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Abstract

Given a compact connected Riemann surface X equipped with an antiholomorphic involution 7, we
consider the projective structures on X satisfying a compatibility condition with respect to 7. For a
projective structure P on X, there are holomorphic connections and holomorphic differential operators
on X that are constructed using P. When the projective structure P is compatible with t, the relationships
between t and the holomorphic connections, or the differential operators, associated to P are investigated.
The moduli space of projective structures on a compact oriented C*° surface of genus g > 2 has a natural
holomorphic symplectic structure. It is known that this holomorphic symplectic manifold is isomorphic to
the holomorphic symplectic manifold defined by the total space of the holomorphic cotangent bundle of the
Teichmiiller space 7g equipped with the Liouville symplectic form. We show that there is an isomorphism
between these two holomorphic symplectic manifolds that is compatible with 7.
© 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

A projective structure on a compact Riemann surface X is defined by giving a covering of X by
holomorphic coordinate charts such that all the transition functions are Mobius transformations.
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Projective structures have other equivalent formulations using projective connections, differential
operators etc.
Assume that there is an antiholomorphic involution

7: X — X.

Just as compact Riemann surfaces are same as smooth projective curves defined over C, pairs
of the form (X, r) are same as geometrically irreducible smooth projective curves over R.
We consider projective structures on X compatible with 7; a projective structure P on X
is compatible with 7 if t takes any holomorphic coordinate function associated to P to the
conjugate of another holomorphic coordinate function associated to P. So a projective structure
on X compatible with t can be called a real projective structure.

This “reality” of projective structures becomes more clear if we consider the equivalent
formulations using projective connections or differential operators. Associated to each projective
structure is a holomorphic (equivalently, algebraic) projective connection. A projective structure
is real if and only if the corresponding projective connection is defined over R. Also, associated
to each projective structure is a holomorphic (equivalently, algebraic) differential operator of
order three from 7'X to ((T X)*)®2, where T X is the holomorphic tangent bundle. A projective
structure is real if and only if the corresponding differential operator is defined over R. We
investigate these interrelations.

To define a projective structure on a C* oriented surface, we do not need to fix a complex
structure on the surface. On the contrary, given a projective structure, there is a underlying
complex structure on the surface.

Let Y be a compact connected oriented C* surface. Let Diffeog(Y) denote the group of
diffeomorphisms of Y homotopic to the identity map. This group acts on the space of all
projective structures on Y compatible with the orientation of Y. The corresponding quotient space
will be denoted by Po(Y), which is a complex manifold equipped with a natural holomorphic
symplectic form. The Teichmiiller space 7 (Y) for Y is the quotient by Diffeog(Y) of the space
of all complex structures on ¥ compatible with its orientation. There is a natural projection of

¢ :Po(Y) — T(Y)
making Py (Y) a torsor for the holomorphic cotangent bundle “QIT(Y) — T(Y). Let
T:Y —Y

be an orientation reversing diffeomorphism of order two. Let tp (respectively, t7) be the
involution of Py(Y) (respectively, 7 (Y)) constructed using t. We prove that there is a
holomorphic section of the projection ¢ that

e intertwines tp and tr, and

e the corresponding biholomorphism of Py(Y) with QIT takes the natural symplectic form

x)
on Py(Y) to the Liouville symplectic form on (271—(),).
In a work with Huisman, [4], the representations associated to stable real vector bundles are
introduced. The PGL; analog of these representations arise in real projective structures.
2. Real projective structures

Let X be a compact connected Riemann surface. Let

J:TRx — TRX
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be the almost complex structure of X. Assume that X is equipped with an anti-holomorphic
involution

7: X — X. 2.1
This means that t is a smooth self-map of X such that 7 o T = Idy, and the equality
dr(J(x)(v)) = —J(r(x))(dz(v)) (2.2)

holds for all x € X and v € TXRX, where dt : TRX —> TRX is the differential of 7. As
mentioned in the introduction, such a pair (X, t) corresponds to a geometrically irreducible
smooth projective curve defined over R. (See [7,14,8,13] for curves defined over R.)

We will define projective structures on X compatible with t. Before that, let us recall the
definition of a projective structure.

The standard action of SL(2, C) on C? induces an action of the Mdbius group PSL(2, C)
on CP', and furthermore, PSL(2, C) = Aut(CP") (the group of holomorphic automorphisms).
A holomorphic coordinate function on an open subset U C X is an injective holomorphic map
¢:U — CPL.

A projective structure on X is defined by giving a collection {(U;, ¢;)}ic; of holomorphic
coordinate functions such that

e Ui, Ui =X, and
e for each pair i, i’ € I, the composition

-1
dirog, 1 ¢i(UiNUy) —> ¢p(U; N Uy)
is the restriction of some Mobius transformation.

Two such data {(U;, ¢i)}icr and {(U;, ¢i)}icyr satisfying the above conditions are called
equivalent if their union {U;, ¢;};cjuy also satisfies the two conditions. A projective structure
on X is an equivalence class of such data. Given a projective structure on X, the holomorphic
coordinate functions compatible with it will be called projective coordinates.

Consider the involution t in Eq. (2.1). Note that for any holomorphic coordinate function
(U, ¢), the composition (=Y (U),por)isalsoa holomorphic coordinate function.

Definition 2.1. A projective structure on X is said to be compatible with t if for each projective
coordinate (U, ¢), the composition (" U),por)isalsoa projective coordinate.

For convenience, a projective structure on X compatible with 7 will also be called a real
projective structure.

Remark 2.2. The complex projective line CP! has the real structure defined by z — Z. The
condition that a projective structure is real means that the projective structure is compatible
with 7 and this real structure on CP'. We note that CP! has another real structure defined by
z —> —1/z. However, the real projective structures on X defined using this real structure are not
different from those defined above because the two real structures on CP! differ by an element
of the Mobius group.

Given a projective structure P on X, we can construct another projective structure P’ on
X which is uniquely determined by the following condition. Take any holomorphic coordinate
function (U, ¢) compatible with P, then the composition (z(U), ¢ o T) is compatible with P’.

Clearly this construction defines an involution on the space of all projective structures on X.
The following lemma is obvious.
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Lemma 2.3. A projective structure P on X is real if and only if P is fixed by the involution
constructed above.

We will describe the space of all projective structures on X compatible with 7. We begin with
the following simple lemma.

Lemma 2.4. There exists a projective structure on X compatible with t.

Proof. If X = CP!, the unique projective structure on CP!, which is defined by taking the
identity map of CP! to be a projective coordinate, is clearly compatible with 7.
Assume that genus(X) > 1. Let

y:)?—)X

be a universal cover of X, where X is either the complex line C or the upper half plane
H = {z € C | Im(z) > 0}. Fix a biholomorphism of X with C or H. The holomorphic coordinates
on X given by the inclusion of X in CP! define a projective structure on X, which we will denote
by P. We will show that P is compatible with 7 Eq. (2.1). -

The involution 7 lifts to an anti-holomorphic automorphism of X. Any lift

7T:X — X
of 7 is of the form T(z) = T (z) (respectively, T(z) = —T (z)) if X=C (respectively, X = H),
where T is a holomorphic automorphism of X. Since X is either C or H, the map defined by
7z —> T(z) is a Mdbius transformation. Hence the map defined by z — T(z) is a Mdbius

transformation. Therefore, the projective structure P is compatible with 7. This completes the
proof of the lemma. [

Let V be a holomorphic vector bundle over X. Let V denote the C° complex vector bundle
over X which is identified with V as a real C* vector bundle, while the complex structure of the
fiber V, x € X, is the conjugate of the complex structure of V,. The smooth complex vector
bundle 7*V has a natural holomorphic structure. A C™ section of t*V defined over an open
subset U C X is holomorphic if the corresponding section of V over 7(U) is holomorphic; it is
easy to check that this condition defines a holomorphic structure on 7*V.

Let TX denote the holomorphic tangent bundle of X. Since the differential dr takes the
almost complex structure J to —J (see Eq. (2.2)), it follows immediately that dz gives a C*°
isomorphism of TX with T*TX. It is easy to check that this is a holomorphic isomorphism.
Consequently, (T X)®" = t*(T X)®" for allm € Z.

Fix a holomorphic line bundle L — X such that L®? is holomorphically isomorphic to 7 X.
So, L is a theta characteristic on X. Fix an isomorphism of L®? with T X. We have the following
short exact sequence of vector bundles on X

0— L*=L®Ky — JY(L) — L — 0, (2.3)
where J!(L) is the jet bundle, and K x is the holomorphic cotangent bundle. Let
P, — X (2.4)

be the principal PGL(2, C)-bundle defined by the projective bundle P(J L(L)y).

If genus(X) > 1, then JYL) is indecomposable. If genus(X) = 1, then JYL) = L& L
and if genus(X) = 0, then J L(L) is a trivial vector bundle. Hence by a criterion of Atiyah [2],
Weil [16], the vector bundle J ' (L) in Eq. (2.4) admits a holomorphic connection. Consequently,



1. Biswas, J. Hurtubise / Indagationes Mathematicae 23 (2012) 341-360 345

the projective bundle P;, admits a holomorphic connection. For a holomorphic connection V
on Py, the second fundamental form of the holomorphic section of Py, defined by the subbundle
L ® Kx in Eq. (2.3) is a section

S(V,L®Kx) € H'(X, Hom(L ® Kx, L) ® Kx) = H*(X, Ox). 2.5)

We recall that the projective structures on X are in bijective correspondence with the
holomorphic connections V on Py such that the second fundamental form S(V,L ® Kx) in
Eq. (2.5) is the constant function 1 (see [9]).

Lemma 2.5. The involution t in Eq. (2.1) has a canonical lift to a C* involution of Py.
A projective structure on X is real if and only if the corresponding holomorphic connection
on Py is preserved by the above involution of Pp.

Proof. Let £ — X be a holomorphic line bundle. Let §y — X be a holomorphic line bundle
of finite order. We will show that there is a canonical isomorphism

J"E®E&) =T"E) ®& (2.6)

for all m > 0.

Let k be a positive integer such that Egbk is holomorphically trivial. There is a unique
connection Vg on & such that the connection on .§O®k = Oy induced by Vj is the trivial one
(it has trivial monodromy). This connection Vj is independent of the choice of k. Take any
v e J"E), and o € (&§)x, where x € X. Take a holomorphic section v of & defined around
x such that v represents V. Let & be the unique flat section, with respect to the connection Vj,
of &y defined around x such that @(x) = «a. Now sending v ® « to the element of J™ (§ ® &p)x
representing the section ¥ ® & we get a homomorphism from J™(£§) ® & to J™(§ ® &). It is
easy to see that this homomorphism is a holomorphic isomorphism.

Let L —> X be a holomorphic line bundle such that L®? is isomorphic to 7 X. Consider the
line bundle L := t*L. Since L?Z = 7*TX = TX, there is a line bundle & of order two such
that L1 = L ® &. Hence from Eq. (2.6),

JHLy =71 ® &.
Consequently, there is a canonical isomorphism
P, = ]P’(Jl(Ll)) = Py.
This isomorphism gives a C* involution
?Z ]PL e IEDL (2.7)

that lifts 7.

For any point x € X, the isomorphism T(x) of the fiber (Pr), with (Pr);(y) is anti-
holomorphic. In fact, the pulled back fiber bundle t*P; has a natural holomorphic structure
which is uniquely determined by the following condition: a section of t*P; over an open subset
U C X is holomorphic if and only if the corresponding section of Py, over t(U) is holomorphic.
The involution T in Eq. (2.7) is a holomorphic isomorphism of P, with t*P;, equipped with the
above holomorphic structure.

Let P be a projective structure on X. Let V be the holomorphic connection on P; associated
to P. Note that any holomorphic connection on a Riemann surface is flat, because there are
no nonzero holomorphic two-forms on it (the curvature of a holomorphic connection is a
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holomorphic two-form with values in the adjoint bundle). Let P be the projective structure on X
given by P using the involution in Lemma 2.3. The flat connection on P corresponding to P
coincides with TV, where T is the involution in Eq. (2.7). Therefore, Lemma 2.3 completes the
proof. [

3. Theta characteristics and projective structure
3.1. First jet bundle of a theta characteristic

A theta characteristic of (X, t) is a holomorphic line bundle & — X such that

e 0®2 = Ky, and B
e the line bundle 7#6 is holomorphically isomorphic to 6.

A theta characteristic 6 of (X, t) is called real if there is a holomorphic isomorphism

f:60 — %0

such that the composition

oL g ZL o+

70 = 6

is the identity map.
A theta characteristic 6 of (X, t) is called quaternionic if there is a holomorphic isomorphism

f:0 — %0

such that the composition

9%1*9—)1 %0 = 9

is —Idg.

The set of theta characteristics on (X, t) decomposes into a disjoint union of real and
quaternionic theta characteristics. It is known that (X, ) admits a theta characteristic (see
[3, pp. 61-62]). We note that if T does not have any fixed points, then there are no real
holomorphic line bundles of odd degree on X. Hence in that case there are no real theta
characteristics provided the genus of X is even; see [4] for detailed discussions on the existence
of real and quaternionic vector bundles, in particular, line bundles.

Let 6 be a theta characteristic on (X, 7). Fix a holomorphic isomorphism

f:60 — %0 (3.1)
such that the composition

oL 9 2L g =9
is either Idg or —Idy.
We have A% J1(6%) = 0*®6*® Kx = Ox (see Eq. (2.3)). We noted in Section 2 that J ! (6*)
admits a holomorphic connection.
The isomorphism in Eq. (3.1) induces an isomorphism

£ 0% — I 06%). (3.2)
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We note that T*?O fisld 1o+ (respectively, —Id ;i g«) if t*f o f is Idg (respectively, —Idp).

A holomorphic connection V on J L% Elduces a holomorphic connection on t*J!(6*); this
induced connection will be denoted by t*V.
Let C denote the space of all holomorphic connections V on J!(6*) such that

e the isomorphism f is Eq. (3.2) takes V to 7*V, and
e the connection on /\2 J1(6*) induced by V has trivial monodromy.

Proposition 3.1. The space of connections C defined above is in bijective correspondence with
the space of all projective structures on X compatible with t.

Proof. Take any V € C. The holomorphic connection on P(J!(6*)) induced by V will be
denoted by V’. From Lemma 2.5 it follows that V' defines a real projective structure on (X, 7).

Let P be a real projective structure on (X, 7). Let V? be the corresponding holomorphic
connection on the projective bundle P(J 1(6*)). From Lemma 2.5 we know that V* is preserved
by the involution of P(J!(6*)). Since Lie(SL(2, C)) = Lie(PGL(2, C)), and A\ J'(6*) = Ox,
the connection V¥ defines a holomorphic connection on J 1(6*) such that the induced connection
on /\2 J1(6*) has trivial monodromy. [

See [15] for a detailed study of projective structures.
3.2. Trivializations on nonreduced diagonal

Let X be a compact connected Riemann surface. Let
A={x,x)|xeX}CcXxX

be the (reduced) diagonal. For any integer n > 2, the nonreduced diagonal with multiplicity n
will be denoted by nA. Consider the holomorphic line bundle
L= piKx ® p3Kx ® Oxxx(24)

on X x X, where p;,i = 1, 2, is the projection of X x X to the i-th factor.

The Poincaré adjunction formula identifies the holomorphic tangent bundle 7'X with the
restriction of the line bundle Oxxx(A) to A (the Riemann surface X is identified with A by
sending any x € X to (x,x) € A). In view of this identification of TX with Ox«x(4)|a, the
restriction £| o gets identified with the trivial line bundle O 5 over A. Let

Yo € H(A, L] a) (3.3)

be the section given by the constant function 1 through the identification of L] A with O 4.
Consider the holomorphic involution o of X x X defined by (x, y) — (¥, x). This involution
clearly has a natural lift to an involution of the line bundle £. Let

o:L— L

be this involution over o.
The following two statements hold:

e There is a unique section

Y1 € H'Q24, Llpa) (G4
invariant under & such that the restriction of ¥; to A C 2A coincides with v in Eq. (3.3).
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e The space of all projective structures on X is in bijective correspondence with the space of
sections

v € H'GBA, Ll34)

satisfying the condition that the restriction of ¥ to 2A C 3 A coincides with the above section
Y1

(See [5] for the details.)
Now let T be an antiholomorphic involution of X. It produces a holomorphic isomorphism

‘L'NIKX —_—> ‘L'*KX

that sends any locally defined holomorphic one-form w to o*® (note that the line bundle ™Ky
has a natural holomorphic structure). Since K y is identified, as a C* line bundle, with Ky, this
isomorphism t” produces a C* isomorphism

7 Ky — Xk
over 7. The isomorphism 7’ is fiberwise conjugate linear. This 7’ produces a C* isomorphism
n:L— L

over the involution T x t of X x X. The isomorphism 1 is fiberwise conjugate linear. This 1 is
given by the holomorphic isomorphism of line bundles

s/ * 1

pPiT ®p,sT — — — —
PiKx ® p3Kx ' —" pitKx ® p5t*Kx = (t x D*(piKx ® p3Kx).

Let P be a projective structure on X given by a section
¥ € H'GA, LI32)

satisfying the condition that the restriction of ¢ to 2A C 3A coincides with the section v in
Eq. (3.4). The projective structure P is compatible with t if and only if

o) =y.
This is straight-forward to check.

3.3. Differential operators of order two

As before, 6 is a theta characteristic of (X, 7). Let J2(§*) —> X be the second order jet
bundle. It fits in the following short exact sequence of holomorphic vector bundles on X:

0— K2 @6* =09 5 j20") L J'6*) — 0. (3.5)

A holomorphic differential operator D of order two from 6* to K?z ® 0* is, by definition, an
Ox-linear homomorphism from J2(*) to K 5((92 ® 6*. In other words, it is a holomorphic section

De HX,K$*®6* ® J2(6)"). (3.6)

Since D o ¢ is a holomorphic endomorphism of the line bundle Kf?z ® 0*, where ¢ is the
homomorphism in Eq. (3.5), it follows that D o ¢ is multiplication by a scalar o (D) € C. This
complex number o (D) is called the symbol of D. So the symbol is a homomorphism

o HO(X, Dif? (8%, K§* ® 6*)) = H'(X, K§* ® 6* ® J*(6%)*) — C, 3.7)
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where Diff?(6*, K ?2 ® 6*%) = Hom(J2(6*), K ??2 ® 6*) is the holomorphic vector bundle on
X associated to the sheaf of differential operators of order two from 6* to K 5‘?2 ® 0*. Note that
any D as in Eq. (3.6) with o (D) = 1 gives a holomorphic splitting of the short exact sequence
in Eq. (3.5).
From the properties of the jet bundles it follows that for any holomorphic vector bundle W,
there is a natural injective homomorphism
JPFUW) — TP (W)

for all p, g > 0. This fits in a commutative diagram
0
0 — K$®6* —  J20H — J'(OH — 0

| II; ||

0 — Ky®J'(0Y — J'UYe")) L JleH — o0 (3.8)

| |

0

Kx ® 6* = Kx ® 6*
| |
0 0

where the top horizontal short exact sequence is the one in Eq. (3.5), and the bottom
horizontal short exact sequence is the jet sequence for the vector bundle J!(9*). Consider the
homomorphism

JLIYe*) — JL6")

induced by the projection J!(6*) — 6*. The vertical homomorphism J ' (J!(6*)) — Kx®6*
in Eq. (3.8) is the difference between this homomorphism and the projection J Lahe*) —
J1(6*) in Eq. (3.8).

Take a holomorphic differential operator D as in Eq. (3.6) such that o (D) = 1. We noted
above that D gives a holomorphic splitting of Eq. (3.5). Let

op : JN %) — J*6") (3.9)

be the holomorphic homomorphism of vector bundles corresponding to the splitting of Eq. (3.5)
given by D. The composition

Bopp:JO") — IO, (3.10)

where 8 is the homomorphism in Eq. (3.8), gives a holomorphic splitting of the bottom short
exact sequence in Eq. (3.8). In other words,

qooBopp :Idjl(g*),

where g is the projection in Eq. (3.8).
Therefore, 8 o pp defines a holomorphic connection on the vector bundle J L) (see [2]).
Let V(D) be this holomorphic connection on J 1(6*) constructed from D.
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Let
Dy ¢ H(X, Diff* (6%, K§* ® 6%)) (3.11)

be the space of all second order differential operators D such that

e o(D)=1,and
e the corresponding connection V(D) has the property that the connection on /\2 J1 (o)
induced by V(D) has trivial monodromy.

There is a bijective correspondence between the space of all projective structures on X and
Dy defined in Eq. (3.11). We recall below the construction of a differential operator lying in Dy
from a projective structure on X.

Let P be a projective structure on X. Let

¢:U — C cCP!

be a holomorphic coordinate function compatible with P. Fix a holomorphic section w of 6*
over U such that the section w ® w of * ® 6* = T X coincides with the vector field 3% on U
with defined by the coordinate function ¢. Let Dy be the second order holomorphic differential
operator

0y — (KF*® 09|y
defined by

&h ®2
Dy(h-w) = — - ()" o,
dz

where & is any holomorphic function on U. It is straight-forward to check that the differential
operator Dy is independent of the choice of ¢ compatible with P (it depends only on P).
Therefore, these locally defined differential operators Dy patch together compatibly to define
a global differential operator from 6* to K ?2 ® 6*.

Fix a holomorphic isomorphism f as in Eq. (3.1). Let

fo: 0" — T0F = 170"
be the isomorphism induced by f. This isomorphism fo induces an isomorphism
o JEHOF) — JA(T*0%) = T J2(6%). (3.12)

We note that r*ﬁ o ﬁ is Id 2y (respectively, —Id j2(g+)) if " f o f is Idg (respectively, —Idg).
The isomorphisms fi and fo together define a conjugate linear automorphism of the vector
space HO(X, Diff?(0*, K$* ® 6*)), which we will describe.
For any homomorphism of vector bundles

F:J20%) — K$*®6" = 6%,
define F/ .= t* f® 0 1*F o ﬁ It is straight-forward to check that
F': J%(0%) — 0%°

is a holomorphic homomorphism of vector bundles. Hence we have a conjugate linear
homomorphism

wp : HO(X, Diff* (0%, K$* ® 6%)) — H°(X, Diff*(8*, K> ® 6*)) (3.13)
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defined by F — F’. Since r*z o f»and T*f o f are both Id (respectively, —Id) if T*f o f is
Id (respectively, —Id), it follows that tp in Eq. (3.13) is an involution.
The involution tp clearly preserves the subset Dy defined in Eq. (3.11).

Lemma 3.2. The bijection between the projective structures on X and Dy takes the projective
structures on X compatible with T surjectively to the fixed point set (Dx)™.

Proof. The bijection between the projective structures on X and Dy takes the involution on the
space of projective structures given by t (see Lemma 2.3) to the involution tp of Dy. In view of
this, the lemma follows from Lemma 2.3. 0O

4. Projective structure and representation of fundamental group

So far we considered projective structures on a fixed Riemann surface. We will now consider
all projective structures without fixing the underlying complex structure. So the definitions in
Section 2 have to be modified accordingly, which we do below.

Let Y be a compact connected oriented C°° surface.

A C®* coordinate function on Y is a pair (U, ¢), where U is an open subset of Y, and
¢ : U —> CP! is an orientation preserving C* embedding.

A projective structure on Y is defined by giving a collection {(U;, ¢;)}icr of C* coordinate
functions such that

e Ui, Ui=Y,and
e for each pair i, i’ € I, the composition

-1
girod; ¢ (Ui NUy) —> ¢y (U N Uy)
is the restriction of some Mobius transformation.

Two such data {(U;, ¢;)}ic; and {(U;, ¢i)}icp satisfying the above conditions are called
equivalent if their union {U;, ¢;};cjuy also satisfies the two conditions. A projective structure
on Y is an equivalence class of such data.

Therefore, a projective structure on Y gives a complex structure on Y and a projective structure
on the corresponding Riemann surface.

Given a projective structure on Y, the coordinate functions compatible with it will be called
projective coordinates.

Let Diffeog(Y) denote the group of all diffeomorphisms of ¥ homotopic to the identity map.
The group Diffeog(Y) has a natural action on the space of all projective structures on Y.

Definition 4.1. The quotient by Diffeog(Y) of the space of all projective structures on Y will be
denoted by Py(Y).

The isomorphism classes of flat principal PSL(2, C)-bundle on Y are identified with the
equivalence classes of representations

R = Hom(m;(Y), PSL(2, C))/PSL(2, C), “4.1)

which, using complex structure of the group PSL(2, C), has a natural structure of a complex
analytic space; the irreducible representations form an open subset contained in the smooth locus,
and this open subset has a natural holomorphic symplectic structure [6]. Note that the equivalence
classes of homomorphisms from 1 (Y) are independent of the choice of the base point in Y
needed to define the fundamental group; hence we omit the base point from the notation.
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A projective structure P on Y gives a flat principal PSL(2, C)-bundle on Y. We will briefly
recall the construction of this flat principal bundle. Take a {(U;, ¢;)}ic; giving a projective
structure on Y. On each Uj;, consider the trivial principal PSL(2, C)-bundle

Eps 0.0y = Ui x PSL(2, ©).

Note that this trivial bundle has a natural flat connection given by the constant sections of the
principal bundle. For any ordered pair i, j € I such that U; (\U; # @, glue the two principal
PSL(2, C)-bundles E{DSLQ’C) and E{DSL(Z’C) over the open subset U; (| U ; using the element of
PSL(2, C) givenby ¢; o ¢, I (Recall that ¢j o ¢, !is the restriction of a Mobius transformation,
and the group of Mobius transformations is identified with PSL(2, C); hence ¢; o q)i_l gives
an element of PSL(2, C).) This was way we get a principal PSL(2, C)-bundle on Y. Since
the transition functions are constants, the natural connection on the trivial principal bundles
{Eli’SL(Z,(C)}iE 1 patch together compatibly to define a flat connection on the principal PSL(2, C)-
bundle over Y.

Sending a flat PSL(2, C)-connection to its monodromy homomorphism, we get a bijection
between R R (defined in (4.1)) and the isomorphism classes of flat PSL(2, C)-bundles. Consider
Po(Y) (see Definition 4.1). Let

w:Po¥Y) — R “4.2)

be the map that sends any projective structure to the monodromy of the corresponding flat
PSL(2, C) connection. It is known that the map w is injective, and furthermore, its image is
an open subset of R contained in the locus of irreducible representations [10,11]. Therefore,
Po(Y) is a complex manifold; the complex structure is uniquely determined by the condition that
the map u is holomorphic.

The holomorphic symplectic form on the locus of irreducible representations defines a
holomorphic symplectic form on Py(Y).

Let
Rp CR “4.3)
be the open subset defined by the projective structures on Y.
Let
T:Y —Y “4.4)

be an orientation reversing diffeomorphism such that
Tot =Idy.

Imitating Definition 2.1, we define the following:

Definition 4.2. A projective structure on Y is said to be compatible with 7 if for each projective
coordinate (U, ¢), the composition (t(U), ¢ o 1) is also a projective coordinate.

Our aim in this section is to identify the subset of R p (see Eq. (4.3)) that corresponds to the
projective structures compatible with 7.

Fix a base point yy € Y such that (yg) # yo. We recall from [4] an extension of Z/2Z by
m1(Y, yo).

Let I' denote the space of all homotopy classes, with fixed end points, of continuous paths
y : [0, 1] — Y such that
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e ¥(0) = yo, and
o v (1) € {yo, T(y0)}.

So I' is a disjoint union of 71 (Y, yp) and Path(Y, yg) (the homotopy classes of paths from yq
to t(yo)). We recall below the group structure of I'. For y; € m(Y, yo), we have the usual
composition y,y] = y» o y; of paths. If y; € Path(Y, yp), then define

y2y1 =0 (y2) oy1.
Therefore, we have a short exact sequence of groups
e —mY,y) — I' — Z)27 — e. 4.5)

Let G denote the set of all diffeomorphisms of CP! that are either holomorphic or anti-
holomorphic. Note that G is a group under the composition of maps. Therefore, we have a short
exact sequence of groups

e — PSL(2,C) — G —> Z/27 —> e. 4.6)

Proposition 4.3. The subset of R p defined by the projective structures on Y compatible with ©
consists of those homomorphisms

p:m (Y, y0) —> PSL(2,C)
in Rp (see Eq. (4.3)) that extend to a homomorphism
p:I'—G
fitting in the following commutative diagram
e — m@,yw) — I — Z/2Z — e
I |7 n
e — PSLR,C) — G — Z/2Z — e
(see Egs. (4.5) and (4.6)).
Proof. Let P be a projective structure on Y compatible with 7. Let
Pp,V) — Y

be the flat projective bundle of relative (complex) dimension one associated to P. We also have
a lift of the automorphism t to a C* involution

T: PP —> PP (47)

that preserves the connection V (see Lemma 2.5 and Eq. (2.7)).
Fix a holomorphic isomorphism

o : CP! — (Pp),, (4.8)

of the fiber (Pp),, with the projective line.
For any y € 1 (Y, yp), consider the parallel translation

T(V,y): ®p)yy — (Pp)y,
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along y for the connection V. We have the monodromy homomorphism for the connection V
p (Y, yo) — PSL(2, C) 4.9)

defined by y —> go_l o T(V,y) o &y, where ¢ is the fixed isomorphism in Eq. (4.8).
Now, take any element y € Path(Y, yo), so y is a homotopy class of paths from yg to 7 (yg).
Let

T(V,y): (Pp)yy — PP)e(yy
be the isomorphism of fibers obtained by taking parallel translation along y for the connection
V. Consider the diffeomorphism

gy =85 0Te(yy o T(V,¥) 0 & (4.10)
of CP!, where

Tri0) 2 PP)riy) — (Pry,

is the restriction of the diffeomorphism 7 in Eq. (4.7). Note that the diffeomorphism g, in
Eq. (4.10) is anti-holomorphic, because 7T is anti-holomorphic, while &y and T (V, y) are both
holomorphic isomorphisms.

Let

o :Path(Y, yo) — G 4.11)

be the map defined by y +—— g, where G is defined in Eq. (4.6), and g, is constructed in
Eq. (4.10). The two maps p and p’ constructed in Egs. (4.9) and (4.11) respectively together
define a homomorphism

o: I —¢G

that fits in the commutative diagram in the statement of the proposition.
To prove the converse, let

p (Y, yo) — PSL(2,C) (4.12)

be a homomorphism that lies in R p (defined in Eq. (4.3)). Let P be the projective structure on
Y defined by p.
The self-map 7 in Eq. (4.4) defines an isomorphism
Tt 1 (Y, yo) —> (¥, T(yo))
that sends any loop to its image by 7. Let

pr (Y, t(y0)) — PSL(2,C) (4.13)

be the homomorphism defined by g —— p (7, ! (2).

Let P be the projective structure on Y corresponding to the projective structure P by
the involution in Lemma 2.3. This projective structure P is given by the homomorphism 7,
constructed in Eq. (4.13).

Assume that there is a homomorphism

o:I'—¢G (4.14)
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that fits in the commutative diagram
e — mY,y) — I' — Z/2Z — e
p |7 ||
e — PSLR,C) — G — Z]2Z —> e

(as in the statement of the proposition).
Take any element go € G that projects to the generator of Z/2Z. Let

p(go) : (Y, yo) —> PSL(2,C)

be the homomorphism defined by y +—— yo_l,o (v)go- One can check that the element in R (see
Eq. (4.1)) given by p(go) coincides with the element given by o, constructed in Eq. (4.13).

Now from the injectivity of the map u in Eq. (4.2) we conclude that the projective structure
P coincides with the projective structure P. This completes the proof of the proposition.  [J

5. Projective structure and symplectic form

We continue with the notation of the previous section. Let C(Y) denote the space of all
complex structures on Y compatible with the orientation of Y. The group Diffeoy(Y) has a natural
action on C(Y). The quotient

T(Y) := C(Y)/Diffeon(Y)

is the Teichmiiller space, which has a natural complex structure. The involution 7 (see Eq. (4.4))
gives an involution of 7 (Y) that sends any almost complex structure J on Y to (dt) 1o Jodr,
where dr is the differential of 7. This involution of 7 (Y) is anti-holomorphic.

Consider Py(Y) introduced in Definition 4.1. Let

@ Po(Y) — T(Y) (5.1

be the forgetful map that sends a projective structure to the underlying complex structure. It is
known that ¢ makes Py(Y) a holomorphic fiber bundle over 7 (Y). More precisely, Po(Y) is
a holomorphic torsor for the holomorphic cotangent bundle QIT(},) —> 7 (Y); this means that
there is a natural holomorphic map

A:Po(Y) x1(v) (le(Y) — Py(Y), (5.2)

from the fiber product, with the property that the restriction of A over any point ¢t € 7 (Y) is a
free transitive action of the cotangent space (QIT(Y)), on the fiber (Py(Y)),. Therefore, given any
holomorphic section of the map ¢

s:T(Y) — Po(Y), (5.3)

we get a holomorphic isomorphism
Iy : Q7 — Po(Y) (5.4)

that sends any v € (Q}(Y)), to A(s(t), v), where A is the map in Eq. (5.2).

Recall that Py(Y) has a natural symplectic form which is obtained by pulling back, by the
map u in Eq. (4.2), the natural symplectic form on the smooth locus of R. It is known that there
are holomorphic sections s as in Eq. (5.3) such that the corresponding map I in Eq. (5.4) takes
the Liouville symplectic form on !271-(),) to the natural symplectic form on Py(Y) (see [12,1]).
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Recall that both 7 (Y) and Py(Y) are equipped with anti-holomorphic involutions constructed
using t. Let 77 (respectively, tp) be the anti-holomorphic involution of 7 (Y) (respectively,
Po(Y)) given by t.

Lemma 5.1. There is a holomorphic section s : T(Y) —> Po(Y) of the projection ¢ in
Eq. (5.1) such that

esoTr =tpos,and

o the map I in Eq. (5.4) takes the Liouville symplectic form on “Q?l'(Y) to the natural symplectic
Sform on Py(Y).

Proof. Fix a holomorphic section s : 7(Y) —> Po(Y) such that the map I, in Eq. (5.4) takes
the Liouville symplectic form on “QIT(Y) to the natural symplectic form on Py(Y); from [12,1]
we know that such sections exist. Let

5o T(Y) — Po(Y)

be the section of ¢ defined by z — (tposgo17)(z). Since both 7p and tr are anti-holomorphic,
and s is holomorphic, it follows that s(/) is holomorphic. Let

w: HY(T(Y), 2ry)
be the holomorphic section uniquely determined by the condition that

A(s0(2), ©(2)) = 54(2)

for all z € 7 (Y), where A is the map in Eq. (5.2). The involution tp takes the symplectic form
on Py(Y) to its negative. From this it can be deduced that IS(/) also takes the Liouville symplectic
form on *QIT(Y) to the symplectic form on Py(Y). Indeed, it suffices to show that the image of s,
is Lagrangian. But this is a consequence of the fact that the image of s¢ is Lagrangian.

Let

s:T(Y)— Po(Y)

be the holomorphic section of ¢ defined by z —> A(s9(z), @ (z)/2). We will show that s satisfies
all the conditions in the lemma.
From the construction of s it follows that s o 77 = tp o s.
Using s, identify Py(Y) with Q;(Y). Using this identification of Py(Y) with QJ[(Y), both
s, and s are holomorphic one-forms on 7 (Y). These one-forms will be denoted by 5, and 5
respectively. From the construction of s it follows that
~ L
s = ESO' 5.5)
Since 1 5, takes the Liouville symplectic form on *QIT(Y) to the symplectic form on Py(Y), we
conclude that d?é = 0. Hence from Eq. (5.5),

ds=0.

This immediately implies that I in Eq. (5.4) takes the Liouville symplectic form on (271—( y) to the
natural symplectic form on Py(Y). This completes the proof of the lemma. [
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Let M be a manifold. The total space of the cotangent bundle 7*M is equipped with the
Liouville symplectic form. Let S C M be a smooth submanifold. Let

N C(T*M)|s C T*M

be the co-normal bundle which is given by the dual of the projection of (T M)|s to the normal
bundle Ny to S. The submanifold N§ C T*M is Lagrangian.

Take any component S of the fixed point locus of the involution tp of Py(Y). Fix a section s as
in Lemma 5.1; identify Py (Y) with Qé—(y) using s. In terms of this identification, the submanifold
S coincides with the co-normal bundle of the submanifold ¢(S) C 7 (Y).

6. Symplectic structure on moduli space of projective structures

Let V be a complex vector space of dimension two. For any nonnegative integer i, consider
the homomorphism

@ : HYP(V), TP(V)) ®c Opyy — JUTP(V)) 6.1)

that sends any pair (x,s), where x € P(V) and s € HO(P(V), TP(V)), to the element of
J2(TP(V)), obtained by restricting s to the i-th order infinitesimal neighborhood of x. It is
easy to see that @, is an isomorphism. The composition

P30 ;1 JHTP(V)) — J(TP(V)) 6.2)

is a splitting of the jet sequence

0 — K&y, ® TP(V) = K% —> I (TP(V)) — JXTP(V)) —> 0. (6.3)
Let

DP(V)) : JI(TP(V)) — KI%?(ZV) 6.4)
be the unique homomorphism such that

kernel(D(P(V))) = image(®3 o 452_1),
and

D(P(V)) o = ldgen , (6.5)
P(V)

where (o is the homomorphism in Eq. (6.3). Therefore, D(P(V)) is a global holomorphic
differential operator of third order, more precisely,

D(P(V)) € H'(P(V), Diff* (TP(V), K&))-
The symbol of the differential operator D(IP(V)) is a holomorphic section of
(TP(V))®* @ Hom(TP(V), K&y, = Ox.

and it coincides with D(P(V)) o tp, where (¢ is the homomorphism in Eq. (6.3). From Eq. (6.5)
it follows that the symbol of the differential operator D(P(V)) is the constant function 1.
Let

SEWV)) — P(V) (6.6)
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be the local system defined by the sheaf of solutions of the differential operator D(P(V)); it
coincides with the trivial vector bundle with fiber HO(P(V), TP(V)) = sl(V), where sI(V) C
End(V) is the endomorphisms of trace zero. Hence

SP(V)) =P(V) xsl(V). (6.7)

The standard action of GL(V) on V defines an action of GL(V) on T (P(V)); hence we have
an action of GL(V) on each tensor power of T (P(V)). The differential operator D(P(V)) is
clearly fixed by the action of GL(V). Also, the identification in Eq. (6.7) is GL(V)-equivariant
(the action of GL(V) on sl(V) is the adjoint one).

Now, let X be a compact connected Riemann surface equipped with a projective structure P.
Identifying CP! with P(V), we may consider the projective coordinates as embeddings of open
subsets of X into IP(V). With this identification, the transition functions lie in PGL(V).

Since the differential operator D(P(V)) in Eq. (6.4) is GL(V)-invariant, and the transition
functions for the projective coordinate functions lie in PGL(V), the projective structure P
produces a differential operator

Dp e H(X, Diff (T X, K§%)) (6.8)

which is constructed locally from D(P(V)). The symbol of Dp is the constant function 1 because
the symbol of D(P(V)) is so. Let

SP) — X (6.9)

be the local system defined by the sheaf of solutions of Dp.
Let

Pp— X

be the flat PGL(V)-bundle given by the projective structure P (see Lemma 2.5); we recall that
the holomorphic PGL(V)-bundle underlying Pp coincides with Py constructed in Eq. (2.4). Let

adPp) — X (6.10)

be the corresponding flat adjoint vector bundle; recall that ad(Pp) is associated to Pp for the
adjoint action of PGL(V) on sl(V). Let

ad(Pp) — X (6.11)

be the local system defined by the sheaf of flat sections of ad(Pp). Since the identification in
Eq. (6.7) is GL(V)-invariant, we have

ad(Pp) = S(P), (6.12)

where S(P) and ad(Pp) are constructed in Egs. (6.9) and (6.11) respectively.

The space of infinitesimal deformations of a representation of 71(X) is given by the first
cohomology of the local system defined by the adjoint representation [6]. In particular, the space
of infinitesimal deformations of the representation of 71 (X) in PGL(V') associated to P is given
by H'(X, ad(Pp)). This implies that the space of infinitesimal deformations of the projective
structure P (in the isotopy classes of projective structures) on the oriented C* surface X is
given by H I(x, ad(Pp)) (recall that the map p in Eq. (4.2) is an open embedding).
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As in Eq. (4.2), let Po(X) denote the space of all projective structures on the oriented C*°
surface X modulo the group Diffeog(X) of diffeomorphisms of X homotopic to the identity
map. For the projective structure P on X, we have noted above that

TpPo(X) = H' (X, ad(Pp)). (6.13)

Let

i =7x 2B ¢l = kP2
be the complex of sheaves of X. From Egs. (6.12), (6.9) and (6.13),
TpPo(X) = H' (X, C), (6.14)

where H! is the hypercohomology.
Consider the tensor product of the complex of sheaves C* with itself

0 14®@Dp&DpeId
cC —

C*®cC*:C"® (TX®cK$H) @ (K$? @c TX)

DpRId—1dD
PEISETP eleccl.

Also, consider the complex
Kx[1]: 0 — K.
The natural contraction of 7 X with Ky defines a homomorphism of complexes
C*®cC® — Kx[l1].
Using it, we have homomorphisms
H'(X, C*) ®c H' (X, C*) — H*(X,C* ®cC*) — H*(X, Kx[1]) = H'(X, Kx) = C.

The resulting pairing on TpPy(X) (see Eq. (6.13)) coincides with the natural symplectic form
on Po(X).
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