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Abstract

We propose a “feature-scattering” mechanism to explain the cosmic microwave background cold spot 
seen from WMAP and Planck maps. If there are hidden features in the potential of multi-field inflation, 
the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of 
isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations 
into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. 
In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum 
at � ∼ 20.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the recent years, observations of the cosmic microwave background (CMB) radiation fluc-
tuations by the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck satellite have led 
to a precise measurement of temperature fluctuations on the sky from the largest scales down to 
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arcmin scales [1,2]. The temperature anisotropy is found to be highly Gaussian and “statistically 
isotropic” in the sense that nearly all statistical proprieties of the temperature anisotropy can be 
described by the angular power spectrum CT T

� [3]. However, it was found since WMAP 1-year 
data that there is a deep cold spot (�T � −120 K) in the southern Galactic hemisphere along 
the direction (l = 209◦, b = −57◦) with angular radius θ � 10◦ [4,5], which is further confirmed 
by Planck nominal mission data [3]. The cold spot is highly non-Gaussian in the sense that the 
probability of the cold spot existing in the statistical isotropic Gaussian universe is less than 0.1
percent [6].

Since then, the cold spot feature in the CMB map has invoked many observational and 
theoretical investigations. Initially, it was suggested that the unsubtracted foreground contam-
ination might be responsible for the apparent non-Gaussian features [7,8], but later studies [3,
9] showed that the significance of cold spot is not affected by Galactic residues in the region 
of the spot. It was also proposed that a spherically symmetric void with radius ∼ 300 Mpc at 
redshift z = 1 can produce a large and deep CMB cold spot through the late-time integrated 
Sachs–Wolfe effect (ISW) [10] (also known as the Rees–Sciama effect [11]). Later studies [12,
13] with the galaxy survey data [14] did find such a supervoid of size r � 195 Mpc with density 
contrast δ0 � −0.1 at redshift z = 0.16 align with the cold spot direction. However, more de-
tailed following-up studies [15,16] showed that the Rees–Sciama effect produced by such a void 
is several orders of magnitude lower than the linear ISW effect therefore is not able to account 
for the observed feature.

The interesting non-Gaussian feature of cold-spot also invokes theorists to investigate the 
plausible explanation from the early universe. By considering various cosmological defects in 
the early universe, Refs. [17,18] proposed that a cosmic “texture” (i.e. a concentration of stress-
energy and a time-varying gravitational potential due to the symmetry-breaking phase transition) 
can generate hot and cold spots on the last-scattering surface, with the fundamental symmetry-
breaking scale found to be φ0 ∼ 1015 GeV. However, by applying the Bayesian method to 
WMAP full-sky data, Ref. [19] did not find strong evidence of the texture model, neither com-
pletely rule out the possibility (at 95% confidence level). It was also proposed that cosmic bubble 
collision, predicted by eternal inflation theories, can induce the density perturbation between 
our bubble and others, which can give arise to the localized features in the CMB [20,21]. But 
more detail data analysis [22] showed that the expected number of bubble collision is too few to 
account for the features in the CMB. Alternatively, a cold spot may follow from a different trajec-
tory during multi-stream inflation [23,24] or modulated reheating after multi-field inflation [25].

The above physical or astronomical interpretations of cold spot either fail at some level, or 
require fine tuning or exotic scenarios of the early universe. Economically, some cosmologists 
would prefer to interpret the cold spot merely as a “3σ ” statistical fluke. In this paper, we will 
provide a natural and physically plausible explanation of the cold spot, through multiple-field 
inflation. If the inflationary trajectory is scattered by a feature hidden in the isocurvature direc-
tion, the inflaton loses some energy and thus inflation tends to be longer. Therefore, it is possible 
that only a small portion of the sky hits the feature due to stochastic fluctuations, then that local 
patch of the universe experiences longer period of inflation and thus produces a cold spot. The 
mechanism is illustrated in Fig. 1.

This paper is organized as follows. In Section 2, we provide an explicit example of fea-
ture scattering, from massless isocurvature directions. Our predictions are compared with the 
measurement of the cold-spot in Planck’s SMICA map. In Section 3, we consider isocurvature 
directions with mass m ∼ H . We conclude in Section 4 and discuss possible future directions. 
Throughout the paper, the unit Mpl = 1/

√
8πG = 1 is used unless otherwise stated.
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Fig. 1. An illustration of the feature scattering mechanism. The classical inflationary trajectory is featureless. However, 
because of the quantum fluctuation of the isocurvature direction, hidden features may be encountered. At such an en-
counter, the inflationary trajectory gets scattered, the inflaton losses kinetic energy and thus isocurvature fluctuation 
converts to curvature fluctuation.

2. Cold spot from feature scattering

2.1. Potential choice and method of calculation

In this section, we provide an explicit example of feature scattering to illustrate the phys-
ical mechanism. The generalization to other inflationary potentials should be straightforward. 
Consider inflation with two fields, both have standard kinetic term, and the potential is given by

V = Vsr(φ) + δV ,

δV = A exp

[
− (φ − φ0)

2

2σ 2
φ

− (χ − χ0)
2

2σ 2
χ

]
. (1)

The classical initial trajectory is chosen to be on φ direction, i.e. χ = 0. Here Vsr(φ) is the 
slow-roll part of the potential. Our analysis is not sensitive in the form of Vsr(φ), as long as it 
successfully drives slow-roll inflation. For illustration purpose, we choose a small field potential 
for Vsr(φ):

Vsr(φ) = V0

(
1 − μ4

φ4

)
. (2)

Such a potential can be derived from brane dynamics of string theory [26]. We will nevertheless 
not import anything other than this potential from string theory, but consider it as a phenomeno-
logical example.

To fit the observations, we will take μ = 0.01 and V0 � 4.89 × 10−14 [27]. At the horizon 
crossing scale of the cold spot, the inflaton field is φ∗ � 0.153 for N∗ � 4 (counting from the 
start of the observable stage of inflation), and the Hubble parameter is H∗ � 1.28 × 10−7. The 
feature δV is put at φ0 = φ∗.

In the isocurvature direction, the initial value of the field χ∗ has no classical preferred value. 
We set 〈χ∗〉 = 0 (one can always shift the χ0 parameter to satisfy this requirement if needed). The 
quantum fluctuation of χ∗(x) will be crucial in the analysis. Following the cosmic perturbation 
theory, χ∗(x) has a scale invariant power spectrum in Fourier space and we normalize the power 
spectrum to be Pχ = [H/(2π)]2. In position space, χ∗(x) behaves as a Gaussian random field. 
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As we will show, the nonlinear mapping from χ∗(x) to �T (x) generates the cold spot on the 
CMB.

To explore the parameter space of δV , we will choose three sets of parameters as three illus-
trative examples of feature scattering.

• Benchmark 1: negative short feature. We set A = −1.1 × 10−5V0μ
4/φ4∗ , σφ = 10H∗/(2π), 

σχ = 0.7H∗/(2π) and χ0 = 4H∗/(2π). The procedure of the calculation is also introduced 
in this subsection.

• Benchmark 2: negative long feature. We set A = −1.4 × 10−5V0μ
4/φ4∗ , σφ = 50H∗/(2π), 

σχ = 0.7H∗/(2π) and χ0 = 5.2H∗/(2π). The differences from Benchmark 1 are discussed.
• Benchmark 3: positive feature. We set A = 1.0 × 10−4V0μ

4/φ4∗ , σφ = 50H∗/(2π), σχ =
0.5H∗/(2π) and χ0 = 3.5H∗/(2π). The differences from Benchmarks 1 and 2 are discussed.

Note that in the above benchmarks, the randomness in the potential needs not to be large. In 
fact, δV/V ∼ 10−5 is already significant enough to bring observable difference. This is because, 
the isocurvature fluctuation control whether the inflation trajectory hit the feature. And once the 
trajectory hits the feature, the change of curvature perturbation will be order ζ ∼ δV/V ∼ 10−5. 
As a result, our mechanism is extremely sensitive to small features in the potential.

The δN formalism [32–34] will be used to investigate the cosmological perturbations from 
the feature scattering. The δN formalism uses the observation that different Hubble patches 
during inflation can be approximated as different local FRW universes. Thus the cosmological 
observables can be calculated by exploring those local FRW universes. Especially, the curvature 
perturbation in the uniform energy density slice can be calculated by1

ζ = δN , (3)

where δN is the difference of e-folding number between an initially-flat slice and a finally-
uniform energy density slice. The curvature perturbation ζ is then converted to the CMB tempera-
ture anisotropy following the standard theory of CMB. In this paper we will use the Sachs–Wolfe 
approximation δT /T � −ζ/5 = −δN/5. Intuitively, the relation can be understood as:

Inflaton scattered by feature

→ smaller kinetic energy in φ direction

→ larger δN

→ later reheating

→ less dilution of energy

→ higher energy density

→ deeper gravitational potential

→ lower CMB temperature . (4)

More precise relation between δT /T and ζ can be studied by solving the Boltzmann equations 
at recombination.

Note that δN has two sources: the quantum fluctuation of φ and the quantum fluctuation of χ . 
Those independent sources can be studied independently, and they needs to be added together to 

1 See the appendix of [35] for clarification of sign conventions.
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Fig. 2. Left panel: ∂Nφ as a function of N . The red dashed line is for without feature scattering, and the blue solid line 
is with feature scattering. Note that the φ field loses its kinetic energy very sharply at the 4-th e-fold (where the feature 
scattering is happening), and the kinetic energy slowly recovers after of order 1 e-fold. Right panel: The kinetic energy 
K(φ)/H 2∗ = (∂Nφ)2 and K(χ)/H 2∗ = (∂Nχ)2. The color on the plot denotes e-folding number. One finds that about 
0.1% of the φ field kinetic energy transfers to χ . Here we have taken χ∗ = H∗/(2π) right before hitting the feature. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

make the total curvature fluctuation. In the numerical calculation, we will focus on investigating 
δN as a function of χ but we will add back a contribution of Gaussian random field to account 
for the contribution from φ at the last map-making stage.

The angular size of the cold spot is around 10 degrees. Converting to horizon crossing time of 
comoving wave number, this corresponds to � ∼ 20. Note that in the observed CMB temperature 
power spectrum, there is indeed a dip at � ∼ 20. It will be interesting to do a combined analysis 
on both signals, from feature scattering.

In the following subsections, we will explore different parameter space of Eq. (1) with three 
benchmarks, and calculate the e-folding number as functions of the position of isocurvature field 
δN = δN(χ).

2.2. Benchmark 1: negative short feature

In this subsection, we consider a negative short feature in the potential. We set A = −1.1 ×
10−5V0μ

4/φ4∗ , σφ = 10H∗/(2π), σχ = 0.7H∗/(2π) and χ0 = 4H∗/(2π). The size of the feature 
in the φ direction is relatively small (compared to the case of Benchmark 2). As a result, the σ
field does not have enough time to oscillate inside the negative feature.

Before getting to the implications to the late universe, it is intuitive to check what was hap-
pening during inflation.

As an example, we consider the χ field value when hitting the feature to be χ∗ − χ0 =
H∗/(2π). The time evolution of ∂Nφ is plotted on the left panel of Fig. 2. One can find from 
the plot that, at N∗ � 4 (where feature scattering happens)∣∣∣∣ dφ

dN

∣∣∣∣ ∼ 4 × 10−4 . (5)

When the inflationary trajectory hits the feature, there is a change in the velocity of the inflaton 
φ. At first, |dφ/dN | increase because φ falls into a potential well. However, two other effects 
immediately follow: First, the obtained energy is returned because φ has to climb out of the 
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Fig. 3. The temperature fluctuation as a function of χ∗ − χ0. The left, middle and right panels are for parameters of 
Benchmark 1, 2, 3 respectively.

potential well; second, the potential well can be considered as a scattering center, such that a 
similar amount of energy is transferred to the χ direction (as evidenced in the right panel of 
Fig. 2). As a result, there is a overall loss of velocity of the inflaton, with the value read from the 
plot

δ

∣∣∣∣ dφ

dN

∣∣∣∣ ∼ −4 × 10−7 ∼ −10−3
∣∣∣∣ dφ

dN

∣∣∣∣ . (6)

In words, the inflaton field has lost 0.1% of its kinetic energy because of hitting the feature in 
the potential.2 Note that the inflaton always loses its kinetic energy because of scattering off a 
feature. Thus a cold spot instead of a hot spot is predicted.3

Note that the loss of kinetic energy takes of order one e-fold to recover, because this is the 
time scale to reach the inflationary attractor solution. To be more precise, as shown in the left 
panel of Fig. 2, it takes about roughly 0.2 e-fold for the inflaton to recover its kinetic energy. As 
a result,4

δN = δφ∣∣∣ dφ
dN

∣∣∣ + δ

∣∣∣ dφ
dN

∣∣∣ =
0.2 ×

∣∣∣ dφ
dN

∣∣∣∣∣∣ dφ
dN

∣∣∣ + δ

∣∣∣ dφ
dN

∣∣∣ ∼ 2 × 10−4 . (7)

From the Sachs–Wolfe approximation, the temperature fluctuation δT /T � −ζ/5 = −δN/5. 
Thus we get δT � −100 µK.

Carrying on the above analysis for general values of χ∗ − χ0, numerically the temperature 
fluctuation as a function of χ∗ − χ0 is plotted in the left panel of Fig. 3. We then simulate 1000 
maps and rotate those maps such that they center at the cold spot. In the left panel of the top row 
of Fig. 4, we bin the pixels of the map as a function of θ , and then plot the 0.5, 0.16 and 0.84 
quantiles (corresponding to the central value and 1σ uncertainty if the probability distribution 
were Gaussian) of the binned pixel temperature. In the right panel of the top row of Fig. 4, we 
plot the top five best-fitting cold spot profiles. Three best-fitting examples are given in the top 
row of Fig. 5.

2 Here we do not need to consider the change of potential energy before/after the feature scattering, because we only 
need to compare the change of energy before and after a very sharp scattering process, and the change of potential energy 
is negligible.

3 When the potential is positive, the inflaton actually gains kinetic energy at the very beginning, when it falls into the 
potential well. However, the gained energy is returned after a time interval that is much smaller than Hubble time. Thus 
the effect of gaining the kinetic energy is negligible when we integrate to obtain the e-folding number. On the other hand, 
the loss of kinetic energy through feature scattering needs order of 1 e-fold to recover, and thus it is the dominate effect.

4 The δN here is from the quantum fluctuation of χ . The part from φ will be added at the map-making stage.
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Fig. 4. Left column: The cold spot profile (we have rotated the map such that θ = 0 corresponds to the center of the cold 
spot). The gray bars are 1000 simulations of fluctuations of the feature model. The green bars are simulation of isotropic 
Gaussian fluctuations (5000 simulated maps). Right column: five best-fitting cold spot profiles from the Benchmark 
models. The red dot is the actual cold spot from the Planck SMICA map for both panels. The three rows from top to 
bottom are the Benchmark models 1, 2, 3 respectively. Here the Sachs–Wolfe approximation is used when numerically 
fitting the bubble profile. The Sachs–Wolfe approximation works well only on large scales. Thus the fitting of the first 
two points with simulation may not be accurate enough. But one can see that the error bars of those two points from 
simulation are also large so that the inaccuracy should not affect the physical result significantly. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

2.3. Benchmark 2: negative long feature

In this subsection we consider a negative long feature. Inside a “long” feature, there is enough 
time for the χ field to oscillate. We set A = −1.4 × 10−5V0μ

4/φ4∗ , σφ = 50H∗/(2π), σχ =
0.7H∗/(2π) and χ0 = 5.2H∗/(2π). Note that the feature size in the φ direction is 5 times longer 
than that of Benchmark 1.
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Fig. 5. (From top to bottom.) A selection of the best-fitting maps for Benchmark 1, 2 3 respectively. The unit on the plot 
legend is µK.

Finer structures develop in the case of long feature. If we have chosen an initial value 
χ∗ − χ0 = H∗/(2π), we find similar behavior to Fig. 2. However, for some other initial val-
ues, for example, χ∗ − χ0 = 1.4H∗/(2π), the χ field oscillates inside the feature. The situation 
is illustrated in Fig. 6. As a result, some amount of χ kinetic energy is returned to φ. For some 
special values, almost all the kinetic energy is returned. Thus oscillatory patterns develop, as 
shown in the middle panel of Fig. 3.

The oscillations in δT (χ) leads to ring objects in δT (x). The cold spot in this parameter 
space is not completely cold, but instead has nested rings of cold and hot patterns. There is no 
evidence of such patterns in the actual CMB cold spot. There has been a debate if there are other 
ring patterns in the sky [36]. The Benchmark 2 parameters provide an explanation for such rings 
(though the shape is not perfectly spherical). However, it is shown that the appearance of such 
rings is due to an inappropriately chosen power spectrum, and thus not actually in the sky [37]. 
Thus we will not tune the parameters to fit such features here.

The general and best-fitting cold-spot profiles, and sample spots are plotted in the middle row 
of Figs. 4 and 5, respectively.
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Fig. 6. The same as Fig. 2 but for Benchmark model 2. Note that the feature in the inflationary potential is long enough 
to hold a few oscillations in this case.

2.4. Benchmark 3: positive feature

In this subsection we consider positive feature scattering. We set A = 1.0 × 10−4V0μ
4/φ4∗ , 

σφ = 50H∗/(2π), σχ = 0.5H∗/(2π) and χ0 = 3.5H∗/(2π). With positive potential, the χ direc-
tion has a run-away solution and can never be bounded. So there is no oscillation in this case.

The δT (χ) dependence is not as sharp as the previous two benchmarks. Thus the cold spot 
does not have as clear a boundary as those previous cases. Because of the not-so-sharp δT (χ)

dependence, to get a cold enough center of the spot, we have to increase A. As a result, the cold 
spots generated by Benchmark 3 typically (though not always) have very cold tinny cores.

The general and best-fitting cold-spot profiles, and sample spots are plotted in the bottom row 
of Figs. 4 and 5, respectively.

Considering a very sharp and cold core is formed for positive features, it is unlikely that such 
features can fit the realistic cold spot. But considering that the sharpness of the cold core depends 
on model parameters. The cold core may appear at � > 2000 scales and free streaming may erase 
the sharpness.

3. Massive isocurvature directions

The feature scattering not only applies to massless isocurvature directions, but also to 
marginally massive ones. As long as the mass of the isocurvature direction is not much greater 
than H , the energy scale for inflationary fluctuations, the isocurvature direction can still be ex-
cited to explore its field space. During inflation, fields with mχ ∼ H arise naturally [28–31]. 
Thus it is worthwhile to investigate feature scattering of such marginally massive fields, with an 
additional mass term in the potential

Vmass(χ) = 1

2
m2

χχ2 . (8)

Note that the process of feature scattering happens on a time scale much shorter than Hubble. 
Thus as long as mχ is not much great than H∗, mχ does not enter the dynamics of feature 
scattering. However, the spectral index of a massive field is significantly different from a scale 
invariant spectrum, with spectral index
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Fig. 7. The same as Fig. 4 but for massive isocurvature model mχ = 0.9H∗ .

Fig. 8. The same as Fig. 5 but for model mχ = 0.9H∗ .

nχ − 1 = Re

⎛
⎝3

2
−

√
9

4
− m2

H 2

⎞
⎠ . (9)

Thus the mass of the field controls how many e-folds can the isocurvature direction randomly 
travel. For example, when m = 0.9H∗, the χ field has a spectrum nχ − 1 = 0.3.

In the numerical example, we set m = 0.9H∗, A = −1.1 × 10−5V0μ
4/φ4∗ , σφ = 10H∗/(2π), 

σχ = 0.7H∗/(2π) and χ0 = 4.4H∗/(2π). In other words, we have only tuned χ0 to be slightly 
greater, and consider a massive χ field. Otherwise the parameters coincide with the Benchmark 1 
of massless case.

The general and best-fitting cold-spot profiles, and sample spots are plotted in Figs. 7 and 8, 
respectively.

As one can see from Fig. 8, there are more small-scale structures compared to the case of 
massless Benchmark 1.

4. Conclusion and discussion

To conclude, we propose a scattering mechanism of inflaton due to the features in the inflation 
potential, during which the isocurvature fluctuations are converted into curvature fluctuations. 
The direction of curvature fluctuations loses kinetic energy due to the scatters in isocurvature 
direction, therefore the number of e-folds becomes larger in some region of the universe. We find 
that the cold spot can be well explained by such a mechanism, and the spot profile reasonably 
fits the CMB cold spot without fine tuning of the inflationary parameters. Before ending up the 
paper, we would like to mention a few future directions:
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• Beyond the Sachs–Wolfe approximation. Currently we did not use the full Boltzmann code 
to calculate the CMB transfer function. The Sachs–Wolfe approximation works well for ex-
ploring the coarse-grained cold-spot profile but is not enough for probing the fine structures 
inside the spot. One can use the full radiation transfer function to carry on a more detailed 
analysis in the future.

• Verifying the approximations of the δN formalism. The δN formalism assumes that the 
horizon-crossing amplitude of the φ and χ quantum fluctuations are Gaussian and uncor-
related. In the case of feature scattering, this is not rigorously true because of the turning 
of trajectory. However, note that the transfer of the inflaton kinetic energy is tinny (0.1% in 
the studied example), the correction from sub-horizon physics should be suppressed by this 
small fraction.
Having that said, it remains interesting to see if the calculation from δN formalism can be 
verified by first principle calculation. However, such a calculation is challenging. The first 
principle calculation of cosmological perturbations is known as the in–in formalism. But in 
the in–in formalism, the primary calculatables are the correlation functions. In other words, 
one starts from the Gaussian two point correlation function and studies small departure from 
that. But the cold spot is highly non-Gaussian and localized object, and thus is not easily 
captured by the correlation functions from the in–in formalism.

• Extra species/symmetry point (ESP) [38,39] as scattering centers. In our current examples, 
the inflaton kinetic energy is lost into the collective motion of the isocurvature direction. It 
may also be possible that the kinetic energy of the inflaton is lost into hidden ESPs in the 
isocurvature direction. It is interesting to explore such possibilities.

• Connection between the feature scattering regime and the multi-stream regime: By carefully 
arranging the position of the feature, it is possible that different part of the universe follows 
different classical trajectories, separated by temporary domain walls. This is known as the 
multi-stream inflation [23,24], which is also a possible explanation of the cold spot. Feature 
scattering and multi-stream corresponds to different regimes of the multi-field parameter 
space. If the features on the inflationary potential are random, we expect the feature scattering 
to be more typical (whereas highly random features in multi-stream inflation cause disasters 
and provide a constraint on multi-field inflation [40]).

• Connection between the cold spot and the dip of CMB temperature power spectrum at � ∼
20. We argue they may come from the same origin – feature scattering during inflation. With 
our current toy potential given at Eq. (1), we are unable to explain this power deficit at the 
same time. However, a more general shaped potential may be able to explain both the deficit 
and the cold spot.

• String theory model building. It is believed that string theory has a landscape of complicated 
vacuum structures [41,42]. It would be interesting to build string landscape models for fea-
ture scattering. Especially, our mechanism assumes that σφ and σχ have value of order H . 
This assumption is made at the phenomenological level in this paper. Nevertheless, it is in-
teresting to search for theoretical motivations for such a potential. For inflation to work, the 
inflationary perturbations, in the sense of effective field theory, should have enough range of 
validity. Especially, the UV cutoff of the theory should be at least of order H . In the marginal 
case where the UV cutoff of the effective field theory is just of order H , new features are 
expected when the field rolls a distance of order H . In addition, inspired by quasi-single 
field inflation [28,29], the mass parameters during inflation should be naturally of order H . 
Thus once there are many mass parameters in the landscape, such as some mass matrix, 
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variations will be introduced in the potential with field range of order H . We leave detailed 
investigation of those possibilities to future works.

• Careful model comparison between our feature scattering mechanism and the �CDM base 
model. We have 5 parameters in our illustrative model. The parameters are chosen to be 
the convenient ones for inflation model building, but not optimized to fit the data as a phe-
nomenological model. It remains interesting to propose a more economical model with fewer 
number of parameters, and perform model comparison between our mechanism and standard 
inflation model.
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Appendix A. Generation of Gaussian random fields

The fluctuation of the isocurvature direction follows Gaussian statistics. In this appendix, we 
provide some details of statistics.

The cold spot has an area of about 0.76% of the full CMB sky. To have such a fraction of sky 
covered, there are two possibilities: Either the feature is very narrow (σχ 
 H∗), or χ0 is about 
2.5σ away from σχ . Practically, the former tends to produce a number of small cold spots and 
the latter tends to produce one or a few large cold spot (which is the case of our current interest).

To be more explicit, the relation between σχ and χ0 is

σχ∫
−σχ

1

c
√

2π
e
− (χ−χ0)2

2c2 dχ ∼ 0.0076 , (A.1)

where c ≡ √〈χ2∗ 〉. Here we have used “∼” because there are uncertainties from both different 
realizations of random variables, and the detailed profile of the inflationary potential (considering 
the feature does not sharply start at −σχ and sharply end at σχ ). Equation (A.1) does not have 
an solution. The numerical solution is plotted in Fig. 9, and can be fitted to high precision by

σχ =
⎧⎨
⎩

χ0 − 2.43c, if χ0 > 2.8c

−χ0 − 2.43c, if χ0 < −2.8c[
exp

( |χ0/c|5
546

)
− 0.99

]
c, if − 2.8c ≤ χ0 ≤ 2.8c

. (A.2)

This relation is plotted and referred to as “0.76% fit function” in Fig. 9. In the numerical ex-
amples, σχ and χ0 are chosen around Eq. (A.2), and slightly adjusted considering the detailed 
profile of the potential.

Appendix B. Selection of spots

In the numerical simulation of the CMB maps, the cold spot is selected with the following 
pipeline:
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Fig. 9. Relation between χ0 and σχ , in order to keep the cold spot(s) covering 0.76% of the sky. The χ0 axis is plotted 
with unit c = H∗/(2π).

Fig. 10. Samples of rare fluctuations out of a Gaussian random field. The upper and lower panels show samples of 2.5σ

and 3σ rare fluctuations respectively.

• The simulated sky is a 200 × 200 square degrees. This approximately resembles the whole 
CMB sphere. Note that we will eventually focus on the spot, which is around 10 × 10 square 
degrees, thus the flat sky approximation can be applied here for technical simplicity.

• For each map, we generate a mask, where the unmasked pixels have temperature δT <

−100 µK.
• The mask is smoothed with a Gaussian filter with a width of 2 degrees. After Gaussian 

smoothing, the very nearby ones are connected.
• The largest connected (after smoothing) spot on the mask is selected.
• We crop the real image according to the spot position of the mask, with a radius of 30 degree. 

We drop the images if the spot is too close to the boundary of the whole image.

Some examples of spot shapes are illustrated in Fig. 10.
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