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Statistical modeling is used to correlate geometric parameters of pores with their contributions to the
overall Young’s moduli of linearly elastic solids. The statistical model is based on individual pore
contribution parameters evaluated by finite element simulations for a small pore subset selected using
the design of experiments approach, so there is no need to solve the elasticity problem for all pores in
the material. A polynomial relating pore geometric parameters to the contribution parameters is then
fitted to the results of the simulations. We found a good correlation between normalized projected areas
of the pores on three coordinate planes and their contributions to the corresponding effective Young’s
moduli. The model is applied and validated for two large sets of pore geometries obtained by X-ray
microcomputed tomography of a carbon/carbon and a 3D woven carbon/epoxy composite specimens.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Effective stiffness of linear elastic solids is reduced by the pres-
ence of pores. Historically, this reduction has been quantified in
terms of the relative volume fraction of pores (porosity) assuming
all pores to be spherical, see Dewey (1947), Mackenzie (1950).
Later, the pore shapes were included in consideration by utilizing
the famous Eshelby solution (Eshelby, 1957, 1959) for ellipsoidal
inclusions and modeling non-spherical pores as ellipsoids of
various eccentricities, see Wu (1966) and discussions in
Kachanov et al. (1994) and David and Zimmerman (2011). For
two-dimensional pores, in addition to circular and elliptical
shapes, the analytical solutions for various quazi-polygonal holes
have been utilized, see Zimmerman (1986), Tsukrov and
Kachanov (1993), Jasiuk et al. (1994), Kachanov et al. (1994),
Ekneligoda and Zimmerman (2006, 2008b), Zou et al. (2010). In
three-dimensional case, only a limited number of analytical
solutions for non-ellipsoidal inhomogeneities are available,
including cuboids (Lee and Johnson, 1978), polyhedra (Rodin, 1996;
Nozaki and Taya, 1997; Lubarda and Markenscoff, 1998), and
superspherical shapes (Onaka, 2001; Hashemi et al., 2009;
Sevostianov and Giraud, 2012) To evaluate contributions of pores
having irregular shapes, when no analytical solution for a given
shape is available, various numerical techniques, such as finite
element or boundary element analyses, can be used.

Direct micromechanical modeling is the preferred way to pre-
dict effective elastic properties of materials with pores (with other
possibilities being variational bounds on a property as in Hashin
and Shtrikman, 1962 and later publications, or finite element sim-
ulations for the entire representative volume element with many
pores as in Roberts and Garboczi (2000), Arns et al. (2002) and
González et al. (2004)). It involves evaluation of contribution of a
certain pore type to the effective elastic properties by solving the
elasticity problem for a pore of that type, and then incorporating
the solution into a certain micromechanical method. For irregular
pore shapes, the elasticity problem is usually solved numerically.
However, actual microstructures may contain large numbers of
diverse pore shape types, and solving elasticity problems for all
of them with reasonable accuracy may become computationally
challenging and practically impossible.

It is therefore desirable to be able to evaluate how irregularly
shaped pores influence the effective material properties without
having to solve the elasticity problem. For this purpose, researchers
have been trying to identify the appropriate geometric parameters
(in addition to the overall porosity of the material) to be used for
the predictions of effective properties.
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Zimmerman (1991), for example, showed that compressibility
of 2D pores correlates well with the undimensionalized ratio of
pore perimeter P to its area A defined as P2=A (a three-dimen-
sional analog of this parameter, the surface-to-volume ratio, was
used in the stochastic model of Drach et al., 2013). Zimmerman’s
observation was later supported by numerical studies on several
irregular 2D shapes (Tsukrov and Novak, 2002). However, such a
parameter cannot be considered universal. For example, substitu-
tion of smooth pore boundaries by the very jagged ones (as illus-
trated in Fig. 1) will significantly increase the surface-to-volume
ratio without making big changes in the overall response. This
immediately follows from the comparison (or ‘‘auxiliary’’) theorem
of Hill (1965) as interpreted by Kachanov and Sevostianov (2005).
According to their interpretation, contributions of two pores with
very different surface-to-volume ratios shown by solid lines in
Fig. 1 are bounded by the same contributions of pores shown with
dashed lines. The influence of corrugated boundaries on the overall
compressibility of pores is also discussed in Ekneligoda and
Zimmerman (2008a).

Another possible set of geometric parameters to characterize
contribution of a pore to the effective elastic properties is its prin-
cipal moments of inertia (PMIs). PMIs are defined as the eigen-
values of the matrix of moments of inertia given by
Iij ¼

R
V qðrÞðr2dij � xixjÞdV , where qðrÞ is the material density of

the body for which PMIs are calculated (pores can be treated as
homogeneous bodies with qðrÞ ¼ q ¼ 1), r is the distance to the
axis around which the moment is calculated, dij is the Kronecker
delta, xi are the coordinates x1; x2; x3. PMIs have been previously
used to approximate pores by the equivalent ellipsoids (Li et al.,
1999; Drach et al., 2013). In Drach et al. (2013) we utilized statis-
tical approaches to correlate pore principal moments of inertia to
their contribution to the effective elastic moduli.

In this paper we investigate the hypothesis that contribution
of irregularly-shaped pores to the effective Young’s moduli of
porous material can be evaluated based on their projected areas
(‘‘shadows’’) by statistical analysis of effective compliance
parameters. We begin by selecting a certain subset of pores from
the full dataset. Then, we perform finite element (FE) simulations
for the pores in the subset to quantify their individual contribu-
tions to the effective compliance of the material. This data is
then used in regression analysis to construct an approximating
polynomial model for the dependence of pore’s contribution to
the effective compliance on its projected area. To verify that the
model works for the full dataset, the constructed model is then
checked against the FE simulations on the new subset of randomly
chosen irregular shapes not used in the model fitting.

Because the accuracy of the model predictions (width of the
error bars) depends on the number of direct simulations used in
the data fitting, it is important to choose an ‘‘optimal’’ subset
which corresponds to the desired model prediction variance. We
(a)

Fig. 1. Two pores having similar contributions to the overall elastic properties but signifi
of their contributions.
use the design of experiments (DoE) approach (Ryan, 2007;
Myers et al., 2009) to identify the list of input parameters (in our
case, pore shape geometric parameters) that corresponds to the
specified level of model prediction variance across the whole
parameter space. We design the ‘‘experiment’’ (the combination
of irregular shapes for FE simulations) using an I-optimal design
module in JMP software (SAS Institute Inc, 2010). The optimization
criterion for I-optimal designs is minimization of the integrated
variance of the model predictions over the entire design space. This
means that the expected width of confidence intervals for model
predictions will be approximately the same across the full param-
eter space.

We apply this method to two sets of pore shapes obtained by
microcomputed tomography of two different material samples:
carbon/carbon and 3D woven carbon/epoxy composites. The exam-
ples of pore shapes are given in Fig. 2. For both sets we compare
contributions of the pores to effective elastic properties deter-
mined by the direct FEA simulations for each pore with the ones
based on its projected areas. Note that we use these sets of pore
shapes only to check the hypothesis that statistical estimates based
on the projected areas can be used instead of elasticity solutions.
Our predictions cannot be directly used for carbon/carbon and
3D woven carbon/epoxy composites, because in our analysis we
assume the pores to be placed in an isotropic homogeneous mate-
rial which is obviously not the case for these composites. However,
we feel that the considered pore shape sets provide good data to
test the hypothesis, as the pores in these two cases result from very
different mechanical processes (porosity from incomplete filling by
chemical vapor deposition of pyrolytic carbon vs. damage due to
chemical and thermal shrinkage of epoxy) and thus have different
morphologies and shape distributions.

2. Micromechanical modeling approach utilizing statistical
analysis

Characterization of individual pore contributions to the effec-
tive material response is based on the pore compliance contribu-
tion tensor – H -tensor proposed in Kachanov et al. (1994). Note
that a similar tensor in the context of a microcrack was earlier
given by Horii and Nemat-Nasser (1983). The fourth rank tensor
H is defined as a set of proportionality coefficients between remo-
tely applied homogeneous stress field r0 and the additional strain
De generated in the material due to the presence of a cavity:

De ¼ H : r0 ð1Þ

where ‘‘:’’ denotes the contraction over two indices. For a material
with a large number of pores, a proper representative volume ele-
ment (RVE) (Hill, 1963; Nemat-Nasser and Hori, 1999) can be
selected, and the effective compliance tensor of the material is
given by
(b)

cantly different surface-to-volume ratios. Dashed lines show upper and lower limits



Fig. 2. Examples of pores extracted by microcomputed tomography from (a) carbon/carbon composite sample; (b) 3D woven carbon/epoxy composite sample.
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S ¼ S0 þHRVE

where S0 is the compliance tensor of the matrix material and HRVE is
the contribution from all pores present in the RVE.

For dilute distribution of pores, the non-interaction approxima-
tion can be used, and HRVE is found by direct summation of contri-
butions from all individual pores in the RVE:

HNI
RVE ¼

X
i

HðiÞ ð2Þ

where HðiÞ is the compliance contribution tensor of the ith pore. For
higher porosities when the non-interaction approximation is no
longer applicable, more advanced micromechanical schemes should
be used. However, most of the first order micromechanical schemes
can be readily expressed in terms of the non-interaction approxi-
mation, see Eroshkin and Tsukrov (2005). For example, predictions
for the overall pore compliance contribution tensor by the Mori–
Tanaka method (Mori and Tanaka, 1973; Benveniste, 1987) in terms
of HNI

RVE is given by a simple formula Kachanov et al. (1994):

HMT
RVE ¼ HNI

RVE=ð1� pÞ ð3Þ

where p is the volume fraction of pores. The formulae for the effec-
tive Young’s moduli in the next paragraph are given in the assump-
tion of the non-interaction approximation but can be converted to
other micromechanical schemes if needed.

To relate the pore compliance contribution tensor to the effec-
tive Young’s moduli of the porous material we introduce the
dimensionless parameters ~E1, ~E2, and ~E3 defined as

Ei

E0
¼ 1

1þ p~Ei

ð4Þ

where E0 is the matrix Young’s modulus (note that in all our consid-
erations we assume the matrix to be isotropic), and Ei are the effec-
tive Young’s moduli in three orthogonal directions. Three
parameters ~Ei (i = 1, 2, 3) characterize the change in Young’s modu-
lus in xi-direction induced by the pores of the same shape in the
case when these pores are parallel to each other. These parameters
can be expressed in terms of the H -tensor components for the cor-
responding pore shapes:

~Ei ¼
E0

p
Hiiii ðno summation over repeating indicesÞ ð5Þ

In most of the previous publications, the pore compliance con-
tribution is found deterministically, either analytically for a pore in
unbounded medium (Eshelby, 1957, 1959; Kachanov et al., 1994)
or numerically, for example, by finite element analysis (FEA) per-
formed on a reference volume containing an individual pore, see
Tsukrov and Novak (2002), Drach et al. (2011). Numerical simula-
tions appear to be the only option for the irregularly-shaped pores
for which no analytical solutions are available. Even though the
entire numerical procedure can be completely automated (see for
example Drach et al., 2011), this method may not be practical
when contributions of tens of thousands of different pores are to
be estimated.

Our method involves statistical analysis to derive a formula pre-
dicting contribution of a pore to effective properties based on its
geometric parameters. First, we run a relatively small number of
FEA simulations (�100–200) for individual pores in a reference
volume. The set of pores is chosen as an ‘‘optimal’’ subset of data
using the DoE approach so that the pore shape parameters allow
to obtain the model with a specified level of variance across the
whole parameter space. Then a polynomial is fitted to the simula-
tion results and estimates for the rest of the pores are inferred from
the resulting empirical formula. Thus, the statistical analysis
results in a polynomial approximation model, which correlates
pore contributions with their geometric parameters. If m geometric
parameters are chosen, and the degree of approximating polyno-
mial is n, the polynomial has the following general form

PCC ¼ a0 þ a1F1 þ a2F2 þ � � � þ amFm þ amþ1F2
1 þ amþ2F2

2 þ � � �
þ an�mFn

m þ an�mþ1F1 � � � Fn þ � � � þ aNFm�nþ1 � Fm ð6Þ

where PCC is the predicted contribution to Young’s modulus (~E1; ~E2

or ~E3); F1 . . . Fm are the considered pore geometry parameters
(model factors); a0 . . .aN are the coefficients determined by the
standard least squares fit of FEA simulation data. In the case of a
3-factor 2nd degree model, the expression is

PCC ¼ a0 þ a1F1 þ a2F2 þ a3F3 þ a4F2
1 þ a5F2

2 þ a6F2
3

þ a7F1F2 þ a8F2F3 þ a9F3F1 ð7Þ

Such a statistical model can be used to predict contributions of
any pore with a specific set of geometric parameters.

The examples of the model are given in Drach et al. (2013),
where fitting of the FEA predictions is performed using the
response surface methodology (Myers et al., 2009) based on the
following geometric parameters (model factors): principal
moments of inertia of each pore and its surface-to-volume ratio.
In that work, the set of irregular shapes used to construct the
model was obtained from a microtomography scan of a carbon/car-
bon composite sample. The models were constructed for pore con-
tributions to the overall bulk, shear and Young’s moduli based on
150 pores selected using the DoE approach. The models were val-
idated on another set of 150 randomly chosen pores not included
in the model. A reasonably good fit was observed for bulk and
shear moduli: bulk modulus contribution R2 ¼ 0:98, RMSE ¼ 6:8%

(hereafter the mean error, ME and analogously the root-mean-
square error, RMSE, values are presented in percentages, e.g.:
ME ¼ 100% �MeanError=MeanResponse); shear modulus contribu-
tion R2 ¼ 0:92, RMSE ¼ 3:6%. However, the regression’s fit values
for Young’s moduli contribution parameters were found to be
lower (R2 in the range of 0:75 . . . 0:87). Thus, it appears that the
principal moments of inertia with surface-to-volume ratio are
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not the most suitable combination of geometric parameters to
evaluate the contribution of pores to the effective Young’s moduli
of porous solids.
Fig. 4. Reconstructed images of the 3D woven composite sample slices before and
after image processing in Fiji.
3. Shape projected areas as the geometric parameters
determining pore contributions to effective Young’s moduli

We consider the projected areas of pores (‘‘shadows’’) as a can-
didate set of geometric parameters for correlation with effective
Young’s moduli. We use the projections on three global coordinate
planes in the original coordinate system of the scanned specimen
(see Fig. 3) and normalize them with respect to the pore volume:

~Ai ¼
ffiffiffiffiffi
Ai
p
ffiffiffiffi
V3
p ð8Þ

where Ai and ~Ai are the initial and normalized areas of the pore pro-
jection onto the plane normal to the xith axis ði ¼ 1;2;3Þ, and V is
the volume of considered pore.

Two datasets are considered. The first dataset consists of 8351
pores obtained by processing the microcomputed tomography
(lCT) data for a specimen of carbon/carbon composite, see Drach
et al. (2011, 2013).

The second dataset is based on the lCT scan of a sample of 3D
woven carbon/epoxy composite provided by Albany Engineered
Composites (Rochester, NH). For this dataset, the reconstructed
images of the sample slices in the format of 8-bit grayscale VTK
were processed in the open source image processing software Fiji
(see http://fiji.sc/Fiji) before pore shape extraction. First, a ‘‘Fit
Polynomial’’ filter with parameters ‘‘3 � 3 � 3’’ was applied to cor-
rect for brightness variation within and across the slices. Next, the
slices were binarized using ‘‘Threshold’’ filter with the value of
‘‘64’’. In the resulting binary images, white regions represent pores
and black is everything else (matrix and reinforcement), see Fig. 4.
The pores smaller than 3 voxels in any dimension were regarded as
noise and not extracted.

The MATLAB code first described in Drach et al. (2013) was used
for automatic extraction of individual pore meshes and calculation
of pore geometric parameters as follows. VTK file containing series
of black and white images was imported into MATLAB workspace
resulting in a 3D matrix with dimensions equal to the dimensions
of the VTK file. Components in the matrix have integer values: ‘0’
for the black color and ‘1’ for the white color corresponding to
the pores. The matrix was then processed using functions from
MATLAB Image Processing Toolbox to obtain information about
Fig. 3. Three projected areas (‘‘shadows’’) of a pore.
all connected objects (in our case, pores) in the input matrix. The
information included the number of objects and the coordinates
of the components in the input matrix comprising these objects.
The criterion by which the components were determined to be
connected to the objects was defined by the connectivity parame-
ter. In our procedure we used the 6-connected neighborhood con-
nectivity, meaning that the matrix component was considered to
be a part of the object if it was located in the same row or column
as one of the object components and is adjacent to it. In the next
part of the script, individual objects were processed to determine
their geometric parameters. As the result of the extraction, a
triangular surface mesh was generated and a number of geometric
properties were stored (e.g. linear dimensions, volume, principal
moments of inertia, projected areas, etc.). The final design
space contained 8351 extracted pores for carbon/carbon
composite and 24,041 extracted pores for 3D woven composite.
The ranges of normalized projected area parameters are given in
Table 1.

The DoE approach was utilized to identify the optimal number
and the combination of pores for two models (carbon/carbon and
3D woven carbon/epoxy pore sets). Using JMP software (SAS
Institute Inc, 2010) we constructed a custom I-optimal experimen-
tal design with the aim of producing statistical models with mini-
mal overall variance across the design space. The number of pores
for the initial design was chosen to be 100, which corresponds to
the average relative prediction variance of 0.05. The complete set
of input variable is provided in Table 2.

For a finite number of pores extracted from the microtomogra-
phy data, it was impossible to find pores with normalized pro-
jected areas that exactly matched the design points produced by
the DoE analysis. Therefore, the pores with the smallest deviation
of the parameters from the designed values were chosen. After
analyzing the available pore data, it was found that the pore
parameter space is bound by a constraint that the sum of the three
parameters must be greater than or equal to 3.15 (note that for a
sphere ~A1 þ ~A2 þ ~A3 ¼ 3:3 and for a cube with the sides parallel
to the coordinate planes: ~A1 þ ~A2 þ ~A3 ¼ 3:0). This constraint is
taken into account in the DoE analysis.



Table 1
The ranges of the three normalized projected area parameters of the pores from the
carbon/carbon composite and 3D woven carbon/epoxy composite datasets.

Minimum
value
(MIN)

Maximum
value
(MAX)

Average value
(AVG)
AVG ¼ MAXþMIN

2

Midrange value
(MID)
MID ¼ MAX�MIN

2

Carbon/carbon composite dataset
~A1 1.03 1.79 1.41 0.38
~A2 1.05 1.75 1.40 0.35
~A3 0.99 1.59 1.29 0.30

3D woven carbon/epoxy composite dataset
~A1 0.90 1.35 1.13 0.23
~A2 1.00 1.43 1.22 0.22
~A3 1.20 1.89 1.55 0.35

Table 2
Parameters chosen in the DoE module of JMP software.

Parameter Value

Input variablesa ~A1; ~A2, ~A3

Constraints for input variablesb ~A1 þ ~A2 þ ~A3 P 3:15
Three model responses ~E1; ~E2, ~E3

Prediction model type 2nd order response surface
model

Number of experimental runs (design points) 90
Additional runs (center points) 10
Number of replicates 0
Number of random starts for search of optimal

designs
1000

a Continuous variables with ranges shown in Table 1.
b This constraint is applicable to the considered datasets only.
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Finite element simulations were performed and results were
processed to determine the components of H -tensor of individual
pores according to the following automated procedure. Surface
mesh of a pore was placed in a cube-shaped reference volume with
sides five times larger than the largest dimension of the pore, see
Fig. 5. This setup was auto meshed with second-order tetrahedral
elements. Typical pore shapes yielded FE meshes with the number
Fig. 5. Reference volume with a pore surface mesh inside.
of elements on the order of 100,000. Material properties were then
applied to all matrix elements. Since the results were normalized
by Young’s modulus of the matrix E0, the value E0 ¼ 1 was used.
Poisson’s ratio was set to m0 ¼ 0:33 in this study. Six sets of bound-
ary conditions in displacements were consecutively applied to sim-
ulate three loadcases of uniaxial tension (in the directions of three
global coordinate axes) and three shear loadcases.

The simulation results’ files were processed via a custom Python
script. The script computed volume averages of all stress compo-

nents rðkÞij

D E
RV

for each loadcase k. With the volume averages known,

the pore stiffness contribution tensor Nijkl can be calculated: e.g.
from the first loadcase (uniaxial tension in x1 direction):

Nij11 ¼ rð0Þij � rð1Þij

D E
RV

� �
=eð0Þ, where rð0Þij are the stresses in the

matrix material subjected to e11 ¼ eð0Þ, hrð1Þij iRV are the stress volume

averages in the porous material subjected to e11 ¼ eð0Þ. Pore compli-
ance contribution tensor Hijkl was then expressed in terms of Nijkl:

Hijkl ¼ �Sð0ÞijmnNmnpqSð0Þpqkl, where Sð0Þijkl are the components of the compli-

ance tensor of the matrix material. Finally, parameters ~E1, ~E2, ~E3 were
calculated from the components of H -tensor using formula (5).

Thus, for each pore characterized by three normalized ‘‘shadow’’
parameters ~A1, ~A2, ~A3, a set of three compliance contribution
parameters ~E1, ~E2, ~E3 was determined from FEA. These values were
entered into JMP software for statistical analysis.

4. Results of the statistical analysis

The results of the statistical analysis are the sets of coefficients
in expression (7) for predictions of ~E1, ~E2, ~E3:

(a) for carbon/carbon composite dataset

~E1 ¼2:509þ0:844Â1�0:349Â2�0:195Â3�0:270Â1Â2�0:106Â1Â3þ0:252Â2Â3

~E2 ¼2:485�0:362Â1þ0:790Â2�0:201Â3�0:315Â1Â2þ0:212Â1Â3�0:125Â2Â3

~E3 ¼2:177�0:219Â1�0:205Â2þ0:561Â3þ0:209Â1Â2�0:174Â1Â3�0:163Â2Â3

ð9aÞ

(b) for 3D woven carbon/epoxy composite dataset
~E1 ¼1:873þ0:392Â1�0:079Â2�0:184Â3�0:053Â1Â2�0:101Â1Â3þ0:064Â2Â3

~E2 ¼2:086�0:092Â1þ0:417Â2�0:253Â3�0:065Â1Â2þ0:072Â1Â3�0:104Â2Â3

~E3 ¼3:317�0:226Â1�0:267Â2þ1:148Â3þ0:227Â1Â2�0:153Â1Â3�0:222Â2Â3

ð9bÞ

where Âi ¼
~Ai�AVGð~AiÞ

MIDð~AiÞ
(see Table 1).

In these models the insignificant factors with p-values (p-value is
the probability that the factor coefficient value is different from zero
due to random error) higher than the level of significance of 0.01 are
excluded sequentially by removing one insignificant parameter at a
time and re-running the model. In both models, the 2nd degree sin-
gle factor parameters turned out to be insignificant, while interac-
tion components were significant in all responses.

Graphically the results for both models are presented in Fig. 6.
In these plots, the straight line represents the perfect fit when
the model predicted values coincide with the actual values
(Actual ¼ Predicted, where the term ‘‘Actual’’ is used for the results
of direct FEA simulations). The two curves below and above the
straight line represent the 95% confidence intervals for the pre-
dicted values. In the case of carbon/carbon composite dataset,
the correlation coefficients and root-mean-square errors for ~E1,
~E2, ~E3 are a R2 ¼ 0:96; 0:95; 0:96 and RMSE ¼ 5:1%; 5:5%; 3:9%,
correspondingly. In the case of carbon/epoxy dataset,
R2 ¼ 0:96; 0:93; 0:97 and RMSE ¼ 3:2%; 4:3%; 4:4%. Thus, we con-
clude that a good correlation is observed between the normalized
‘‘shadow’’ parameters and Young’s moduli pore contribution
parameters.
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Fig. 6. The results of response surface fitting presented as plots of direct calculation results (~Ei Actual) vs. model prediction results (~Ei Predicted) for pore compliance
contribution parameters: (a) carbon/carbon composite dataset; (b) 3D woven carbon/epoxy composite dataset.
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For validation of the proposed stochastic 3-factor PCC model
given by formulae (9), the estimates of pore compliance contribu-
tion parameters for each dataset were compared to the direct FEA
simulations performed on an independently chosen set of 100
pores which were not used for the model development. For this
experiment, the normalized projected area parameters were
selected randomly with uniform distribution over the design space.
Pore geometries were selected from the original datasets with all
available pores. The results of the validation experiment are shown
in Fig. 7. The values of R2 and RMSE for carbon/carbon composite
are R2 ¼ 0:96; 0:95; 0:92 and RMSE ¼ 4:6%; 4:7%; 5:3% for ~E1, ~E2

and ~E3 responses, correspondingly. For 3D woven carbon/epoxy
composite, the values of R2 and RMSE are R2 ¼ 0:96; 0:92; 0:94
and RMSE ¼ 2:7%; 4:0%; 4:7% for ~E1, ~E2 and ~E3 responses,
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Fig. 7. Validation of the statistical model for responses ~E1, ~E2 and ~E3 performed on 100 pores not included in the original model: (a) carbon/carbon composite dataset; (b) 3D
woven carbon/epoxy composite dataset.
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correspondingly. These results indicate that the proposed models
can be used to estimate with reasonable accuracy the pore compli-
ance contribution parameters of the remaining 8251 pores in the
carbon/carbon composite dataset and 23,941 pores in the carbon/
epoxy dataset that were not included in the original experiments.

The accuracy of the 3-factor model (based on the projected
areas) for the carbon/carbon composite dataset can be compared
to the 4-factor model (based on the principal moments of inertia
and surface-to-volume ratio) presented in Drach et al. (2013).
The mean errors from the validation studies for predictions of ~E1,
~E2 and ~E3 are correspondingly �0.1%, 0.2%, �0.4% for 3-factor
model, and �3.5%, �3.0% 1.9% for 4-factor model. Similarly, the
root-mean-square error values are 4.6%, 4.7%, 5.3% for 3-factor
model, and 8.0%, 7.7%, 11.1% for 4-factor model. It can be seen that
both the bias (mean error) and the scatter (RMSE) are lower for the
model constructed using the normalized projected areas. We con-
clude that for the considered carbon/carbon composite dataset, the
choice of projected areas as the model factors provides more



Table 3
Summary of data on accuracy of the considered statistical models.

Model E1 E2 E3

R2 ME RMSE R2 ME RMSE R2 ME RMSE

4-factor model (Drach et al., 2013) 0.87 0.0000
(0.0%)

0.0805
(5.0%)

0.75 0.0000
(0.0%)

0.1084
(5.5%)

0.82 0.0000
(0.0%)

0.2836
(10.0%)

4-factor model validation (Drach et al., 2013) 0.69 �0.0607
(�3.5%)

0.1389
(8.0%)

0.55 �0.0614
(�3.0%)

0.1579
(7.7%)

0.55 0.0536
(1.9%)

0.3106
(11.1%)

Proposed 3-factor model (carbon/carbon dataset) 0.96 0.0000
(0.0%)

0.1287
(5.1%)

0.95 0.0000
(0.0%)

0.1366
(5.5%)

0.96 0.0000
(0.0%)

0.084
(3.9%)

Proposed 3-factor model validation (carbon/carbon dataset) 0.96 �0.0030
(�0.1%)

0.1152
(4.6%)

0.95 0.0040
(0.2%)

0.1180
(4.7%)

0.92 �0.0082
(�0.4%)

0.1165
(5.3%)

Proposed 3-factor model (3D woven carbon/epoxy dataset) 0.96 0.0000
(0.0%)

0.0599
(3.2%)

0.93 0.0000
(0.0%)

0.0907
(4.3%)

0.97 0.0000
(0.0%)

0.1493
(4.4%)

Proposed 3-factor model validation (3D woven carbon/epoxy dataset) 0.96 0.0044
(0.2%)

0.0503
(2.7%)

0.92 0.0024
(0.1%)

0.0827
(4.0%)

0.94 �0.0393
(�1.2%)

0.1582
(4.7%)

2694 B. Drach et al. / International Journal of Solids and Structures 51 (2014) 2687–2695
accurate predictions of effective Young’s moduli as compared to
the model based on the principal moments of inertia and sur-
face-to-volume ratio. Note that another drawback of the 4-factor
model is that orientation of the pore principal axes needs to be
in the direction of the global axes, otherwise we would need to
include orientation vectors in the model. In the model based on
‘‘shadows’’, no such adjustment is necessary. Table 3 summarizes
the data on accuracy of predicting the pore contributions to the
overall Young’s moduli based on 4 parameters (principal moments
of inertia and the surface-to-volume ratio) and 3 parameters (nor-
malized projected areas).

5. Conclusions

A statistical model based on the normalized projected area
parameters is proposed for correlation of geometry of irregularly
shaped pores with their contributions to the effective Young’s
moduli of the porous material. The model is applied to large data
sets of pores in two different composite materials. The Young’s
moduli in three orthogonal directions coinciding with the global
coordinate system of the specimens are considered. In each case,
one hundred pores were selected to construct the corresponding
models. Design of experiments techniques were utilized to select
the pores producing minimal variability of model predictions
across the entire factor space. The constructed models for three
Young’s moduli parameters ~E1, ~E2, ~E3 have high values of R2 in both
material systems (0.96, 0.95, 0.96 in carbon/carbon composite
model, and 0.96, 0.93, 0.97 in 3D woven carbon/epoxy composite
model), as well as relatively low values of RMSE (5.1%, 5.5% and
3.9% in carbon/carbon composite model and 3.2%, 4.3% and 4.4%
in 3D woven carbon/epoxy composite model). These results indi-
cate that the proposed models, created based on 100 pore shapes
in each case, can be used to estimate with reasonable accuracy
the Young’s moduli contribution parameters ~E1, ~E2 and ~E3 for large
data sets of pores, in our case more than 8000 in a sample of car-
bon/carbon composite and more than 24,000 in a sample of 3D
woven carbon/epoxy composite. One of the advantages of the pro-
posed method is that each pore is considered in the global coordi-
nate system of the specimen. In contrast to most presently used
micromechanical approaches, there is no need for solving the elas-
ticity problem in the coordinate system associated with the pore
followed by the coordinate transformation to the global coordinate
system. Thus, the only information needed to evaluate the pore’s
contribution to effective Young’s moduli is its projected areas in
the global coordinate system.
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