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a b s t r a c t

In this paper, some properties of log-convex function are researched, and integral inequal-
ities of log-convex functions are proved. As an application, an estimation formula of re-
mainder terms in Taylor series expansion is given.

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Throughout the paper we assume that R, R++ and N respectively stands for real number set, positive real number set
and natural number set.

Recall that the definition of a log-convex function.

Definition 1. Let f : [a, b] ⊆ R → R++. Then f is called a log-convex(concave) function, if

f (αx + (1 − α)y) ≤ (≥)(f (x))α(f (y))1−α

holds for any x, y ∈ [a, b], α ∈ [0, 1].

The authors of [1] proved the following results on the log-convex functions.

Theorem 1. Let f : [a, b] ⊆ R → R++ be log-convex (concave), denote

M =


(b − a)( f (b) − f (a))

ln f (b) − ln f (a)
, if f (a) ≠ f (b);

(b − a)f (a), if f (a) = f (b).

Then  b

a
f (t)dt ≤ (≥)M.
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The aim of this paper is to show some results on the log-convex functions. In Section 2, we give some integral properties
of the log-convex function, including a lower bound of its integral inequality. As an application, in Section 3, an estimation
formula of remainder terms in Taylor series expansion of ex(x > 0) is given. This result is better than the result in [2,3]
or [4].

2. Some properties of the log-convex function

Theorem 2. (i) Let f : [a, b] → [0, +∞) be a strictly decreasing and differentiable function, f (x) > 0 for x ∈ (a, b]. Define
F(x) =

 x
a f (t)dt with x ∈ (a, b]. Then F is a log-concave function.

(ii) Let f : [a, b] → [0, +∞) be a twice differentiable log-concave function, f (x) > 0 and f ′(x) > 0 for x ∈ (a, b]. Define
F(x) =

 x
a f (t)dt with x ∈ (a, b]. Then F is a log-concave function.

(iii) Let f : [a, b] → [0, +∞) be a twice differentiable log-convex function, f (x) > 0 and f ′(x) > 0 for x ∈ (a, b],
limx→a+ f 2(x)/f ′(x) = 0. Define F(x) =

 x
a f (t)dt with x ∈ (a, b]. Then F is log-convex function.

Proof. We only prove (ii), the other proof is similar.
Let

G(x) :=
F ′′(x)F(x) − (F ′(x))2

f ′(x)
, x ∈ (a, b].

Then

G(x) =

 x
a f (t)dt

′′
·
 x
a f (t)dt − f 2(x)

f ′(x)

=

 x

a
f (t)dt −

f 2(x)
f ′(x)

.

and

G′(x) = f (x) −
2f (x)(f ′(x))2 − f 2(x)f ′′(x)

(f ′(x))2

= f (x) ·
f (x)f ′′(x) − (f ′(x))2

(f ′(x))2
≤ 0.

Then G is decreasing. We have

G(x) ≤ lim
x→a+

G(x) = − lim
x→a+

f 2(x)
f ′(x)

≤ 0,

and

F ′′(x)F(x) − (F ′(x))2 ≤ 0.

The proof of (ii) is completed. �

Theorem 3. Let f : [a, b] ⊆ R → R++ be log-convex (concave), c ∈ (a, b), f ′
−
(c) ≠ 0 and f ′

+
(c) ≠ 0. Then b

a
f (t)dt ≥ (≤)

(f (c))2

f ′
−(c)


1 − exp


−(c − a)

f ′
−

(c)
f (c)


+

(f (c))2

f ′
+(c)


exp


(b − c)

f ′
+
(c)

f (c)


− 1


, (1)

the equality holds if and only if f is a peqx-type function, where p > 0, q ∈ R.

Proof. Since f ′
+
(c) ≠ 0, we can choose d ∈ (c, b) such that f (d) ≠ f (c). For any t ∈ (d, b) and α = (d − c)/(t − c),

d = (1 − α)c + αt hold. Then

f (d) = f ((1 − α)c + αt) ≤ (≥)(f (c))1−α(f (t))α, (2)
f (t) ≥ (≤)(f (d))(t−c)/(d−c)(f (c))−(t−d)/(d−c).

Therefore, b

d
f (t)dt ≥ (≤)

 b

d
(f (d))(t−c)/(d−c)

· (f (c))−(t−d)/(d−c)dt

=
(f (c))d/(d−c)

(f (d))c/(d−c)

 b

d


f (d)
f (c)

t/(d−c)

dt
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=
(d − c)(f (c))d/(d−c)

(f (d))c/(d−c)(log f (d) − log f (c))


f (d)
f (c)

b/(d−c)

−


f (d)
f (c)

d/(d−c)


=

(d − c)f (d)


f (d)
f (c)

(b−d)/(d−c)
− 1


log f (d) − log f (c)

.

Let d → c+, we have b

c
f (t)dt ≥ (≤) lim

d→c+

f (d) [exp{(b − d)(log f (d) − log f (c))/(d − c)} − 1]
(log f (d) − log f (c))/(d − c)

= f (c) lim
d→c+


exp


(b − c) log f (d)−log f (c)

f (d)−f (c) ·
f (d)−f (c)

d−c


− 1


log f (d)−log f (c)

f (d)−f (c) ·
f (d)−f (c)

d−c

=
(f (c))2

f ′
+(c)


exp


(b − c)

f ′
+
(c)

f (c)


− 1


.

Similarly, we get c

a
f (t)dt ≥ (≤)

(f (c))2

f ′
−(c)


1 − exp


−(c − a)

f ′(c)
f (c)


.

Hence b

a
f (t)dt =

 c

a
f (t)dt +

 b

c
f (t)dt

≥ (≤)
(f (c))2

f ′
−(c)


1 − exp


−(c − a)

f ′(c)
f (c)


+

(f (c))2

f ′
+(c)


exp


(b − c)

f ′
+
(c)

f (c)


− 1


.

Because of (2), the above equality holds if and only if

f (αx + (1 − α)y) = (f (x))α · (f (y))1−α

holds for any x, y ∈ [a, b], α ∈ (0, 1). Then there exists q,m ∈ R, such that

log f (x) = qx + m, f (x) = em(eq)x.

The proof of Theorem 3 is completed. �

Corollary 1. Let f : [a, b] ⊆ R → R++ be a log-convex(concave) function, c ∈ [a, b] and f ′(c) ≠ 0. Then b

a
f (t)dt ≥ (≤)

(f (c))2

f ′(c)


exp


(b − c)

f ′(c)
f (c)


− exp


−(c − a)

f ′(c)
f (c)


.

Particularly, if f ′(a) ≠ 0, f ′(b) ≠ 0 or f ′((a + b)/2) ≠ 0, we have b

a
f (t)dt ≥ (≤)

(f (a))2

f ′(a)


exp


(b − a)

f ′(a)
f (a)


− 1


, b

a
f (t)dt ≥ (≤)

(f (b))2

f ′(b)


1 − exp


−(b − a)

f ′(b)
f (b)


, (3)

or  b

a
f (t)dt ≥ (≤)


f
 a+b

2

2
f ′
 a+b

2

 
exp


b − a
2

·
f ′
 a+b

2


f
 a+b

2

 − exp


−

b − a
2

·
f ′
 a+b

2


f
 a+b

2

  ,

with equality holding if and only if f is a peqx-type function, where p > 0, q ∈ R.

3. Some applications

In this section, we firstly introduce the Definition 2 and some lemmas as follows.
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Definition 2 ([5–7]). Let interval I ⊆ R++, f : I → R++. Then f is called a geometrically convex function, if

f (xαy1−α) ≤ (f (x))α(f (y))1−α

holds for any x, y ∈ I, α ∈ [0, 1].

Lemma 1. Let interval I ⊆ R++, f : I → R++ be a differentiable function, then the following assertions are equivalent:

(i) f is geometrically convex.
(ii) The function xf ′(x)/f (x) is increasing.

If moreover f is twice differentiable, then f is geometrically convex if and only if

x[f (x)f ′′(x) − (f ′(x))2] + f (x)f ′(x) ≥ 0 (4)

holds for any x ∈ I .

Lemma 2 ([6,7]). Let f : [0, a) → [0, ∞) be a continuous function, which is geometrically convex on (0, a). Then F(x) = x
0 f (t)dt is also geometrically convex on (0, a).

Recall equality ex =


+∞

i=0 xi/i!, let fn(x) = ex −
n

i=0 x
i/i!, n = 0, 1, 2, . . . , x > 0. According to [2,3] or [4],

fn(x) ≤
xn+1

n!(n + 1 − x)
(5)

with n + 1 − x > 0. We can improve the result as the following Theorem 4. In Ref. [8], Alzer proves

fn−1(x)fn+1(x)
(fn(x))2

>
n + 1
n + 2

.

We get the upper bound of fn−1(x)fn+1(x)/(fn(x))2 in the the following Theorem 5.

Theorem 4. Let fn(x) = ex −
n

i=0 x
i/i!, n = 0, 1, 2, . . . , x > 0. Then

fn(x) <
2

(n + 1 − x)2 + 4x(n + 1)e−x−n−1 + (n + 1 − x)
·
xn+1

n!
. (6)

If 0 < x ≤ c, then

fn(x) ≤
2

(n + 1 − x)2 + 4x(n + 1) exp

−

cfn−1(c)
fn(c)


+ (n + 1 − x)

·
xn+1

n!
. (7)

Proof. It is easy to see that f−1 : x ∈ R++ → ex satisfies the conditions of (ii) in Theorem 2, where a = 0. So
f0(x) =

 x
0 f−1(t)dt = ex − 1 (x ∈ R++) is the log-concave function, and it is easily proved to satisfy the conditions of

(ii) in Theorem 2. Repeating this, we find fn(x) =
 x
0 fn−1(t)dt (x ∈ R++) are the log-concave functions.

Let b = x, a = 0, f (x) = fn(x), n ≥ 0 in (3), we have x

0
fn(t)dt ≤

(fn(x))2

f ′
n(x)


1 − exp


−x

f ′
n(x)
fn(x)


,

fn+1(x) ≤
(fn(x))2

fn−1(x)


1 − exp


−

xfn−1(x)
fn (x)


. (8)

Further,

fn+1(x)fn−1(x) ≤ (fn(x))2

1 − exp


−

xfn−1(x)
fn(x)


,

fn(x) −
xn+1

(n + 1)!


fn(x) +

xn

n!


≤ (fn(x))2


1 − exp


−

xfn−1(x)
fn(x)


,

exp


−
xfn−1(x)
fn(x)


· (fn(x))2 +


xn

n!
−

xn+1

(n + 1)!


fn(x) −

x2n+1

n!(n + 1)!
≤ 0.
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Then

fn(x) ≤

−


xn
n! −

xn+1

(n+1)!


+


xn
n! −

xn+1

(n+1)!

2
+ 4 exp


−

xfn−1(x)
fn(x)


·

x2n+1

n!(n+1)!

2 exp

−

xfn−1(x)
fn(x)

 ,

≤

2x2n+1

n!(n+1)!
xn
n! −

xn+1

(n+1)!

2
+ 4 exp


−

xfn−1(x)
fn(x)


·

x2n+1

n!(n+1)! +


xn
n! −

xn+1

(n+1)!

 ,

≤
2xn+1

n!


(n + 1 − x)2 + 4x(n + 1) exp

−

xfn−1(x)
fn(x)


+ n!(n + 1 − x)

. (9)

On the other hand, taking into account that ex =


+∞

i=0 xi/i!, we find

xfn−1(x)
fn(x)

=

x

ex −

n−1
i=0

xi
i!


ex −

n
i=0

xi
i!

= x +
x ·

xn
n!

ex −

n
i=0

xi
i!

< x +
x ·

xn
n!

xn+1

(n+1)!

= x + n + 1. (10)

Taking (10) into (9), we complete the proof of (6).
According to (4), f−1 is a geometrically convex function. By Lemma 2, f0(x) =

 x
0 f−1(t)dt = ex − 1 is a geometrically

convex function. Repeating this, fn(x) =
 x
0 fn−1(t)dt are a geometrically convex. Owing to (ii) in Lemma 1, we know

xf ′
n(x)/fn(x) = xfn−1(x)/fn(x) is increasing for x ∈ R++. If 0 < x < c , then xfn−1(x)/fn(x) ≤ cfn−1(c)/fn(c). According

to (9), we have

fn(x) ≤
2xn+1

n!


(n + 1 − x)2 + 4x(n + 1) exp

−

cfn−1(c)
fn(c)


+ n!(n + 1 − x)

.

This completes the proof of the (7). �

Remark 1. (i) It is clear that (6) and (7) are better than (5).
(ii) For the fn(x) in Theorem 4, according to ex =


+∞

i=0 xi/i!, we know that xn+1/(n + 1)! is the lower bound of fn(x).

Corollary 2. Let n ≥ 1, n ∈ N

e −

n
i=0

1
i!

<
2

n2 + 4(n + 1)e−n−2 + n
·
1
n!

<
1

n · n!
.

Let x = 1 in (6), we easily prove Corollary 2.
Owing to inequalities (8) and (10), the following Theorem 5 holds.

Theorem 5. Let fn(x) = ex −
n

i=0 x
i/i!, n = 0, 1, 2, . . . , x > 0. Then

fn−1(x)fn+1(x)
(fn(x))2

≤ 1 − exp


−
xfn−1(x)
fn(x)


< 1 − exp(−x − n − 1).
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