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Abstract 

A key measure of performance and comfort in a road traffic network is the travel time that the users of the network experience to 
complete their journeys. Travel times on road traffic networks are stochastic, highly variable, and dependent on several 
parameters. It is, therefore, necessary to have good indicators and measures of their variations. In this article, we extend a recent 
approach for the derivation of deterministic bounds on the travel time in a road traffic network (Farhi, Haj-Salem and Lebacque 
2013). The approach consists in using an algebraic formulation of the cell-transmission traffic model on a ring road, where the 
car-dynamics is seen as a linear min-plus system. The impulse response of the system is derived analytically, and is interpreted as 
what is called a service curve in the network calculus theory (where the road is seen as a server). The basic results of the latter 
theory are then used to derive an upper bound for the travel time through the ring road. 
We consider in this article open systems rather than closed ones. We define a set of elementary traffic systems and an operator 
for the concatenation of such systems. We show that the traffic system of any road itinerary can be built by concatenating a 
number of elementary traffic systems. The concatenation of systems consists in giving a service guarantee of the resulting system 
in function of service guarantees of the composed systems. We illustrate this approach with a numerical example, where we 
compute an upper bound for the travel time on a given route in a urban network. 
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1. Introduction 

We are interested in this article in the derivation of upper bounds for the travel time through a given route in a 
road network. The approach we adopt here, is algebraic. It has been introduced in(Farhi, Haj-Salem and Lebacque 
2013). In the latter reference, a such bound is derived from an algebraic formulation of a first order traffic model on 
a single-lane ring road. Moreover, the bound on the travel time is given in function of the average car-density in the 
ring road. The derivation performed in (Farhi, Haj-Salem and Lebacque 2013) is based on basic results of the 
network calculus theory (Chang 2000) (Le Boudec and Thiran 2001) (Cruz 1991). More precisely, it is first shown 
that the traffic dynamics derived from the model can be written linearly in a specific algebraic structure (the min-
plus algebra of functions; (Baccelli et al. 1992)(Chang 2000)). Then, from that formulation, the impulsion response 
of the min-plus linear system is interpreted as what is called a service curve of the road (seen as a server) in the 
network calculus theory. Finally, for a given traffic inflow to the road, and by using the service curve derived before, 
a basic result of the network calculus gives an upper bound of the travel time through the ring road. See (Farhi, Haj-
Salem and Lebacque 2013) for more details. The application of the Network Calculus theory to road traffic control 
has been recently treated in (Varaiya 2013). The approach we adopt here bases on the same theory, but is different 
from that of (Varaiya 2013). 

In this article we follow the same ideas as in (Farhi, Haj-Salem and Lebacque 2013), but we adopt a system 
theory approach. It consists in defining a number of elementary traffic systems, for which service curves can be 
calculated, with adequate algebraic operators for the connection of those systems. Therefore, one can build large 
scale road networks by connecting predefined elementary traffic systems. Moreover, we give a result that tells how 
to derive a service curve of a system resulting from the connection of two systems with known service curves. Thus, 
a service curve of a road network can be derived, and from that, upper bounds for the travel time through the 
network routes. 

 
Notations 

  set of non decreasing non negative time functions (cumulated flows). 
  addition in . such that . 

  product (min. convolution) in . such that . 
  idempotent semi-ring. 

  zero element for , such that . 
  unity element for , such that . 

  gain signal in . such that  and  for . 
  shift signal in . such that  for  and  for . 
  substraction (min. de-convolution) in . such that . 
  power convolution in . such that, for  , and , for . 
  sub-additive closure in . such that for  . 
  set of  matrices with entries in . 
  addition in . such that . 

  product in  such that . 
 idempotent semi-ring. 

  zero element for , such that . 
  unity element for , such that , and . 

  power operation in . such that  and , for . 
  sub-additive closure in ; such that . 
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2. Review and complements in network calculus 

We give in this section a short review of the main definitions and results that we use in this article. The main 
variables we use here are the cumulated traffic flows, which we denote with capital letters function of time. Any 
traffic model is then seen as a system with input signals (car inflows) and output signals (car outflows). The network 
calculus theory associates an arrival and a service curves to a system, and derives from those curves performance 
bounds like upper bounds of the delay of passing through the system. An arrival curve consists in upper-bounding 
the arrival inflows to the system, while a service curve consists in lower-bounding the guaranteed service and then 
the departure outflows from the system. In the following, we review these two notions of arrival and service curve in 
the one-dimensional case (for systems with one arrival inflow, and one departure outflow. As mentioned in the table 
of notations above, we consider the set  of non-decreasing and non-negative time functions, in which we consider 
the two operations: addition  (element-wise minimum) and the product (minimum convolution); see the 
notations above. Let us now, consider a system (seen as a server) with an arrival cumulated flow , and a 
departure cumulated flow . 

Definition 1. A curve  is an arrival curve for , if . 

Definition 2. A curve  is a service curve for the server, if . 

For the derivation of performance bounds from arrival and service curves in the one-dimension case, see (Cruz 
1991) (Chang 2000), (Le Boudec and Thiran 2001). 

We are concerned here by the multi-dimensional case, where multiple inflows arrive to and departure from the 
system. The particular signals  and , defined in the table of notations above, will be used here. We consider 
the following definitions and results. 

Definition 3. (Arrival matrix). For a given  vector  of cumulated arrival flows , a  
matrix  is said to be a -arrival matrix for  if  

 

That is to say that 

 

Let us notice that for , the curve  is simply a one-dimension arrival curve for . However, for , the 
difference with respect to the case  is that, it is possible to have, , even for . Indeed, if 
we assume that , then we get , and similarly 

. Therefore, . It is trivial that such an assumption is very restrictive. 
Therefore, if we like to upper bound  for all , then we need to work with negative times for 
the arrival curve. In order to continue working with non-negative times, we time-shift here the curve with negative 
times to zero.  

A simple way to obtain such T-arrival matrices, is, first to determine the matrix  (of non negative entries). For a 
given couple ,  is determined as follows. 

 

Then,  is determined using Definition 3: 
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It is easy to check that for  , we have , and then   is a one-dimensional arrival curve for . 

Let us notice that Definition 3 is different form Definition 4.2.1 given in (Chang 2000). Definition 3 is illustrated in 
the numerical example of the last section. 

Definition 4. (Service matrix). For a given server with input vector  and output vector , a  matrix  is said 
to be a service matrix for the server, if . 

Definition 5. (Virtual delay). For a given server with input vector  and output vector , the virtual delay of the last 
quantity arrived at time  from the th input to depart from the th output, denoted  is defined: 

 

Theorem 1. For a given server with input vector  and output vector , if  is a T-arrival matrix for , and  is a 
service matrix for the server, then 

 

and then the virtual delays  are bounded as follows. 

 

Proof. It is a trivial adaptation of the proof of Theorem 4.3.6 in (Chang 2000).  

In order to build a whole traffic network, we base in elementary traffic systems which will be used as unit systems in 
the composition. We consider here two elementary systems (an uncontrolled and a controlled road sections). The 
composition we use here are inspired from (Farhi 2008.); see also (Farhi 2009), (Farhi, Goursat and Quadrat 2001), 
(Farhi, Goursat and Quadrat 2005), (Farhi, Goursat and Quadrat 2007), (Farhi, Goursat and Quadrat 2011) and 
(Farhi 2012). 

3. The road section model 

We consider a road section system , as illustrated in Figure 1. Cars arrive from the left side of the road section, pass 
through it, and departs from the right side of it. The inputs  and  represent respectively the traffic demand 
from the upstream section  to the section , and the traffic supply of the downstream section  to the section 
. The outputs  and  represent respectively the traffic demand of the section  to the downstream section 
, and the traffic supply of the section  to the upstream section .  

 

Figure 1. A road section. 

Let us clarify the notations  and : 
  (resp. ): cumulated forward inflow (resp. outflow) of cars from time zero to time . 
  (resp. ): cumulated backward supply of section  (resp. ) from time zero to time . 

Let us define the cumulated flow  as follows.  
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where  denotes the number of cars in the considered section at time zero. Therefore, under the condition 
, and under FIFO condition, the cumulated flow  coincides with the outflow corresponding to the inflow 

; that is to say that at any time ,  gives the cumulated number of cars that leaved the road section up to 
time , among from the cumulated number  of cars arrived to the road section up to time . 

Similarly, we define the cumulated flow  as follows. 

 

where , with  denoting the maximum number of cars that the road section can contain. Again 
similarly, under the condition , and under FIFO condition, the cumulated flow  coincides with 
the outflow corresponding to the inflow . 

In order to simplify the presentation of the ideas, and without loss of generality, we assume that all the cumulated 
flows are initialized to zero.  

  ( 1) 

Let us now write the traffic dynamics on the road section. As in (Farhi, Haj-Salem and Lebacque 2013), we base on 
the cell-transmission model (Daganzo 1994) with a trapezoidal fundamental diagram; see also (Lebacque 1996). We 
obtain the following dynamics, where we introduce an intermediate variable , which is simply the cumulated 
forward outflow . 

 

 ( 2) 

By using the min-plus algebra notations (see (Farhi, Haj-Salem and Lebacque 2013), (Baccelli et al. 1992)), we get: 

 

where we added (min-plus addition) the unity vector  to  and  in order to satisfy condition (1). Then, by 
denoting , and , we can write 

  ( 3) 

with , , and . Let us notice that in (3),  denotes also the 
vector . 

Therefore, the traffic dynamics on a road section may be represented with three matrices: a signal , a line matrix  
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of two signals, and a column matrix  of two signals. In a such configuration,  represents the traffic demand of the 
section,  gives the traffic supply that the section offers for an eventual upstream section, while  gives the outflow 
limit  imposed by the trapezoidal fundamental diagram. 

From (3), (see (Baccelli et al. 1992) or (Chang 2000)), . Then, since , we have 
. Hence 

 

Then from the expressions of  and , we obtain 

  ( 4) 

with  

 

One can easily check that (see (Farhi, Haj-Salem and Lebacque 2013)). 

 

Theorem 2. The matrix  is a service matrix for the road section, seen as a server with two 
inputs and two outputs. 

Corollary 1. A service matrix  for the road section seen as a server, is given as follows. 

 

Proof. It consists in proving that .  

4. The controlled road section model 

We consider here a road section controlled with a traffic light. We denote by  the cycle time of the traffic light, 
and by  and  the green and red times, with . We can easily check that the traffic dynamics in the 
control road section is the same as (2), except the first equation that changes to 

  ( 5) 

The first term in (5) replaces  in (2) since . 

The term  in (2) is time-shifted by  in (5). Indeed cars arriving to the light may have an 
additional delay upper-bounded by . 

The dynamics (5) tells that the inflow to the traffic light passes through the light with a maximum time delay of  
time units, under the supply constraint downstream of the light, and with a maximum flow of . 

Theorem 3. The matrix  is a service matrix for the road section, seen as a server with two 
inputs and two outputs, with , . 
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Proof. Directly from Theorem 2, with the modifications made in (5).  

5. Concatenation of traffic systems 

The composition of traffic systems is done in two dimensions, since each system has two inputs and two outputs. 
The connection is not in series, in the sense that connecting two systems does not mean connect the outputs of one 
system to the inputs of the other. Indeed, the connection is made here in the two directions, by connecting one 
output of system 1 to one input of system 2, and one output of system 2 to one input of system 1. In Figure 2, we 
illustrate the connection of two elementary systems (road sections). 

 

Figure 2. Concatenation of two min-plus linear traffic systems. 

Let us consider two min-plus linear traffic systems 1 and 2, with service matrices  and . We then have: 

 

The following result is on the composition such two systems. 

Theorem 4. A service matrix  for the whole system is given by: 

 

such that 

 

Proof. See Appendix A.  

6. Roads and itineraries 

In order to build a road of  sections, we need to compose  elementary traffic systems of road sections. The 
service matrix of each road section can be obtained by Theorem 2, giving fundamental traffic diagrams on each 
section. Then the service matrix of the whole road is obtained by the composition of the road section systems and by 
applying Theorem 4. A controlled road of  sections is obtained similarly by composing  uncontrolled road 
sections with one controlled road section. 

A route (or an itinerary) in a controlled road network is build by composing a number of controlled roads. In 
Figure 5, we illustrate the composition of controlled roads to obtain a traffic system associated to a whole road 
network. The procedure of computing a service matrix for a traffic flow passing respectively through roads R1, 
R2,R3, and R4 is the following. 
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 Determine service matrices for all the uncontrolled sections of the itinerary, by Theorem 2. 
 Determine service matrices for all the controlled sections of the itinerary, by Theorem 3. 
 Determine a service matrix for the itinerary by connecting the systems R1, R2, R3, R4, by Theorem 4. 

 

 

Figure 3. An itinerary of four roads and three intersections. 

Once a service matrix is determined for a given traffic system, and having an arrival matrix expressing the traffic 
demand arriving to the system and the traffic supply that backwards to it, it suffices to apply Theorem 1 to obtain 
upper bounds for the travel time for any input - output couple of the traffic system. 

7. A numerical example 

We illustrate the results presented in this article with a numerical example. We consider the itinerary of Figure 3, for 
which we calculate an upper bound for the travel time from the entry of road 1 to the exit from road 4 passing 
through the roads R1, R2, R3 and R4. We consider some common parameters for all the road sections:  
meter/sec.,  m/s,  veh/m. Other parameters for the road sections are given in Table 1.  

Table 1. Parameters of the road sections R1, R2, R3 and R4 of Figure 3. 

 R1 R2 R3 R4 

Length 
  (meter) 150 150 100 100 

Maximum flow  
(veh/sec) 0.32 0.35 0.4 0.38 

Initial density of cars  
(veh/meter) 5/150 10/150 3/100 7/100 

Cycle time (sec.) 60 90 80 - 
Green time (sec.) 30 50 45 - 

The results of this example are illustrated in Figure 4. The input signals  arriving to road 1, and  backing 
from road 4 are taken such that the arrival flows do not exceed the service offered by the whole route. The arrival 
curves of the arrival matrix  are computed by Definition 3. First the shift times ., and . are 
computed. Then the curves are deduced by Definition 3. The service curves are computed following the steps cited 
above. An upper bound for the travel time through the route is then calculated according to Theorem 1. We are 
concerned here by the delay  corresponding the forward travel time (the delay  corresponds to the backward 
travel time of the backward waves). We obtained for this example the following result.  

 seconds. 
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Figure 4. Arrival curves of the arrival matrix, service curves of the service matrix, and the time delays. 
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Appendix A. Proof of Theorem 4. 

From the dynamics of system 2, we have 

 

Then by replacing  by , we get 

 

Now, we replace  by . We obtain 

 

for which the solution, in  is given as follows. 

  ( 6) 

From the dynamics of system 2, we also have 

 

Then by replacing  by , we get 

 

We then replace  by the expression of  in (6). We get 
 

That is 

 
 

 
( 7) 

 
Similarly, from the dynamics of system 1, we have 

 
Then by replacing  by the expression of  in (6), we get 

 
That is  

  ( 8) 

The result is given by (7) and (8).  


