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a b s t r a c t

We consider the Cauchy problem for an abstract stochastic delay differential equation
driven by fractional Brownian motion with the Hurst parameter H > 1

2 . We prove the
existence and uniqueness for this problem, when the coefficients have enough regularity,
the diffusion coefficient is bounded away from zero and the coefficients are smooth
functions with bounded derivatives of any order. We prove the theorem by using the
convergence of the Picard–Lindelö f iterations in L2(Ω) to a solution of this problemwhich
admits a smooth density with respect to Lebesgue’s measure on R.

© 2009 Elsevier Ltd. All rights reserved.

1. Fractional Brownian motion

Fix a parameter 12 < H < 1. The fractional Brownian motion of the Hurst parameter H is a centered Gaussian process
B = {B(t), t ∈ [0, T ]}with the covariance function

R(t, s) =
1
2

(
s2H + t2H − |t − s|2H

)
.

Let us assume that B is defined in a complete probability space (Ω, F .P). Then

R(t, s) =
∫ t∧s

0
K(t, r)K(s, r)dr

where K(t, s) is the kernel defined by

K(t, s) = CHs
1
2−H

∫ t

0
(r − s)H−

3
2 rH−

1
2 dr

for s < t,where

CH =

[
H(2H − 1)

B(2− 2H,H − 1
2 )

] 1
2

,

B(α, β) is the Beta function and K(t, s) = 0 if s > t .
This means that R is non-negative definite and therefore, there exists a Gaussian process with this covariance [1].
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Malliavin calculus and stochastic integrals for the fractional Brownian motion

Let us recall the definition of the derivative and divergence operators and some basic facts of the stochastic calculus of
variation, taken mainly from Alós and Nualart [2].
LetH be the Hilbert space defined as the closure of the set of step functions ε on [0, t]with respect to the scalar product

〈1[0,T ], 1[0,s]〉H = R(t, s).

Then

R(t, s) = αH0

∫ t

0

∫ s

0
|r − u|2H−2 dudr

where αH = H(2H − 1); then

〈φ,ψ〉H = αH

∫ T

0

∫ T

0
|r − u|2H−2φ(r)ψ(u) du dr

for all φ andψ in ε. Themapping 1[0,t] −→ B(t) can be extended to an isometry betweenH and the first ChaosH1 associated
with B, and we denote this isometry by φ −→ B(φ). The elements ofH may not be functions but distributions of negative
order to introduce the Banach space, |H | of measurable functions φ on [0, T ] satisfying:

‖φ‖2
|H | = αH

∫ T

0

∫ T

0
|φ(r)||φ(u)||r − u|2H−2 dr du <∞.

Given s = (s1, . . . , sk) ∈ [0, T ]k, we denote by |s| the length of s, that is k.
For a random variable, Y ∈ Dk,p and s ∈ [0, T ]k.
We denote by DksY the iterative derivative DskDsk−1 . . .Ds1Y .
Let f ∈ C0,∞b (R), the space of continuous functions defined on R infinitely differentiable with bounded derivatives.

Set Γs(f ; Y ) =
|s|∑
m=1

∑
f (m)(Y )

m∏
i=1

Dpi(pi)Y ,

where the second sum extends to all partition P1, . . . , Pm of lengthm of s [3].
Let S be the set of smooth and cylindrical random variables of the form

X = f (B(φ1), . . . , B(φn)),

where n ≥ 1, f ∈ C∞b (R
n), (f and all its partial derivatives are bounded) and φi ∈ H ; the derivative operator D of a smooth

and cylindrical random variable X is defined as

DX =
n∑
j=1

∂ f
∂xj
(B(φ1), . . . , B(φn))φj.

Let Dk be the iteration of the derivative operator D.
For any p ≥ 1 the Sobolev space Dk,p is the closure of S with respect to the norm

‖X‖pk,p = E|X |
p
+ E

(
k∑
i=1

‖DiX‖pH

)
.

Lemma 1.1. Let {Xn, n ≥ 1} be a sequence of random variable in Dk,p, k ≥ 1, p ≥ 2. Assume that there exists X ∈ Dk−1,p such
that {Dk−1Xn, n ≥ 1} converges to Dk−1X in Lp(Ω) as n goes to infinity and moreover, the sequence {DkXn, n ≥ 1} is bounded in
Lp(Ω), then X ∈ Dk,P .

Lemma 1.2. Let {Z(t), t ∈ [0, T ]} be a stochastic process such that for any t ∈ [0, T ], Z(t) ∈ D1,2 and

sup
t
E(|Z(t)|2) ≤ k1, sup

r,t
E(|DrZ(t)|2) ≤ k2;

then given r > 0 and deterministic continuous function f , the stochastic process {Y (t), t ∈ [0, T ]} defined as

Y (t) =
{
Z(t − r) if t > r
f (t) if t < r (1.1)

belongs to D1,2(|H |).
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2. The Cauchy problem for a stochastic delay differential equation

In the present paper we shall consider the Cauchy problem for a stochastic delay differential equation:

du(t) = Au(t)+ b(u(t))dt + σ(u(t − r)) dB(t), t ∈ [0, T ] (2.1)
u(s) = ψ(0), s ∈ [−r, 0] (2.2)

whereψ ∈ C([−r, 0]) and the noise process {B(t), t ≥ 0} represents a fractional Brownianmotionwith theHurst parameter
H > 1

2 . It is supposed that A is a closed linear operator which generates a strongly continuous semigroup {Q (t) : t ≥ 0} on
a real separable Hilbert spaceH , [4–6].

Theorem 2.1. As a solution to this problem, we shall define a process {u(t), t ∈ [−r, T ]} that satisfies

u(t) = Q (t)ψ(0)+
∫ t

0
Q (t − s)b(u(s))ds+

∫ t

0
Q (t − s)σ (u(s− r))dB(s), t ∈ [0, T ] (2.3)

u(s) = ψ(0).

We shall assume that b and σ are real functions that satisfy the following conditions:
Hypotheses (H):

(i) b and σ are λ̃-times differentiable functions with bounded derivatives up to order λ̃.
(ii) σ is bounded and |Qb(0)| ≤ C1 for some constant C1.
(iii) ‖Q (t)‖ ≤ qeαt for all 0 ≤ t ≤ T for some α > 0, q ≥ 1.
(iv)

∫ T
0 ‖Au(t)‖ds ≤ ∞, almost surely.

The proof of this theorem is based on the following lemmas.

Lemma 2.3. Let {λ(t), t ∈ [0, T ]} be a quadratic integrable stochastic process. Assume that b is a Lipschitz function defined on
R such that |Qb(0)| ≤ C1 for some constant C1; then for a fixed T1 ≤ T , the stochastic integral equation

u(t) = ψ(0)+
∫ t

0
Q (t − s)b(u(s))ds+ λ(t), t ∈ [0, T1] (2.4)

u(t) = 0 if t > T1 (2.5)

admits a unique solution u(t) on [0, T ].

Proof. Consider the classical Picard–Lindelöf iterationsu(n+1)(t) = ψ(0)+
∫ t

0
Q (t − s)b(u(n)(s))ds+ λ(t)

u(0)(t) = ψ(0)+ λ(t)
(2.6)

for t ∈ [0, T1] and u(n)(t) = 0 for any t ≥ T1 and all n, we have

E(|u(1)(t)− u(0)(t)|2) = E
∣∣∣∣∫ t

0
Q (t − s)b(u(0)(s))ds

∣∣∣∣2
≤ N2 uniformly in t.

We thus have

E
(
|u(n+1)(t)− u(n)(t)|2

)
≤ N2

∫ t

0
E(|u(n)(s1)− u(n−1)(s1)|2)ds1

≤ N1

∫ t

0

∫ s1

0

∫ s2

0
· · ·

∫ sn1

0
E(|u(1)(s)− u(0)(s)|2)dsn . . . ds2ds1

≤ N.
Nn−12

n!
.

From this we can easily prove that the Picard–Lindelöf iterations converge in L2(Ω) on [0, T1] to a solution of (2.4) [3]. �

Definition 2.1. We shall say that the stochastic process {Z(t), t ∈ [0, T ]} satisfies condition (D(∗,m,p)) if Z(t) ∈ Dm,p for any
t ∈ [0, T ], supt E(|Z(t)|p) ≤ C1 and

sup
t
sup
r,|r|=k

E(|Dkr |Z(t) |
p) ≤ C2
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whenm ≥ 1, p ≥ 2, k ≤ m and for some positive constants C1, C2 in this case Z(t) ∈ D1,2(|H |) and

E‖Z‖2
|H | + E‖DZ‖|H |(∗)|H | < A(c1 + c2)

proved in [7].

Lemma 2.4. Let {λ(t), t ∈ [0, T ]} be a stochastic process satisfying condition (D(∗,m,p)). Assume that b has bounded derivatives
up to order m and that |Qb(0)| ≤ C1; then for a fixed T1 ≤ T , the stochastic integral equations (2.4) and (2.5) have a solution
{u(t), t ∈ [0, T ]} satisfying the condition (D(∗,m.p)).

Proof. We have to prove that the Picard–Lindelöf iterations converge in L2(Ω) to a solution of (2.6):

E(|u(t)|p) ≤ Np E
∣∣∣∣∫ t

0
Q (t − s)b(u(s))ds

∣∣∣∣p + E|λ(t)|p + E ∣∣∣∣∫ T

0
ψ(0)ds

∣∣∣∣p
≤ NP

(
1+

∫ t

0
E(|u(s)|p)

)
ds,

and by Gronwall’s lemma that supt E(|u(t)|p) < ∞, t ∈ [0, T ]. Moreover for all k ≤ m, u(t) ∈ Dk,p, we have
supt supr,|r|=k E(|Dkru(t)|

p) < c2. Now consider the hypothesis of induction for k ≤ m, (H̃k):

(a) for all n ≥ 0, u(n)(t) ∈ Dk,p for all t .
(b) Dk−1u(n)(t) converges to Dk−1u(t) in Lp(Ω)when n tends to∞.
(c) supn supt supr,|r|=k E(|Dkru

(n)(t)|p) <∞.

Step (1). We prove (H̃1): (b) is true because u(n)(t) converges, when n tends to∞, to u(t) in Lp(Ω); for (a) and (c) we will
use another induction to check for all n ≥ 0, the hypothesis (Ĥn):

(i) u(n)(t) ∈ D1,p for all t ∈ [0, T ].
(ii) supt supr E(|Dru(n)(t)|p) ≤ ∞.

It is clear that u(0)(t) ∈ D1,p for all t and t ∈ [0, T1]. So our hypothesis of induction (Ĥ0) has been proved.
Assume now that the hypothesis (Ĥn) is true. Then from the definition of u(n+1)(t) it follows that u(n+1)(t) ∈ D1,p and for

any t ∈ [0, T ],

Dru(n+1)(t) =
∫ t

0
Dr [Q (t − s)b(u(n)(s))]ds+ Drψ(0)+ Drλ(t). (2.7)

Then

sup
r
E(|Dru(n+1)(t)|p) ≤ Np

{
sup
r
E|Drψ(0)|p +

∫ t

0
sup
r
E(|Dr [Q (t − s)b(u(n)(s))]|p)ds+ sup

r
E(|Drλ(t)|p)

}
since

sup
r
E(|Drψ(0)|p) = 0,∫ t

0
sup
r
E(|Dr [Q (t − s)]|p)ds ≤

∫ t

0
sup
r
E(|Dru(n)(s)|p)ds.

Then

sup
r
E(|Dru(n+1)(t)|p) ≤ Np

{∫ t

0
sup
r
E(|Dru(n)(s)|p)ds

}
+ sup

r
E(|Drλ(t)|p) <∞.

Hence (Ĥn+1) can be easily proved.
Finally, we have the relationship

sup
r
E(|Dru(n+1)(t)|p) ≤ Np

∫ t

0
sup
r
E(|Dru(n)(s)|p)ds+ Np.

Iterating n times we get

sup
r
E
(
|Dru(n+1)(t)|p

)
≤ Np

{∫ t

0

[
Np

∫ s

0
sup
r
E(|Dru(n−1)(ξ)|p)dξ + Np

]}
ds

≤ (Np)2
∫ t

0

∫ s

0
sup
r
E(|Dru(n−1)(ξ)|p)dξds+ (Np)2t + (Np)
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...

≤

n∑
k=0

Nk+1p

k!
tk ≤ Np exp(Npt).

Then

sup
n
sup
t
sup
r
E(|Dru(n)(t)|p) ≤ Np exp(NpT ) <∞.

This means that (H̃1) has been proved.

Step (2). Let us assume that (H̃k), i ≤ k ≤ m − 1 is true. We want to check (H̃k+1). We will prove (a) by doing another
induction over n similar to the step (1).
Let us consider, for all n ≥ 0, the hypothesis (H̃n):

(i) u(n)(t) ∈ Dk+1,p for all t ∈ [0, T ]
(ii) supt supr,|r|=k+1 E(|Dk+1r u(n)(t)|p) <∞.

From the definition of u(0)(t) it is clear that (Ĥ0) is true. Assuming that it is true for n, from the definition of u(n+1) it follows
that for all t, u(n+1)(t) ∈ Dk+1,p and for r, |r| = k+ 1

Dk+1r u(n+1)(t) =
∫ t

0
Γr(Qb, u(n)(s))ds+ Dk+1r λ(t) for any t ∈ [0, T1].

The proof of (b) and (c) is given by repeating the same method as in step (1). Using Lemma 1.1 we have

sup
t

sup
r,|r|=k+1

E(|Dk+1r u(t)|p) <∞. �

Lemma 2.5. Let {Z(t), t ∈ [0.T ]} be a stochastic process satisfying condition (D∗,m+1,p). Then the stochastic Stratonovich integral

λ(t) =
∫ t

0
Z(s)dB(s), t ∈ [0, T ]

is well defined and the stochastic process {λ(t), t ∈ [0, T ]} satisfies condition (D∗,m,p), proved in [7].

3. Proof of the main theorem

To prove that Eq. (2.3) has a unique solution on [0, T ], we first prove the result on t ∈ [0, r]. Then by induction, we shall
prove that if Eq. (2.3) has a unique solution on [0,Nr], then we can extend this solution to the interval [0, (N+1)r] and this
extension is unique.

The hypothesis (HN): for N ≤ λ̃, the equation

u(t) = Q (t)ψ(0)+
∫ t

0
Q (t − s)b(u(s))ds+

∫ t

0
Q (t − s)σ (u(s− r))dB(s), t ∈ [0,Nr]

and u(t) = 0 if t < Nr , has a unique solution and u(t) satisfies condition (D(∗,λ̃−N,p)).
Step (1) check (H1): Let t ∈ [0, r] and define the process

λ(t) =
∫ t

0
Q (t − s)σ (ψ(s− r))1{t<r} dB(s) t ∈ [0, T ].

It is clear that

Q (t − s)σ (ψ(s− r)) ∈ D1,2(|H |)

and

D[Q (t − s)σ [ψ(s− r)]] = 0.

Since ψ is a deterministic continuous function, then λ(t) ∈ Dk,p,

Dνλ(t) = Q (s− t)σ (ψ(ν − r))1{ν<t<r}

and

Dkλ(t) = 0 when k ≥ 2.
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Moreover for all k ≥ 1, p ≥ 2 we have that
sup
t
E(|λ(t)|p) ≤ ‖Qσ(ψ(s− r))‖p ≤ C3

and
sup
t
sup
ν,|ν|=k

E(|Dkνλ(t)|
p) ≤ C4.

So, λ(t) satisfies condition (D(∗,k,p)).
From Lemmas 2.4 and 2.5, there exist a unique solution u(t) and satisfies condition (D(∗,λ̃−1,p)).

Step (2): Assuming that (HN) is true for N < λ̃, we want to check (HN+1).
Consider the stochastic process {Y (t), t ∈ [0, T ]} defined as

y(t) =

{
ϕ(t − r)t ≤ r
u(t − r) r < t ≤ (N + 1)r
0 t > (N + 1)r.

Set Z(t) = Qσ(Y (t)). Then for t ∈ [0, (N + 1)r], the problem becomes

u(t) = Q (t)ψ(0)+
∫ t

0
Q (t − s)b(u(s))ds+

∫ t

0
Z(t) dB(s).

Let us define the process

λ(t) =
∫ t

0
Z(s)1{t<(N+1)r}dB(s) t ∈ [0, T ]

from Lemma 1.2
(1) Z(t) ∈ D1,2(|H |)
(2)

∫ T
0

∫ T
0 |DνZ(s)||s− ν|

2H−2dsdν <∞

and
DνZ(t) = Dν[Qσ(Z(t))].

Now by using that the stochastic process Y (t) satisfies condition (D(∗,λ̃−N,p)) and that Qσ has a derivative up to order λ̃, it
is clear that for any t ∈ [0, T ], Z(t) ∈ Dk,p for all k ≤ λ̃− N and

DkνZ(t) = Γν(Qσ , Y (t)).
Furthermore, Y (t) satisfies condition (D(∗,λ̃−N,p)). From Lemmas 2.4 and 2.5, λ satisfies condition (D(∗,λ̃−N−1,p)) and as we
did in step (1) we can finish the proof of this theorem (Comp. [8–21]).
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