapsack problem (KP): 

maximize 

Z=Pl+ i PjYjT 
j=2 

subject to 

~ WjYj~C- Wl, 
j=2 

Yj~ (0, l}, j=2, . . . . n. 

Then z* is no less than the optimal solution of the STSP instance. 

Proof. Let Z* = (ofI = o,, u,*, . . . , ulh = ul) be the sequence of vertices in the optimal 
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solution of the STSP instance, thus giving CT::ptj as optimal value. We prove 

that the KP has a feasible solution having the same value. From (3) it must be that 

1;:: C,,,,,+,CC, so 

h-l 

Cl-ak,t,+ c (ac,,~,,,~+(1-~)c,,,,~+,)+ac,,_,,I~c. 
j=2 

From (9), a~,~_,,~, + (1 - a)~,,,,~,, 2 wIJ for j= 1, . . . , h - 1. Hence the conclusion 

follows. 0 

Since it is known that ui necessarily belongs to the solution, a tighter bound can 

be derived as follows. For any pair of vertices ur, u, (r,s# l), let STSP(r, s) be the 

restricted instance of STSP obtained by imposing that arcs (ur, ul) and (ut, o,) belong 

to the solution. Let us assume for the moment that r #ts. If cis+ c,, + c,, > c, then 

STSP(r,s) is infeasible and we can define Z(T, s) =p, as an upper bound on its solu- 

tion value. Otherwise, let H(r, s) = { j # 1, r, s: cis + Csj + Cjr + crl I C} and note that 

only vertices vj such that jEH(r,s) can belong to the solution of STSP(r,s). The 

minimum cost of including such vertices in the solution becomes 

Wj(r,S)=(Y 
iEHk$:,-)\(j~ {C"}+(l-cc)k~~(r,~~~)\j;~ {cjkL 

jEH(r,S). (10) 

Hence, an upper bound for STSP(r, s) can immediately be derived from Theorem 1 as 

Z(r,s)=(P*+P,+P,)+max C PjYj9 
jsfW,s) 

subject to 

1 Wj(r,S)_YjIC- Cis+C,i+CX min {C,}+(l-a) min {csk} 
.i E H@, 4 ( i E H(r, s) k E H(r, s) > 

Yje {O, l}, jEH(r9s)* 

In the particular case where r = s, we trivially have z(r, s) =p, +pr if clr+ c,i IC 

and z(r,s) =p, otherwise. Therefore a valid upper bound for the STSP is 

max21r,scn {z(r,s)]. 
The above bounds require the optimal solution of a KP, which is known to be 

NP-hard. However, it is always valid to replace the KP solution value by an upper 

bound. A number of such bounds, all requiring O(n) time, can be found in Martello 

and Toth [9]. In our implementation, we used the Martello and Toth bound [8,9]. 

As a result, computing the upper bound for STSP given by Theorem 1 requires 

0(n2) time, since this is the complexity of computing the Wj. It follows that the 

tighter bound requires 0(n4) time. It is however possible to compute, in O(n3) 

time, a relaxation of it by replacing (10) with 

Wj(r,s)=o min {Cij] +(l -a) min {Cjk}, jEH(r,s). 
i#j, 1,r kzj, 1,s 
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With this, in fact, we can first determine in 0(n2) time the quadruplets of indices 

(i’(j), i”(j), k’(j), k”(j); j = 2, . . . , n) such that 

Ci’(j), j= min {Cij} 

if I, j 
and ci”(j),j = min 

i+ 1, j, i’(j) 
{ciJ>, 

cj, k’(j) = min { Cjk } and cj, k,,(j) = min {cjk}. 

k#l,j k+Lj,k’(j) 

Using this information, each Wj(ryS) can be immediately computed in O(1) time, so 

the overall complexity for the bound is O(n3). Computational experiments proved 

that the relaxation introduced has very marginal effects on the tightness of the 

resulting bound. 

3.2. Approximate algorithms 

Approximate algorithms for the STSP can be easily obtained by simple modifica- 

tions to known travelling salesman problem (TSP) heuristics. In this paper, which 

is mostly concerned with exact algorithms, heuristic methods will only be used to 

provide an initial feasible solution in the branch and bound process of Section 4. 

We describe two simple schemes which have proved to be computationally efficient 

for the STSP. 

The first scheme corresponds to the nearest neighbour TSP algorithm (Rosen- 

krantz, Stearns and Lewis [lo]). It gradually extends a path I= {u,., . . . , ul, . . . , u,} 

by adding, at each iteration, an arc (Di, u,) or (o,, Oj) according to a greedy criterion. 

Let I(I) denote the length of the current path. The general scheme can be outlined 

as follows. 

Algorithm Hl 

begin 

I:={ol}, /-:=s:= 1; 

while F= { vk $ I: &I) + c,k + Ckr 5 C} # 0 do 

begin 

find Ui and Vj such that 

p;/c;,=max{pk/ck,: VkEF) and pj/C,j=lllaX(pk/C,~~ VkEF); 

if pi/Cir>Pj/Csj then add Vi to I before r and set r := i 
else add Uj to I after s and set s :=j 

end; 

close the current path by adding arc (o,, u,) 

end 

The second scheme, derived from the TSP cheapest insertion algorithm [lo], 

extends a tour T = { vl, . . . , u,} instead of a path. Let I(T) denote the length of the 

current tour. 
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Algorithm H2 

begin 

T:= {q}; 

199 

find the maximal ratio Pj/(clj + cj 1) such that j# 1 and Clj + Cj, I c (if 

no such j exists then stop); 

form the tour T := {u,, Uj, u,}; 
improve := true; 

repeat 

find Uj$ T and (or, u,) consecutive vertices in T such that l(T) + 
crj + cjs - C, I c and Pj /‘(Cr. + cjs - c,) is maximal; 

if no such Uj and (ur, u,) exist then improve := false 

else insert Uj in T between u, and v, 

until improve = false 

end 

The time complexities of Algorithms Hl and H2 are the same as those of their 

TSP counterparts, i.e., O(n 2, and O(n2 log n), respectively. 

4. Enumerative algorithms 

We now describe some exact algorithms for the STSP. These consists of gradually 

extending a simple path emanating from vertex v1 through a breath-first branch 

and bound process. 

At the first node of the search tree, we compute the second upper bound described 

in Section 3.1 and take as initial feasible solution the better of the two solutions pro- 

vided by Algorithms Hl and H2 of Section 3.2. If the value of this solution equals 

that of the upper bound, the algorithm terminates. Otherwise, the branching process 

is initiated. 

Let Z(h) = { ut, = ul, u,,, . . . , u,,} denote the sequence of vertices included in the 

current path at a general node h of the search tree. Descendant nodes are generated 

by branching on a vertex ui not already in Z(h). Upper bounds on the value of the 

optimum and lower bounds on the length of the tour attainable from the current 

path are used for fathoming nodes of the search tree. 

4. I. Partitioning schemes 

We implemented two partitioning schemes. At node h of the decision tree, let 

l(h) = C;:,’ ct,,t,+, denote the length of the current path. 

4. I. 1. First partitioning scheme 
In the first scheme, PI, node h generates one descendant node for each vertex Ui 

which can be included in I(h) after u,, and which does not yield a dominated solu- 
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tion. At node h, vertex ui is said to dominate vertex uj (j# i) if c~~,~+ cU = C,,,j, 

since the sequence (I+, ui, uj) gives a larger profit than (ut,, uj) at the same cost. 

Define F(h) = (Uj $ I(h): l(h) + Cth,j + Cjl I C} and D(h) = {uj E F(h): uj is dominated 

by UiEF(h)}. Then branches are cr%ed for each ui E F(h)\D(h). 

4. I .2. Second partitioning scheme 
The second scheme, P2, requires a more elaborate description. At node h we 

select a vertex ui and generate either three or two descendant nodes. In the former 

case the generation corresponds to the following decisions: 

(h,): ui is included in the current path immediately after u,,; 

(h,): Ui will be included in the current path, but at a later stage; 

(h,): Ui is permanently excluded from the current path. 

At nodes descending from decisions (h,) or (h3), ui will never be reconsidered, 

while in those descending from decision (h2) it will reappear in the decision process 

(unless fathoming occurs). At that point, clearly, only two nodes corresponding to 

(h,) and (h2) will be generated. 

In order to formally describe this process, we introduce the following partition 

of V at every node h of the search tree: 

Z(h): included vertices (= {u,, = ui, u,,, . . . , uth 1); 

E(h): excluded vertices; 

W(h): waiting vertices (for which decision (h2) was taken); 

F(h): free vertices (= V\ (Z(h) U E(h) U W(h))). 
(If h is the root node, then Z(h) = {u,}, E(h) = W(h) = 0.) 

In order to prevent cyclic selection of waiting vertices for branching, a vertex is 

labelled as soon as decision (h2) is taken about it. Only free and unlabelled waiting 

vertices are selected for branching. Taking decision (h,) for a vertex results in the 

unlabelling of all the waiting vertices. Hence if 

Z’(h) = F(h) U { Uj E W(h): Uj is unlabelled} (11) 

is empty, node h can be fathomed. Otherwise define the set of dominated vertices 

as D(h) = { Uj E P(h): Uj is dominated by ui E P(h)} and select ui from P(h) \D(h) so 
as to yield the best improvement to the current solution in the following sense. Since 

f(h) + ct,,, 1 is the length of the tour implied by Z(h), Ui will be such that 

Pi = max 
i 

pi 

ct,,i+ci1 -Cth,l Ct*.j+CjI-Cf*,I 
: UjEP(h)\D(h) 

I 
a 

Vertex Ui belongs either to F(h) or W(h). In the former case, the three nodes h,, h,, 
h, generated from h are characterized as follows: 

Node h,: Let U(h,)= {uj~F(h)U W(h): I(h)+~,,,i+~~+cjl>~} be the set of ver- 

tices which are now unreachable due to the inclusion of Ui. If U(h,)n W(h) #0, 
then node h, can be fathomed; otherwise: 
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I(h,) :=l(h)U (q}; 
E(h,) :=E(h)U U(h1); 
IV@,) := W(h) and unlabel all vertices of IV@,); 

Hh,) :=JW\((uj) U W,)). 

Node hZ: 
I(h,) := I(h); 
E(h,) := E(h); 
W(h,) := W(h)U (vi} and label 0;; 
F(h,) :=F(h)\{oi). 

Node h,: 
I(h,) := I(h); 
E(h,) :=E(h)U(ui}; 
W(h,) := W(h); 
F(h,) :=F(h)\(o;}. 

If U;E W(h), then node h3 is not created, while for nodes hl and h2, the same 
operations apply, except: 

W(h,) := ?V(h)\(vi) and unlabel all vertices of W(h,); 

F(h,) :=F(h)\ Wh,); 
W(h,) := W(h) and label 0;; 
F(h,) := F(h). 

4.2. Fathoming criteria 

4.2.1. Upper bound computation 
For both partitioning schemes, at each decision node h generated, we compute, 

through Theorem 1, an upper bound z(h) on the solution value attainable from the 
subproblem corresponding to the node. In order to provide a unified description, 
let us define W(h) = 0 and P(h) = F(h) (see equation (11)) for scheme P 1. Then the 
upper bound computation at node h can be described as follows. 

First note that the current path I(h) can be considered as a “super-vertex” 
6 with profit J?J = CujEl(h)Pj and weight RJ = I(h) + (a min,, E F(~)u IV(~) {Ci I I+ 

( 1 - a) min,, E p(h) {c,,,~}) for some (Y (O<a~l). For all VjEF(h)U W(h), defineA( 
F(h) U W(h)\ { vj}; the weights of these vertices are then wj = (Y min,, EA(jjU iufh 1 (c~} + 

(1 - a) min okEA(j)U(U1l {Cjk). If ws CujEWCh)~j>~I the node can be fathomed. 
Otherwise, the required Z(h) is any upper bound on the solution of the following KP: 

maximize 

subject to 

(12) 
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Let p* denote the value of the best STSP solution so far obtained. Then, clearly, 

node h can be fathomed if Zap*. 
When a= 0 or 1, the above bound can be strengthened by exploiting, in the 

computation of the Wj, the fact that the vertices uj belonging to C* must be part 

of a tour. Consider for example the case where a = 0. Since the two arcs (uk,, Uj) 

and (uk,,, uj) cannot both enter the optimal tour if k’# k”, it is then valid to impose 

that the indices k yielding min,, EA(j)U iu,l {Cjk} in the computation of the Wj must 

all be different. Formally, we must determine the best combination of k’s by 

solving a transportation problem (TP) where J(h) = W(h) U (of,} and K(h) = 

W(h)UF(h)U{u,}: 

minimize 

c c 
qEJ(fd ukEev\~~,,,J 

cjk xjk 9 

subject to 

c 
UkEfwo\~U,~ 

xjk = 1, ujEJCh), 

xjke (0, l}, j#k, UjEJ(h), UkEK(h). 

(13) 

(14) 

Let t*(a) denote the value of the optimal TP solution. Node h can then be 

fathomed if I(h) + t*(a)>c and, in the determination of z(h), the right-hand side of 

(12) can be replaced by c- (I(h)+ t*(a)). Consider in fact any feasible solution to 

the STSP including the current path, all the vertices of W(h) and possibly some ver- 

tices of F(h): the total length of the arcs emanating from vertices of I(h)U W(h) 

cannot be less than f(h) + t*(a), while the cost of each arc emanating from a vertex 

UjEF(h) is no less than the corresponding Wj. Hence this solution is also feasible 

for the KP since (12) is automatically satisfied. 

A similar reasoning applies to the case where (x = 1. The corresponding TP is then 

obtained by redefining J(h) = W(h) U F(h) U {u,, }, K(h) = W(h) U { u1 } and by inter- 

changing the “=” and “I” signs in (13) and (14). 

4.2.2. Additional criteria for scheme P2 
For the second partitioning scheme, node h can also be fathomed if: 

(a) P(h) = 0 (see Section 4.1); or 

(b) W(h) contains an unreachable node, i.e., if l(h)+Ct,,j+cjl>c for at least 

one Uj~ W(h); or 

(c) W(h) +0 and a lower bound b(h) on the length of a tour including the current 

path as well as all the vertices of W(h) exceeds c. In order to compute such a bound, 

consider the super-vertex 0 previously introduced and define the distance matrix 

C(h) induced by (0) U W(h) as follows. Given the cost matrix (Cfj), replace the en- 
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tries of row 1 by the corresponding entries of row th, remove all rows and columns 

j such that uj@ W(h)u{~i} and set all diagonal entries equal to infinity. In the 

resulting submatrix, the super-vertex is associated with row and column 1, so the 

entries Clj for which Uj is labelled can also be set to infinity. The value of b(h) can 

then be taken as I(h) + r(h), where r(h) is the optimal solution of the TSP defined 

by C(h). Since, however, TSP is NP-hard, t(h) can be replaced by any lower bound 

z(h). We have determined z(h) as the optimal solution to the min-sum assignment 
problem defined by C(h) and which can be solved in 0(n3) time. (For a recent 

survey on assignment problem codes, see Carpaneto, Martello and Toth [l]. In our 

implementation, we used the APC Fortran code [l].) Therefore node h can be 

fathomed if I(h) + z(h) > c. 

5. Computational results 

The algorithms described in this paper were tested on a number of problems derived 

from complete directed and undirected graphs. Distances and profits were generated 

according to a discrete uniform distribution on [l, 1001 and the shortest path lengths 

cij were then computed. The value of c was set equal to /3r* where t* is the optimal 

value of the TSP defined by (cij) and /I, a parameter in (0, l] controlling the pro- 

blem tightness: a low value means that few vertices will be included in C* whereas 

a value close to 1 indicates that almost all vertices will appear in the optimal 

solution. 

All problems were solved on a VAX 1 l/780 computer. The maximum CPU time 

allowed for a single problem was 100 seconds. 

Limited tests were first conducted on undirected graphs, using the two ILP based 

algorithms. Problems involving up to 20 vertices were solved to optimality but for 

larger sizes, computing times grew quickly and in almost all cases, the time limit was 

reached. Problems with a larger value of j? were, as a rule, easier to solve: the 

relaxed problem tended to contain relatively more variables having an integer value, 

thus reducing the expansion of the branch and bound tree. Of the two versions of 

the algorithm, the first one fared better: it is generally more efficient to check for 

violated subtour elimination constraints at integer solutions only. 

The two enumerative algorithms (corresponding to branching schemes Pl and P2) 

were then applied to a number of problems associated with directed and undirected 

graphs. Ten random problems were generated and attempted for several combina- 

tions of B between .l and .9 and of nz 10. In all cases, the KP bounds were com- 

puted with (-w=+ after having observed, on a series of tests, that bounds generated 

with a = 0 or 1 were on the average weaker. The first branching scheme was clearly 

faster than the second and is the only one for which results are reported. Tables 1 

and 2 give average results over the successful problems when at least 5 problems out 

of 10 could be solved to optimality within the set time limit. Otherwise, no results 

are reported. 
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Table 1. Computational results for directed graphs. 

Heuristic Branch and Bound 

P n Time Heuristic/Optimum Time Nodes 

.I 10 ,006 1.000 ,002 

15 ,004 1.000 ,005 

20 ,006 1.000 ,005 

25 ,008 ,988 ,005 

30 ,007 .988 ,009 

40 ,011 .910 ,029 

50 ,013 ,947 ,092 

60 .019 ,935 ,355 

70 .028 ,788 1.394 

80 ,041 ,822 4.179 

90 ,064 ,799 18.919 

4 
8 

21 
68 

119 

473 

10 ,005 ,996 ,006 

15 .006 1.000 .005 

20 ,010 ,897 ,030 

25 ,013 ,902 .142 

30 ,014 ,843 .245 

40 ,032 ,883 3.339 

50 ,045 .797 33.861 

5 

18 

27 

185 

1285 

10 ,005 

15 ,008 

20 ,013 

25 ,021 

30 ,027 

40 .050 

_I ,952 ,011 L 

.940 ,031 6 

.909 ,218 27 

.843 1.574 144 

,810 4.808 387 

,871 63.666 (5) 2588 

.4 10 ,008 ,991 ,020 4 

15 ,011 ,899 ,124 17 

20 ,017 ,882 1.492 158 

25 ,025 ,861 14.054 892 

30 ,035 ,794 31.367 (6) 1699 

.5 10 ,010 ,911 

15 .013 ,953 

20 .021 ,933 

25 .032 ,867 

,054 

,465 

7.579 

47.658 (7) 

,090 

1.177 

32.493 (9) 

,180 

3.091 

13 

44 

621 

2785 

.6 10 .009 ,953 

15 .014 ,899 

20 ,023 .940 

17 

103 

2344 

.7 10 

15 

.8 10 

15 

.9 10 

15 

,010 ,928 

,015 .929 

35 

256 

,010 ,974 ,288 49 

,016 .950 6.155 415 

,011 ,961 ,444 69 

,019 ,956 11.877 951 
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Table 2. Computational results for undirected graphs. 

P n Time 

Heuristic Branch and Bound 

Heuristic/Optimum Time Nodes 

.l 10 ,003 1 .ooo ,007 

15 ,005 .951 ,007 

20 .007 1.000 ,033 

25 ,007 ,953 .013 

30 ,011 ,899 .054 

40 ,019 ,914 .380 

50 ,016 ,930 ,682 

60 .032 .789 13.144 (9) 

70 .040 ,851 30.518 (5) 

.2 10 ,007 ,993 .008 

15 .007 ,999 .023 

20 ,011 .931 ,557 

25 ,013 .888 ,345 

30 ,018 ,868 1.992 (9) 

40 ,030 ,858 35.490 (6) 

.3 10 

15 

20 

25 

30 

,011 

,014 

,020 

.026 

.987 

,937 

,967 

,862 

.839 

.4 10 .006 ,945 

15 ,014 ,975 

20 ,016 ,936 

25 ,022 .853 

.5 10 

15 

20 

.6 10 

15 

,009 ,961 

,014 ,970 

,028 ,945 

.022 

,121 

10.441 

13.626 

31.064 (5) 

.044 

,634 

10.048 (8) 

31.310 (6) 

,082 

2.802 

49.062 (6) 

.7 10 

15 

.8 10 

15 

.9 10 

,010 

,015 

.008 

.017 

,011 

,019 

.OlO 

1.000 .180 

.981 10.821 

,993 

,968 

,975 

,980 

.286 

22.400 (9) 

,542 

50.102 

1.000 ,994 

4 

2 

8 

39 

52 

652 

1172 

2 

71 

43 

180 

2001 

4 

18 

1147 

1075 

2252 

9 

84 

978 

2365 

15 

332 

3304 

32 

1150 

41 

2112 

80 

3861 

156 

The various column headings can be interpreted as follows. 

- Heuristic time: average CPU time required to run the two heuristic algorithms 

described in Section 3; 

- Heuristic/Optimum: Best heuristic solution value divided by the value of the 

optimum; 



206 G. Laporte, S. Martello 

- Time ( ): average CPU time required to run the branch and bound algorithm 

followed, in brackets, by the number of successful problems when this is less 

than 10; 
- Nodes: Number of nodes generated during the branch and bound process. 

Computational results indicate that the combination of the two heuristics is quite 

efficient. It often provided the optimum or a solution within a few percentage points 

of the optimum in insignificant CPU time. This is particularly true in problems 

where n is small. As expected, problem difficulty increases with j3 as in “loose” 

problems, upper bounds become less sharp and fathoming criteria less effective. 

Problems generated from directed graphs were easier to solve than symmetrical 

problems. This observation is not particular to the STSP, but also applies to several 

related routing problems (the TSP, for example). 

Overall, our approach appears to have been quite successful. To our knowledge, 

this is the first time exact algorithms are published for this difficult problem. 

Depending on problem characteristics, instances involving between 10 and 90 vertices 

were solved to optimality. 
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