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1. Introduction

Let F be an algebraic number field. L& be a prime ideal in (the ring of
integersk of) F and letK be a finite extension of. Let P | p, wherep is
a rational prime. In general it may be difficult to decide whetlferamifies
in K, and even more, to compute the ramification indéR) = ep(K/F). As
this is a local question, there is no loss in replacigy F, andK by K, the
P-adic completions. The#), is a finite extension of thg-adic number€), and
P may be replaced by the prime divisor @in the ring of integerse, of F,. Let
e(Ky/Fp)=e(P).

Suppose that is the splitting field of the monic irreducible polynomig{x)
of degreen in R[x]. Let N, denote theP-adic completion ofN. Theorem 1
makes it possible to fined(N,/F,) = e(P) in some special situations. This then
is applied below to exhibit son®L(2, 11)-adequate extensions @f.

Several polynomials are defined in Section 3 whose splitting fiéldhas
PSL(2,11) as a Galois group ove®, such thatV can be embedded in @-
adequate extension with Galois gro8p(2, 11). They are all specializations of
Malle’s polynomial [M]. Itis possible that infinitely many such fielt¥sexist, but
a proof of this appears to be beyond known methods. The existence of any one of
these polynomials implies

Theorem. SL(2, 11) is Q-admissible.
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The object of the arguments in Section 4 is to avoid factoring polynomials
modulo large primes. However, the referee and J.-P. Serre independently informed
me of packages such asaKT and RARI which for the primes and polynomials
that arise in this paper can be used to factor the polynomials pnimda split
second. These packages can also be used to compute discriminants of field
extensions of some bounded degree, of algebraic number fields, and so can be
used here instead of Theorem 1. Since Theorem 1 may be of more general interest,
it is included in the paper. In particular, the arguments in Section 4 show that all
the computations in this paper can be done byTMEMATICA on a PC which,
for instance, runs at 450 MHz. It should be mentioned that the Shoup algorithm,
see [Sh], used in KNT, can be programmed directly in MtHEMATICA and does
not take too long to implement. While it is not needed in this paper, it is helpful
in providing many more examples of polynomials and fieMsvith the required
properties.

2. Acriterion

Let F be a finite extension o, let R, P, f(x), N be as in the introduction
and letF,, R,, N, denote the”-adic completion in each case. Algowill denote
the prime ideal inR or R, depending on the context. Fare F, a # 0 letv(a)
denote the power aP in a (either positive or negative).

By Hensel's Lemma there is a fieldd with F € K € N such thatk,/F), is
unramified and

k
fx) = ]_[(x —a))% modP, (1)
i=1
whereas, . . ., o, are local integers itk , which are distinct modP for 1 <i <k.
Of courseP remains prime ik ,. Letv(8) be the power of in g for g € K.
Let D(f(x)) denote the discriminant of (x) over F.

Theorem 1. Choose an ideaP in R. Assume that: > 1 and the following hold.

) In(V)d;=2forl<i<mandd;,=1form+1<i<k.
(i) v(D(f(x)))=m.

Thene(N,/Fp) is even.

Proof. Let P1 be a prime ideal inV,. By Hensel's Lemma

m k
foO=]]e -t -a2) [] &-wo. &)
i=1

i=m+1
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wherew;o € K, andajo=o; mod P form +1<i <k, (x —ai1)(x —a;2) €
Kplx], anda;1 = a2 = a;mod Py for 1 <i <m. By (2),

m=v(D(f(x))) =v<l_[(0li1—0ti2)2)- ©))

i=1

As (aj1 — aj2)? € K, ando;1 — aj2 = 0 mod Py, it follows that (o1 — wj2)? =
0 mod P. Hencev((ai1 — ai2)?) > 1. Thus (3) yieldsu (o1 — ai2)?) = 1 for
1<i < m. ThereforeK ,(a11 — a12) has ramification index 2 ovek ,, and so
e(N,/Fp)iseven. O

3. F-admissibility

Let F be an algebraic number field.

A field extensionV of F is F-adequatéf it is the maximal subfield of a central
division algebra over'.

A finite group G is F-admissibleif it is the Galois group of arnF-adequate
Galois extension of'. The fundamental result needed to shBvadmissibility is
the following.

Theorem 2 (Schacher [S])G is F-admissible if and only if there exists a Galois
extensionN of F with Galois groupG such that for each prime there are at
least two primesP of F' so that the decomposition group Atcontains a Sylow
g-group ofG.

If the Sylowg-group ofG is cyclic, in particular, ify does not divide the order
of G, the Tchebotarev density Theorem asserts the existence of infinitely many
primes at which the decomposition group contains a Syjegroup of G. So
it is sufficient to consider noncyclic Sylow groups. For instaR&.(2, 11) and
SL(2, 11) have cyclic Sylow groups for all odd primes, so only the prigne 2
needs to be considered for these groups.

Using Theorem 2 and the 2-parameter family of polynomigélg, , x)
constructed by Malle, see, e.qg., [F] or [M], it was shown in [F] tR&L(2, 11) is
F-admissible for every algebraic number figid

To show thatSL(2,11) is Q-admissible it is necessary to construct some
extensions of) with Galois groupSL(2, 11). The following result is relevant.

Theorem 3 (Bdge, see [B] or [K])Let N be a Galois extension @) with Galois
group PSI(2, 11). N is embeddable into an extension with Galois group2S11)
if and only if the following hold.

(i) N istotally real.
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(i) For all odd primesp with even ramification index we have thathas odd
residue class degree if and onlyjif= 1 mod 4

Malle has observed that ifi = —5 and —716550< ¢+ < —715599 then
f(=5,t,x) is totally real [M]. This can be verified by using Sturm’s Theorem.
If we sets =t + 716550 therg(s, x) = f(—5,s — 716550 x) is totally real for
0 < s € 951. Furthermore,

g(s,x) = x11 — 74x194 1979c° — 224428 + 936237 — 681185
+ (s —512413x°% — (25 — 1249730x* + (s — 2310883
— 227390G:2 + 2760006 — 1000000 (4)
Direct computation shows that
D(g(s, x)) = 222514, (5)*
where
h(s) = 21357033124 28067951892 295435312 + 27s°.

Observe that if = u/v andv 0 mod 3 therk(s) = 1+ 5% 2 0 mod 3. Hence
3 does not divideD (g (s, x)).
Define the set

U =1{26,176191, 213 263 281, 288, 296, 321, 373 421, 456, 463 501,
513 548 796,823 836,863 916, 928}.

For eachs € U, there are at least two prime divisogs> 3 of h(s) with
p =3 mod 4. Furthermore, each prime divisor®fg (s, x)) greater than five has
even ramification index by Theorem 1, and satisfies the conditions of Theorem 3.
It is not known whether 5 ramifies fare U, however for each such 5 has odd
residue class degree. Hence the conclusion of Theorem 3 shows that a splitting
field N of g(s, x) can be embedded in a Galois extensignof Q with Galois
groupSL(2, 11).

Let p be a prime,p = 3 mod 4. As the residue class degree and ramification
index are both even, the Sylow 2-groiipof the inertia group ofV is noncyclic
of order 4. A Sylow 2-group 08L(2, 11) is a quaternion group of order 8, and
S0 cannot contaifT, this implies that the inertia group @fp cannot havel’ as
a Sylow 2-group and so must contain a Sylow 2-grougsbf2, 11). Thus by
Theorem 2 Np is Q-adequate an8L(2, 11) is Q-admissible.

U consists of integers. However, it is possible to find values which are
fractions and yield the same result. Here are some (randomly chosen) examples,
s =u/v with u =939 andv € V, where

V ={2393 2693 3853 5009 6709 8753 9829 10453 10789 11393.
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The setV consists of primesp = 1 mod 4. This is a convenience, not
a necessity. Ifp is an odd prime which divides to the first power, the Newton
polygon ofg(939/v, x) at p is the convex hull of the set of points

{,001i=0,1,2}U{(, -1 |i=34,5}U{(0)|6<i<11},

and so the ramification index of every prime dividings odd, see for instance
[W, Proposition 3.1.1]. There is nothing special about “939,” various other values
of u can be chosen to get similar results. Conceivably there are infinitely many
such values of with 0 < s < 951.

4. Methods of proof

Fors € U and p dividing D(g(s, x)), the greatest common divisor ofs, x)
andg’(s, x) mod p is a polynomialgg(x) of degree 4 with distinct roots maggel
Then

g(s,x) = go(x)?g1(x) modp

wherego(x) and g1(x) are relatively prime mogh and g1(x) also has distinct
roots modp. If D(g;(x)) is not a square mog for i = 0 or 1 then the Galois
group ofg; (x) contains an odd permutation and so contains an element of even
order. The quadratic character 6f(g; (x)) can be computed in a fraction of
a second by using the quadratic reciprocity theorem.

It can also be decided whether the residue class index is odd. This is so if and
only if D(go(x)) and D(g1(x)) are squares mogd and go(x) has a root mog
(then go(x) has exactly 1 or 4 roots mog). It is unfortunately not sufficient
to show thatD(go(x)) is a square mog, since the Galois group might contain
a product of two disjoint transpositions.

The primesp = 1 mod 4 which occur fos in U or V are quite small and
a command in MTHEMATICA factorsg(s, x) mod p in a fraction of a second.
This shows that the residue class index is odd in all these cases.
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