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Abstract 

Cerebrotendinous xanthomatosis (CTX), an autosomal recessive lipid-storage hereditary disorder, is caused by mutations in the sterol 
27-hydroxylase gene (CYP 27). A 24-year-old female Japanese CTX patient and her parents were studied for a CYP 27 mutation. 
Multiple xanthomas were the main complaint of the patient and plasma cholestanol level was markedly elevated. Sterol analysis of a 
xanthoma biopsy confirmed cholesterol and cholestanol deposition, and the cholestanol accounted for 8.1% of the total sterols. Sterol 
27-hydroxylase activity in fibroblasts derived from the patient was undetectable, while the activities in fibroblasts from her mother and 
father were 54% and 41% of the normal level, respectively. Direct sequence analysis showed a missense mutation of A for G substitution 
in the CYP 27 gene at codon 362 (CGT 362Arg to CAT 362His) with a homozygous pattern in the patient, and a heterozygous pattern in 
the parents. The mutation, which eliminates a normal HgaI endonuclease site at position 1195 of the cDNA and is located at the 
adrenodoxin binding region of the gene, is most probably responsible for the decreased sterol 27-hydroxylase activity in this Japanese 
CTX family. The combined data strongly support that the primary enzymatic defect in CTX is the disruption of sterol 27-hydroxylase and 
that the disease is inherited in an autosomal recessive trait. 
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1. Introduct ion 

Cerebrotendinous xanthomatosis (CTX) is a rare auto- 
somal recessive sterol storage disease clinically character- 
ized by xanthomas, progressive neurological dysfunctions, 
cataracts [1], osteoporosis [2,3] and premature athero- 
sclerosis [4]. The underlying biochemical  defect of  CTX is 
a lack of  sterol 27-hydroxylase [5-7].  The enzyme is of 
importance for bile acid biosynthesis [1], and the possibil-  
ity has also been discussed that the product of  the enzyme, 

Abbreviations: CTX, cerebrotendinous xanthomatosis; RT-PCR, re- 
verse transcription polymerase chain reaction; CPS, count per second; 
HPLC, high performance liquid chromatography 
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27-hydroxycholesterol,  is involved in the regulation of  
cholesterol homeostasis [8]. The metabolic defect in the 
bile acid synthesis leads to reduced levels of bile acids, 
especially, chenodeoxycholic  acid level. In addition, CTX 
patients excrete large amounts of C27-bile alcohols in bile, 
feces, and urine [9], and there is an accumulation of 
cholestanol in different tissues [10-12].  The defect of  the 
sterol 27-hydroxylase in extrahepatic organs may be partly 
related to the premature atherosclerosis in CTX patients, as 
the enzyme seems to be involved in a defense mechanism 
for macrophages exposed to excess cholesterol [13]. 

Following the cloning of human sterol 27-hydroxylase 
gene by Cali et al. [14] and determination of its structure 
by Leitersdorf et al. [15], several mutations of  this gene 
have been identified in clinically diagnosed CTX patients, 
including single base substitution [ 15-20], deletion [ 15,21 ] 
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and insertion [22]. However, most of these mutations were 
identified in sporadic cases or incompletely characterized 
CTX family members. 

A relatively high prevalence of this disease has been 
noticed in some distinct populations like Jews of Moroc- 
can origin, Dutch and especially Japanese [1,23]. The latter 
account for nearly one third of all the cases reported till 
now [24]. Treatment with chenodeoxycholic acid can re- 
duce plasma cholestanol level and may prevent the disease 
progression [25] or even reverse some of the neurological 
disabilities [26]. If untreated, CTX may develop serious 
neurological defects insidiously and may even lead to 
death [27]. In view of this, it is important to search for new 
mutations causing CTX and to set up appropriate genetic 
analysis methods to screen and diagnose presymptomatic 
CTX patients or heterozygotes in distinct populations at 
risk. 

In the present study, we report a novel point mutation at 
the adrenodoxin binding region of the CYP 27 gene in a 
Japanese CTX family. The mutation eliminates a normal 
HgaI restriction endonuclease site at position 1195 of the 
cDNA which allows us to establish a simple method to 
screen and diagnose this type of mutation in populations. 

2. Materials and methods 

2.1. Subjects 

A clinically diagnosed 24-year-old female CTX patient 
and her parents were studied. The patient complained of 
gradually enlarging bilateral Achilles tendons (left: 25 mm, 
right: 24 mm, normal: 5 -9  ram) as well as similar subcuta- 
neous swellings over her triceps, knees and dextral 2nd 
finger joint when we examined her at the age of 17. Mild 
mental retardation with an IQ of 67 was noticed. No other 
remarkable neurological defects and visual impairment 
could be observed at the time of the diagnosis. Cardiovas- 
cular investigations were also normal. Although electroen- 
cephalograph examination showed predominant slow a 
waves, magnetic resonance imaging didn't show any or- 
ganic change in cerebellum. Biochemical analysis showed 
a markedly elevated plasma concentration of cholestanol. 

No abnormal biochemical findings and CTX manifesta- 
tions were observed in the parents except that the mother 
had slightly enlarged Achilles tendons (left: 13 ram, right: 
13 mm). Informed consent was obtained from all the 
subjects and the study was approved by the Second De- 
partment of Internal Medicine, Osaka University School of 
Medicine. 

2.2. Biochemical analysis 

Cholesterol and cholestanol levels were determined on 
fasting blood samples by high performance liquid chro- 
matography (HPLC) as described previously [28]. Triglyc- 

eride [29] and HDL-cholesterol [30] were measured by 
enzymatic methods. Protein concentration was determined 
according to the Bradford's method [31] using a kit from 
Japan Bio Rad (Tokyo, Japan). 

2.3. Cell culture 

Fibroblasts derived from the patient, her parents and 4 
healthy control subjects were grown and maintained as 
monolayer in culture dishes (10 cm) in Dulbecco's Modi- 
fied Eagle's Medium (Life Technologies, Tokyo, Japan) 
supplemented with 10% fetal calf serum (Life Technolo- 
gies, Tokyo, Japan), penicillin (100 IU/ml),  streptomycin 
(100/~g/ml),  and L-glutamine (1.5 mM) in a 95% air and 
5% CO 2 atmosphere at 37°C in a humidified incubator. 
The cells were harvested with trypsin (200 U/ml) ,  washed 
three times in phosphate buffered saline, and then frozen at 
- 80°C for a short time to measure the sterol 27-hydroxyl- 
ase activity. 

2.4. Assay o f  sterol 27-hydroxylase activity 

Assay of sterol 27-hydroxylase activity was performed 
by a procedure described by Skrede et al. [32]. Labeled 
substrate, 5/3-[7/3-3H] cholestane- 3a,7a,12c~-triol with 
specific activity 150 cpm/pmol was synthesized as de- 
scribed previously and purified by HPLC [33]. The sub- 
strate (480,000 cpm, 3.2 nmol) was dissolved in 10 /xl 
acetone (which was evaporated under a nitrogen stream), 
and then was solubilized in 250 /zl of 5% bovine serum 
albumin followed by the addition of the following incuba- 
tion mixture: 33 mM Hepes (pH 7.4); 5 mM ATP; 5 mM 
potassium malate; 1 mM glucose 6-phosphate; 0.5 IU 
glucose-6-phosphate dehydrogenase; 1.2 mM NADPH; and 
15 mM MgC12. The fibroblasts from 2 dishes were sus- 
pended in 250 /zl of 0.25 M sucrose and added to the 
incubation mixture to start the reaction, giving a final 
volume of 608 /~1. The final protein concentration was 
0.53 to 1.13 mg/ml.  After incubation at 37°C for 2 h, the 
reaction was terminated by adding 0.1 ml 1 M HC1. 
Extraction with 5 ml ethylacetate was performed twice and 
the converted 27-hydroxylated product was detected by 
HPLC (LC-10A Shimadzu, Kyoto, Japan) using a LC-18 
column (250 × 4.6 mm, Supelco, USA). The radioactivity 
of the product was measured by a radiodetector (RLC-700, 
Aloka, Tokyo, Japan). The enzyme activity was expressed 
as pmol /mg protein per h. 

2.5. PCR and RT-PCR amplification 

All the 9 exons of sterol 27-hydroxylase gene were 
amplified. Primers used to amplify exon 1 to exon 9 were 
listed in Table 1. Genomic DNA (500 ng) extracted from 
the cultured fibroblasts was used for amplifying each of 
the exons. The PCR reaction mixtures (100 /xl) contained 
1 x PCR buffer, 0.2 mM of each dNTP, 0.2 /xM upstream 
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Table 1 
Sequence and location of primers used for amplifying the exons of CYP 27 gene a 

121 

Primer Location Amplification Sequence 5' to 3' Position 

Elup 
Eld 
E2up 
E2d 
E3up 
E3d 
E4up 
E4d 
E5up 
E5d 
E6up 
E6d 
E7up 
E7d 
ESup 
ESd 
E9up 
E9d 

5'-flanking exon l ACTCAGCACTCGACCCAAAGGTGCA - 42 to - 17 b 
mtron 1 exon 1 CCACTCCCATCCCCAGGACGCGATG 14 ~ 
mtron 1 exon 2 TGGCCCAGTFATTCAGTTI'TGATTG 10 c 
mtron 2 exon 2 GGGCCCTGTTCCAGTCCCTTCAGGC 10 " 
mtron 2 exon 3 GCTrATCTTTGTGCTGTTCCTCTGC 9 " 
mtron 3 exon 3 GAGCACAACCTCTCCCTGACCCATT 33 ~ 
mtron 3 exon 4 TCTGCCTCCTGTGATGGCCTCTGTG 10 c 
lntron 4 exon 4 GCTGATGCACAGACCTGGAGTCACC 39 ~" 
mtron 4 exon 5 GCTCTTGGTCCTTGGAGATCATGAC 40 ~ 
mtron 5 exon 5 ACTGGTTACGGTTGGGAGCTGGGGG 30 c 
mtron 5 exon 6 TTCCTAGAATCGCCTCACCTGATCT 17 c 
mtron 6 exon 6 TTCCCTCCCCACAAAGAGATCCTGT 27 c 
mtron 6 exon 7 GCAGACTCCAGACATTCTTTI'CCCT 4 ~ 
exon 8 exon 7-8 TGGAAGCTTTCAGGCTCAGAGAAG 1355-1332 b 
exon 8 exon 8 CCTTCTCTGAGCCTGAAAGCTTCC 133 I- 1354 b 
intron 8 exon 8 GTGGATTGTGTGTTTGCCATCCACT 28 c 
intron 8 exon 9 AGTGGATGGCAAACACACAATCCAC 28 ~ 
3'-untranslated exon 9 CCCAGCAAGGCGGAGACTCA 1620-1639 b 

a Those for amplifying exon l to exon 5 were the same as in Ref. [15]. 
b The A of the ATG initiation codon is number 1. 
~" Minimal distance from exon. 

and downstream primers listed in Tables l and 2. 5 U Taq 
DNA polymerase. The PCR amplification reaction was 
performed for 30 cycles in a thermal cycler (Perkin-Elmer 

Cetus, Norwalk, CT, USA) using the following conditions: 

1 rain at 95°C for denaturation and 4 min at 68°C for 
annealing and extension. After DNA amplification, 8 /zl of 

the products were electrophoresed on a 2% agarose gel and 
subjected to ethidium bromide staining to confirm the 
successful amplification. For RT-PCR, upstream primer 

(P359) 5 'TTCGTCAGATCCATCGGGTT3 '  (nucleotide 
739-758)  and downstream primer (dP367) 5 'GCAAG- 
GAGTTCCTCCCACCTCTCG 3' (nucleotide 1729-1752) 

were designed. Total RNA was extracted from fibroblasts 
by acid guanidine-phenol-chloroform [34]. Total RNA (1 

/zg) was first converted to cDNA in a 20 /xl reaction 
mixture containing 5 mM MgCI 2, 1 × PCR buffer II, 1 
mM of each dNTP, 1 U RNase inhibitor, 1 /xM down- 
stream primer (dP367) and 2.5 U reverse transcriptase. The 
reaction tube was incubated at 42°C for 30 min (annealing 

and extension), heated at 95°C for 5 rain (inactivation of 
reverse transcriptase and denaturation of RNA-cDNA hy- 
brids) and then soaked at 5°C for 5 min. PCR amplification 
was immediately performed after the RT reaction by adding 

Table 2 
Plasma lipid concentrations (mg/dl) in the patient and her parents 

Patient Mother Father 

Triglyceride 155 174 145 
HDL-cholesterol 62 60 ND 
Cholesterol a 207 216 218 
Cholestanol b 4.06 0.17 0.11 

a Normal level: 175 + 26 mg/dl (mean 5: S.D., n = 17). 
b Normal level: 0.27+0.08 mg/dl (mean+S.D., n = 17). 
ND, not determined. 

80 /zl of a PCR Master Mix containing 1.25 mM MgC12, 

1 × PCR buffer II, 0.25 /xM upstream primer (P359), and 
2.5 U Taq DNA polymerase. The amplification reaction 
was performed for 30 cycles using the following condi- 

tions: 1 rain at 95°C for denaturation and 4 min at 68°C for 
annealing and extension. The 1014 bp RT-PCR product 
was used for Hga  I restriction enzyme analysis. 

2.6. Direct  sequence analysis 

The non-RI-SSCP method [35] was first tried to screen 
for mutations of the C Y P  27 gene. The method, which was 
successful in identifying the 2 point mutations at codon 

441 of C Y P  27 (data not shown), failed in offering any 
information in this study: all the exons amplified from the 

patient, her parents and a normal subject migrated in the 
same patterns, although several conditions of electrophore- 

sis were tried. It may be possible to detect point mutation 
by PCR-SSCP, but the sensitivity of the method is also 
dependent on several factors [36]. To this end, all the 
exons of the C Y P  27 gene from the patient were se- 

quenced, since the sterol 27-hydroxylase activity assay 
strongly indicated that there should exist a mutation in the 
C Y P  27 gene in this family. 

In order to generate single-strand DNA for direct se- 
quence analysis, 5' terminus of primers were phosphory- 
lated prior to the PCR reaction by the kination reaction as 
follows: the reaction mixture (50 /xl) containing 200 pmol 
primer, 20 U T4 polynucleotide kinase (Life Technologies, 
Tokyo, Japan), 50 mM Tris-HC1 (pH 7.6), 5 mM MgCI 2, 
10 mM DTT, 0.1 mM EDTA and 2 mM ATP was 
incubated at 37°C for 1 h followed by heat treatment at 
70°C for 10 rain. The PCR products amplified from the 
phosphorylated primers were first purified using 
SUPREC TM column (TaKaRa, Kyoto, Japan) and then 
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digested with 2 U h exonuclease (Life Technologies, 
Tokyo, Japan) to produce single-strand D N A  for direct 
sequence analysis [37]. Sequence was conducted by the 
dideoxynucleotide chain termination method using T7 D N A  
polymerase (Sequenase, US Biochemicals, Cleveland, OH, 
USA). All the exons including the splice junctions were 
sequenced using the primers listed in Table 1. 

gested with 2 U of  HgaI (New England Biolabs, Beverly, 
MA, USA)  for 2 h at 37°C. The digested products were 
electrophoresed on a 2% agarose gel and the fragments 
were confirmed by ethidium bromide staining of the gel. 

3. Results 

2.7. Restriction endonuclease analysis with HgaI 3.1. Biochemical analysis 

The mutation detected by sequence analysis abolished a 
cleavage site for restriction enzyme HgaI at c D N A  posi- 
tion 1195. 16 txl of  amplified RT-PCR product was di- 

The patient had a slightly elevated plasma cholesterol 
concentration of  207 m g / d l  but a markedly elevated 
cholestanol level of  4.06 mg/d l .  Total triglyceride and 
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Fig. I. Detection of radioactive product and substrate. The product was separated from the substrate by HPLC after incubation of 5/3-[7/3-3H] 
cholestane-3ot,7a,12a-triol with fibroblasts derived from a normal subject (A), the patient (B), mother (C) and father (D). Peaks at 9 and 34 min of 
retention time showed the converted product (5/3-[7/3- 3 H] cholestane-3 a,7a,l 2 a-27-tetrol) and the substrate (5/3-[7/3- 3 HI cholestane-3 a, 7a, 12 a-triol), 
respectively. 
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HDL-cholesterol were within normal range (Table 2). 
Sterol assay on a biopsied tuberous xanthoma showed that 
the amount of cholesterol, cholestanol and sitosterol was 
192 mg %, 17 mg % and 0.2 mg %, respectively. 
Cholestanol thus accounted for 8.1% of the total sterols 
measured in the xanthoma. Both the mother and father had 
normal plasma concentration of cholestanol. 

3.2. Sterol 27-hydroxylase activity in fibroblasts 

Table 3 
Fibroblast sterol 27-hydroxylase activity in the patient and her parents 

Enzyme activity Percentage 
( p m o l / m g  per h) of normal (%) 

Patient UD - 
Mother 60 54 
Father 45 41 
Normal (n = 4) 110 + 20 100 

UD, undetectable. 

Sterol 27-hydroxylase activity was assayed in fibrob- 
lasts derived from the patient, her parents and 4 normal 
subjects. Fibroblasts from the normal subject significantly 
converted the substrate 5/3-[7/3-3H] cholestane-3c~,7c~, 
12o~-triol into 5/3-[7/3-3H] cholestane-3o~,7o~,12o~,27- 
tetrol. The 27-hydroxylated product was efficiently sepa- 
rated from the substrate by HPLC and the radioactivity 
was monitored by a radiodetector (Fig. 1). The mean 
enzyme activity in normal fibroblasts was 110 20 pmol /mg 
protein per h (mean + SD, n = 4). Fibroblasts from the 
patient showed undetectable enzyme activity while corre- 
sponding cells from her mother and father had 54% (60 
pmol /mg protein per h) and 41% (45 pmol /mg protein 
per h) of the normal level, respectively (Table 3). The 
results indicated presence of a homozygous mutation in 
CYP 27 gene in the patient and a heterozygous mutation in 
the parents. Therefore, direct sequence analysis was con- 
ducted. 

3.3. Sequence analysis of genomic DNA 

By direct sequence of all the exons and splice junctions 
of the CYP 27 gene, a single base substitution of A for G 
at codon 362 (CGT 362Arg to  CAT 362His )  w a s  identified 
(Fig. 2): homozygous pattern in the patient and heterozy- 
gous pattern in her parents. The mutation was confirmed 
on both strands of duplicately amplified PCR products 
(exon 6). No other mutation in all exons and splice junc- 
tions was found in the CYP 27 gene of the patient (data 
not shown). 

3.4. Restriction endonuclease analysis 

The mutation eliminated a normal Hgal site at position 
1195 of cDNA. In normal subjects, digestion of the 1014 
bp RT-PCR product amplified using the primer P359 and 
dP367, with HgaI generated 2 fragments of 557 bp and 

Normal Mother Patient Father 

A C G T A C G T A C G T A C G T 

G ~ ~,t ,~: ,uw,,  , : : . " ~ 

C ~ ' :  " " : "  ' ~ : : ~ " : : ~ ' '  : ' ~  " ? ~ : : : ~  " " 

t ~ ::.'~:i<~Z 7 .: ' . : ~ : l < : : i : : : : ~ ' i ! ~ : ~ ~ i ~ : : ' : . . ~ .  w :  • ~':':: : ~ :  

g ~ ~'~, ~/.,,~ ' ~ <:::~ 1 ~ ; : . . ~ , ¢ ~  " .. ,}.. 
g , '  . ~ .:'~ :'~~*~h~:!" "l::~: ' :! ' t~.!~3t:!~ .' . , , ~ :  

.......................................................... G..-)A . . . . .  

Exon 6 Intron 6 Exon 7 

Genomic DNA : • • .AAGGAGACTCTGCGgtagg .... cagTCTC. • • 

cDNA : • • .AAGGAGACTCTGCGTCTC. • - 

(CAT) 

Amino Acid : • LysGluThrLeuArgLeu • 

(His) 

Fig. 2. Direct sequence analysis of sterol 27-hydroxylase gene in the CTX family and a normal subject. All the exons of the gene were PCR-amplified 
using genomic DNA and sequenced. The normal sequences of the region across the mutation and their corresponding amino acids were shown. The A for 
G substitution at nucleotide 1205 was indicated by an arrow. 
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A 
739 1195 1752 

457bp ~ 557bp 

Hgal 

4870bp 
2016bp 
1360bp 

1014bp 1107bp 
926bp 

557bp 658bp 
457bp/ - -  489bp 

267bp 

1 2 3 4 5 6 

Fig. 3. Identification of the mutation by HgaI endonuclease digestion. 
(A) Part of the normal restriction map of enzyme Hga I in the cDNA. (B) 
HgaI restriction analysis of RT-PCR products from the patient, parents 
and a control subject. Lane 1, mother; lane 2, patient; lane 3, father; lane 
4, normal subject; lane 5, normal sample without HgaI digestion; lane 6, 
standard size marker (pHY). 

457 bp  (Fig. 3). On the contrary, digestion of the RT-PCR 
product from the patient did not result in any change of the 
fragment length. The parents showed both the original 
band (1014 bp) and the two new bands (557 and 457 bp). 
The results indicated that the patient is homozygous for the 
mutation and that her parents are heterozygous. 

4.  D i s c u s s i o n  

By PCR direct sequence analysis a homozygous mis- 
sense mutation of A for G substitution at codon 362 (CGT 
362Arg to CAT 362His) was identified in a Japanese CTX 
patient, and a corresponding heterozygous mutation in her 
parents (Fig. 2). The results support that CTX is inherited 
in an autosomal recessive pattern. Interestingly, the single 
base pair substitution occurred only one base pair away 
from the mutation (CGT 362Arg to TGT 362Cys) reported 
by Cali et al. [16]. Both the mutations disrupt the normal 
Arg at codon 362 but result in different mutant amino 
acids. The normal 362Arg is highly conserved among mito- 
chondrial cytochrome P-450s and serves as a binding 
region for the adrenodoxin cofactor of the sterol 27-hy- 
droxylase [38]. No other nucleotide change was found in 
any of the exons of the CYP 27 gene, including splice 
junctions. Therefore, although we have not conducted ex- 
pression study of the mutant CYP 27 cDNA into COS 
cells, the mutation is most probably responsible for the 
decreased sterol 27-hydroxylase activity in this family. 
CTX is inherited in an autosomal recessive pattern and the 
disease is often seen in consanguinity family. However, 

the parents of our case were not consanguineous. A genetic 
screening using the HgaI restriction analysis described 
here would be useful for testing relatives or other popula- 
tions at risk. 

Bilateral xanthoma of the Achilles tendon was the most 
important clinical finding in CTX patients and occurred in 
95% of the 144 patients reviewed by Kuriyama et al. [24]. 
Most tendon xanthomas seemed to develop in the third or 
fourth decade but may occur as early as at the age of 15 
[1,24]. The main complaint of the patient in the present 
study was the multiple enlarging xanthomas, which were 
large enough to be noticed by the patient at the age of 15. 
Sterol analysis on a biopsied tuberous xanthoma showed 
cholesterol and cholestanol deposition and cholestanol ac- 
counted for 8.1% of the total sterols. The result was 
consistent with the 7.3% reported by Salen et al. [12]. 
Other manifestations of CTX such as cataracts, and neuro- 
logical dysfunctions were not observed at the time of 
diagnosis except for mild mental retardation with an IQ of 
67. The development of the symptoms in CTX patients is 
extremely variable. Some of the patients are already men- 
tally retarded in the early period of life, while others have 
normal intelligence even in the sixth decade of life [1]. It is 
intriguing to notice that her mother who is a heterozygote 
also has enlarged Achilles tendons (left 13 mm, right 13 
mm). As the grandfather who is healthy with normal 
plasma cholesterol and cholestanol levels also has slightly 
enlarged Achilles tendons (left 11 ram, right 11 mm), the 
small xanthomas in the mother may have been caused by 
other genetic and/or  environmental factors in her family 
rather than by her heterozygous mutation in the CYP 27 
gene. In addition, the father who is also a heterozygote for 
the same mutation has normal Achilles tendon thickness 
(left 9 mm, right 7 mm). 

The fibroblast sterol 27-hydroxylase activities in the 
parents were about half of the normal level as can be 
assumed in heterozygous state. The plasma cholestanol 
levels in heterozygous parents were normal. According to 
the results, a 50% activity reduction of the enzyme had no 
significant effect on plasma cholestanol level. Leitersdorf 
et al. reported that the age-adjusted mean plasma 
cholestanol concentration in 28 heterozygotes with cyto- 
sine deletion at nucleotide 376 of the cDNA was identical 
to that found in non-carrier members of their families [21 ]. 
Although mild hypercholestanolemia was reported in the 
asymptomatic parents of 5 CTX patients [28] and in 2 
heterozygous individuals with C to T substitution at nu- 
cleotide 430 of the cDNA [19], cholestanol measurement 
seemed less significant for diagnosing heterozygote. Other 
genetic and/or  environmental factors may play a role in 
the regulation of cholestanol levels, as the plasma concen- 
trations of cholestanol varied remarkably among CTX 
patients [39] and heterozygotes [21]. Two non-carders in a 
CTX family were reported to have moderately elevated 
cholestanol levels [21]. The severity of CTX symptoms 
was unrelated to plasma concentration of cholestanol [39]. 
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Al though useful in CTX diagnosis ,  p lasma cholestanol  

concentra t ions  should thus be evaluated caut iously unless  

they are markedly elevated. On the other hand,  sterol 
27-hydroxylase  assay may be adopted for d iagnosing CTX,  

in particular,  for heterozygote diagnosis ,  as our  data showed 
that the heterozygotes had about  half  of  the normal  activity 

and that there was no overlap be tween the levels of  
heterozygote and normal  control.  Since skin biopsy is not  
an easily acceptable method and fibroblast  culture is t ime- 
consuming ,  measur ing  the enzyme  activity in the mito- 
chondrial  fraction of peripheral leukocytes may be a suit- 
able al ternative (unpubl i shed  data). Serum 27-hydroxy-  

cholesterol measurement  may also be considered for CTX 
diagnosis  as it is the direct product  of  sterol 27-hydroxyl-  

ase. This was partly supported by our data of the serum 
27-hydroxycholesterol  concentra t ions  in a homozygous  

CTX patient  and the heterozygous daughter  from another  
CTX family (14 n g / m l  and 80 n g / m l ,  respectively,  un-  

publ ished data). The heterozygote had about half  of  the 
serum 27-hydroxycholesterol  concentra t ion of normal  sub- 

jects  as reported by Dzeletovic et al. using the same 
method (mean  _+ SD: 154 -4- 43 n g / m l ,  n = 31) [40]. More 

data are needed,  however,  before reference ranges of  serum 
27-hydroxycholesterol  concentra t ion in heterozygotes and 

homozygotes  can be defined. 
In conclus ion,  a novel  missense mutat ion of  A for G 

substi tut ion at codon 362Arg (CGT 362Arg to CAT  362His) 

was detected in a Japanese CTX family.  The patient  had 

undetectable  level of  sterol 27-hydroxylase  activity. On the 
contrary, the heterozygous parents had about  50% of  nor- 
mal activity level. The results strongly support  that the 

pr imary enzymat ic  defect in CTX is located at the sterol 
27-hydroxylase  and that the disease is inherited in an 

autosomal  recessive pattern. 
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