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Abstract

In this paper, a new notion of J -proximal mapping for a nonconvex lower semicontinuous subdi6erentiable
proper functional on Banach space is introduced. The existence and Lipschitz continuity of J -proximal map-
ping of a lower semicontinuous subdi6erentiable proper functional are proved. By applying the concept, we
introduce and study a new class of completely generalized quasi-variational inclusions in re9exive Banach
spaces. A novel and innovative iterative algorithm for :nding the approximate solutions is suggested and
analyzed. The convergence criteria of the iterative sequences generated by the new iterative algorithm is also
given. These algorithm and existence result generalize many known results under Hilbert space setting in
recent literature to re9exive Banach spaces. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Completely generalized quasi-variational inclusion; Subdi6erentiable; J -proximal mapping; Iterative
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1. Introduction

In recent years, variational inequality theory has been become very e6ective and powerful tools
for studying a wide class of nonlinear problems arising in many diverse :elds of pure mathematics
and applied sciences, such as mathematical programming, optimization theory, engineering, elasticity
theory, and equilibrium theory of mathematical economy and game theory etc, for example, see
([1–19,21–28,30–38]). Variational inequalities have been extended and generalized in di6erent di-
rections by using novel and innovative techniques both for own sake and for its applications. Some
useful and important generalizations of variational inequalities are the generalized set-valued mixed
variational inequalities and generalized quasi-variational inclusions including the nonlinear term.
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One of the most interesting and important problems in the variational inequality theory is the
development of an eIcient iterative algorithm to compute approximate solutions.

Under Hilbert space setting, there is a substantial number of iterative algorithms for :nding the
approximate solutions of various variational inequalities, see ([1–4,8–10,12,14–19,21–28,30–38]).
The most e6ective numerical technique is the projection method and its various variants, auxiliary
principle technique, Newton and descent framework. The applicability of the projection method is
limited due to the fact that it is not easy to :nd the projection except in a very special case and it
strictly depends on the inner product property of Hilbert spaces. Due to the presence of nonlinear
term, the project method cannot be applied to suggest any iterative algorithms for generalized mixed
variational inequalities and generalized quasi-variational inclusions in Banach spaces.

Recently, Cohen [7] and Ding [11,13] have extended the auxiliary principle technique to sug-
gest and analyse an innovative and novel iterative algorithm for computing the solution of mixed
variational inequalities in re9exive Banach space. Chang et al. [6] and Chang [5] have studied
some classes of set-valued variational inclusions with m-accretive operator and �-strongly accretive
operators in uniformly smooth Banach spaces.

Motivated and inspired by the research work going on in this :eld, in this paper, we :rst introduce
a new notion of J -proximal mapping for a lower semicontinuous subdi6erentiable proper (may not be
convex) functional on Banach spaces. Then, the existence and Lipschitz continuity of the J -proximal
mapping of the functional are proved under suitable conditions in re9exive Banach spaces. By using
the new concept and a similar technique of resolvent operator in Hilbert spaces, we introduce and
study a new class of completely generalized quasi-variational inclusions with nonconvex functional
in re9exive Banach spaces. A novel and innovative iterative algorithm for :nding the approximate
solutions is suggested and analysed. The convergence of the iterative sequences generated by the
new algorithm is also discussed. The new algorithm and existence result generalize many known
results under Hilbert space setting in recent literature to re9exive Banach spaces. We emphasize
that there are not any monotonicity and accretive assumptions on the set-valued mappings in our
theorem. Our result and method are new and di6erent from those in the known literature.

2. Preliminaries

Let E be a Banach space with the dual space E∗; 〈u; x〉 be the dual pairing between u∈E∗
and x∈E and CB(E∗) be the family of all nonempty closed bounded subset of E∗. H (·; ·) is the
Hausdor6 metric on CB(E∗) de:ned by

H (A; B) = max
{
sup
u∈A

d(u; B); sup
v∈B

d(A; v)
}
; ∀A; B∈CB(E∗);

where d(u; B) = inf v∈B d(u; v) and d(A; v) = inf u∈A d(u; v).

De�nition 2.1. Let A :E → CB(E∗) be a set-valued mapping; J :E → E∗ and g :E → E be two
single-valued mappings.

(1) A is said to be �A-Lipschitz continuous with Lipschitz constant �A¿ 0 if

H (Ax; Ay)6 �A‖x − y‖; ∀x; y∈E:
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(2) J is said to be �-strongly monotone (�¿ 0) if

〈Jx − Jy; x − y〉¿ �‖x − y‖2; ∀x; y∈E:
(3) g is said to be k-strongly accretive (k ∈ (0; 1)) if for any x; y∈E; there exists j(x−y)∈F(x−y)

such that

〈j(x − y); gx − gy〉¿ k‖x − y‖2;
where F :E → 2E

∗
is the normalized duality mapping de:ned by

F(x) = {f∈E∗: 〈f; x〉= ‖x‖ · ‖f‖; ‖f‖= ‖x‖}; ∀x∈E:

De�nition 2.2. Let ’ :E → R ∪ {+∞} be a proper functional. ’ is said to be subdi6erential at a
point x∈E if there exists a point f∗ ∈E∗ such that

’(y)− ’(x)¿ 〈f∗; y − x〉; ∀y∈E;
where f∗ is called a subgradient of ’ at x. The set of all subgradient of ’ at x is denoted by 9’(x).
The mapping 9’ :E → 2E

∗
de:ned by

9’(x) = {f∗ ∈E∗: ’(y)− ’(x)¿ 〈f∗; y − x〉; ∀y∈E}
is said to be subdi6erential of ’ at x.

De�nition 2.3. Let E be a Banach space with the dual space E∗, ’ :E → R ∪ {+∞} be a proper
subdi6erentiable (may not convex) functional and J :E → E∗ be a mapping. If for any given point
x∗ ∈E∗ and �¿ 0; there is a unique point x∈E satisfying

〈Jx − x∗; y − x〉+ �’(y)− �’(x)¿ 0; ∀y∈E: (2.1)

The mapping x∗ → x; denoted by J 9’� (x∗); is said to be J -proximal mapping of ’. We have
x∗ − Jx∈ �9’(x); it follows that J 9’� (x∗) = (J + �9’)−1(x∗).

Remark 2.1. If E is Hilbert space; ’ is a convex lower semicontinuous proper functional on E and
J is the identity mapping on E; then the J -proximal mapping of ’ reduces to the resolvent operator
of ’ on Hilbert space.

Let A; B :E → CB(E∗) and C;D; F :E → CB(E) be set-valued mappings. Let N :E∗ × E∗ →
E∗; f :E → E∗ and g; m :E → E be single-valued mappings. Let ’ :E × E → R ∪ {+∞} be such
that for each :xed z ∈E; ’(·; z) is a lower semicontinuous subdi6erentiable (may not be convex)
proper functional on E satisfying g(x) − m(y)∈ dom(9’(·; z)) for all x; y∈E where 9’(·; z) is
the subdi6erential of ’(·; z). We consider the following completely generalized quasi-variational
inclusion (CGQVI): :nd x∈E; u∈Ax; v∈Bx; w∈C(x); z ∈D(x) and y∈F(x) such that

〈f(w)− N (u; v); h− (g(x)− m(y))〉¿’(g(x)− m(y); z)− ’(h; z); ∀h∈E: (2.2)
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Special cases:

(I) If C(x)= {x} and f(x)=−f∗ for all x∈E where f∗ ∈E∗ is a given element, and N1(u; v)=
−N (u; v) for all u; v∈E∗, then the CGQVI (2.2) reduces to the following generalized set-valued
quasi-variational inclusion (GSVQVI): :nd x∈E; u∈A(x); v∈B(x) z ∈D(x) and y∈F(x) such that

〈N1(u; v)− f∗; h− (g(x)− m(y))〉¿’(g(x)− m(y); z)− ’(h; z); ∀h∈E: (2.3)

The GSVQVI (2.3) is new which, includes the generalized set-valued mixed variational inequalities
introduced and studied in [32,33,35,36] and many authors under Hilbert space setting and in [5,6]
under Banach space setting as very special cases. Most classes of quasi-variational inclusions and
generalized quasi-variational inequalities studied by many authors in Hilbert spaces are all very
spacial cases of the GSVQVI (2.3), see [1,2,4–18,21–28,30–36].

(II) If f∗ = 0; D(x) = {x} for all x∈E and ’(x; z) = ’(x) for all x; z ∈E, the GSVQVI (2.3)
reduces to the following generalized mixed implicit quasi-variational inequalities (GMIQVI): :nd
x∈E; u∈A(x); v∈B(x) and y∈F(x) such that

〈N (u; v); h− (g(x)− m(y))〉¿’(g(x)− m(y))− ’(h); ∀h∈H: (2.4)

(III) If E = H is a Hilbert space, F(x) = {x} and m(x) = 0 for all x∈H and N (u; v) = u+ G(v)
for all u; v∈H where G :H → H is a given single-valued mapping, then the GMIQVI (2.4) reduces
to the following set-valued mixed variational inequality (SVMVI): :nd x∈H; u∈A(x) and v∈B(x)
such that

〈u+ G(v); h− g(x)〉+ ’(h)− ’(g(x))¿ 0; ∀h∈H: (2.5)

The SVMVI (2.5) and its special cases were introduced and studied in [32,33] and many other
authors. The problems has many important and signi:cant applications in pure and applied sciences,
see, for example, [8,9,21,27,35,36].

(IV) If E=H is a Hilbert space, K :H → 2H such that K(x) is a nonempty closed convex subset
of H for each x∈H , and

’(x) = IK(x) =

{
0; if x∈K(x);
+∞; if x �∈ K(x);

then the GMIQVl (2; 4) reduces to the following general generalized quasi-variational inequalities
(GGQVI): :nd x∈H; u∈A(x); v∈B(x) and y∈F(x) such that

g(x)∈m(y) + K(x); 〈N (u; v); h− (g(x)− m(y))〉¿ 0; ∀h∈K(x): (2.6)

(V) If F(x) = {x} and m(x) = 0 for all x∈X , then the GGQVI (2.6) reduces to the following
generalized quasi-variational inequality (GQVI): :nd x∈H; u∈A(x) and v∈B(x) such that

g(x)∈K(x) and 〈N (u; v); h− g(x)〉¿ 0; ∀h∈K(x): (2.7)

In brief, for appropriate and suitable choices of N (·; ·); A; B; C; D; F; g; f; m and the underlying
space E, we can obtain many known and new classes of generalized variational inequalities and
generalized set-valued quasi-variational inclusions as special cases of the CGQVI (2.2), for example,



X.P. Ding, F.Q. Xia / Journal of Computational and Applied Mathematics 147 (2002) 369–383 373

see [1–19,21–28,30–38]. Furthermore, these types of generalized quasi-variational inclusions can
enable us to study many important nonlinear problems arising in mechanics, physics, optimization
and control, nonlinear programming, economics, :nance, regional structure, transportation, elasticity
and various applied sciences in a general and uni:ed framework.

Lemma 2.1 (Ding and Tan [20]). Let D be a nonempty convex subset of a topological vector space
and f :D × D → R ∪ {±∞} be such that
(i) for each x∈D; y → f(x; y) is lower semicontinuous on each compact subset of D,
(ii) for each 7nite set {x1; : : : ; xm}∈D and for each y =

∑m
i=1 �ixi with �i¿ 0 and∑m

i=1 �i = 1; min16i6m f(xi; y)6 0,
(iii) there exists a nonempty compact convex subset D0 of D and a nonempty compact subset K

of D such that for each y∈D\K , there is an x∈ co (D0 ∪ {y}) satisfying f(x; y)¿ 0.
Then there exists ŷ∈D such that f(x; ŷ)6 0; ∀x∈D.

Now we give some suIcient conditions which guarantee the existence and Lipschitz continuity
of the J -proximal mapping of a proper functional on re9exive Banach space.

Theorem 2.1. Let E be a re9exive Banach space with the dual space E∗ and ’ :E → R ∪ {+∞} be
a lower semicontinuous subdi;erentiable proper functional which may not be convex. Let J :E→E∗
be an �-strongly monotone continuous mapping: Then for any �¿ 0; and any x∗ ∈E∗; there exists
a unique x∈E such that

〈Jx − x∗; y − x〉+ �’(y)− �’(x)¿ 0; ∀y∈E: (2.3)

That is x = J 9’� (x∗) and so the J -proximal mapping of ’ is well de:ned:

Proof. For any given J :E → E∗; �¿ 0 and x∗ ∈E∗; de:ne a functional f :E × E → R ∪ {+∞}
by

f(y; x) = 〈x∗ − Jx; y − x〉+ �’(x)− �’(y); ∀x; y∈E:
Since J is continuous and ’ is lower semicontinuous; we have that for any y∈E; x → f(y; x)
is lower semicontinuous on E; then f(y; x) satis:es the condition (i) of Lemma 2.1. We claim
that f(y; x) satis:es the condition (ii) of Lemma 2.1. If it is false; then there exists a :nite set
{y1; : : : ; ym}∈E and x0 =

∑m
i=1 �iyi with �i¿ 0;

∑m
i=1 �i = 1 such that

〈x∗ − Jx0; yi − x0〉+ �’(x0)− �’(yi)¿ 0; ∀i = 1; : : : ; m:

Since ’ is subdi6erentiable at x0; there exists a point f∗ ∈E∗ such that

�’(yi)− �’(x0)¿ �〈f∗; yi − x0〉; ∀i = 1; : : : ; m:

It follows that

〈x∗ − Jx0 − �f∗; yi − x0〉¿ 0; ∀i = 1; : : : ; m:
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Then we have

0¡
m∑
i=1

�i〈x∗ − Jx0 − �f∗; yi − x0〉= 〈x∗ − Jx0 − �f∗; x0 − x0〉= 0;

which is a contradiction. Hence f(y; x) satis:es the condition (ii) of Lemma 2.1. Now take a :xed
ŷ∈ dom’. Since ’ is subdi6erentiable at ŷ; there exists a point f∗ ∈E∗ such that

’(x)− ’(ŷ¿ 〈f∗; x − ŷ〉; ∀x∈E:
Hence we have

f(ŷ; x) = 〈x∗ − Jx; ŷ − x〉+ �’(x)− �’(ŷ)

¿ 〈J ŷ − Jx; ŷ − x〉+ 〈x∗ − J ŷ; ŷ − x〉+ �〈f∗; x − ŷ〉
¿ �‖ŷ − x‖2 − (‖x∗‖+ ‖J ŷ‖+ �‖f∗‖)‖ŷ − x‖
= ‖ŷ − x‖ [�‖ŷ − x‖ − (‖x∗‖+ ‖J ŷ‖+ �‖f∗‖)]:

Let r= 1
� (‖x∗‖+ ‖J ŷ‖+�‖f∗‖); K = {u∈E: ‖ŷ− u‖6 '}. Then D0 = {ŷ} and K are both weakly

compact convex subset of E and for each x∈E \ K; there exists a ŷ∈ co({D0 ∪ {ŷ}) such that
f(ŷ; x)¿ 0. Hence all conditions of Lemma 2.1 are satis:ed. By the Lemma 2.1; there exists an
x̂∈E such that f(y; x̂)6 0; ∀y∈E; that is

〈J x̂ − x∗; y − x̂〉+ �’(y)− �’(x̂)¿ 0; ∀y∈E:
Now we show that x̂ is a unique solution of the auxiliary variational inequality (2.3). Suppose that
x1; x2 ∈E are arbitrary two solutions of the auxiliary variational inequality (2.3). Then we have

〈Jx1 − x∗; y − x1〉+ �’(y)− �’(x1)¿ 0; ∀y∈E; (2.9)

〈Jx2 − x∗; y − x2〉+ �’(y)− �’(x2)¿ 0; ∀y∈E: (2.10)

Taking y = x2 in (2.4) and y = x1 in (2.5); adding these inequalities; we have

〈Jx1 − Jx2; x1 − x2〉6 0:

Since J is �-strongly monotone; it follows that

�‖x1 − x2‖26 〈Jx1 − Jx2; x1 − x2〉6 0:

Hence we must have x1 = x2. This completes the proof.

Remark 2.2. Theorem 2.1 shows that for any strongly monotone and continuous mapping J :E →
E∗; and �¿ 0; the J -proximal mapping J 9’� :E∗ → E of a lower semicontinuous subdi6erentiable
proper functional ’ is well de:ned and for each x∗ ∈E∗; x = J’� (x∗) is the unique solution of the
auxiliary variational inequality (2.3). We emphasize that the functional ’ may not be convex in
Theorem 2.1.
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Theorem 2.2. Let E be a re9exive Banach space with the dual space E∗; J :E → E∗ be a �-strongly
monotone continuous mapping; ’ :E → R ∪ {+∞} be a lower semicontinuous subdi;erentiable
proper functional; and �¿ 0 be a arbitrary constant. Then the J -proximal mapping J 9’� of ’ is
1=�-Lipschitz continuous.

Proof. For any given x∗; y∗ ∈E∗; let x=J 9’� (x∗); y=J 9’� (y∗); then x∗−Jx∈ �9’(x); y∗−Jy∈ �9’(y).
Hence

�’(u)− �’(x)¿ 〈x∗ − Jx; u− x〉; ∀u∈E; (2.11)

�’(u)− �’(y)¿ 〈y∗ − Jy; u− y〉; ∀u∈E: (2.12)

Taking u= y in (2.11) and u= x in (2.12); adding these inequalities; we obtain

〈Jy − Jx; y − x〉6 〈y − x; y∗ − x∗〉:
Since J is �-strongly monotone; we have

�‖y − x‖26 〈y − x; y∗ − x∗〉6 ‖y − x‖ ‖y∗ − x∗‖
which implies J 9’� is 1=�-Lipschitz continuous.

Remark 2.3. If E is Hilbert space; ’ is a lower semicontinuous convex proper functional on E and
J is the identity mapping; then the Lipschitz continuity of J -proximal mapping is the nonexpansive
property of the resolvent operator of ’ on Hilbert space.

3. Main result

In order to obtain the main results, we need the following lemma which is Lemma 2.1 of Chang
et al. [6].

Lemma 3.1. Let E be a real Banach space and F :E → 2E
∗
be the normalized duality mapping.

Then; for any x; y∈E;
‖x + y‖26 ‖x‖2 + 2〈y; j(x + y)〉

for all j(x + y)∈F(x + y).

We :rst transfer the CGQVI (2.2) into a :xed point problem.

Theorem 3.1. (x; u; v; w; z; y) is a solution of the CGQVI (2.2) if and only if (x; u; v; w; z; y) satis7es
the following relation:

g(x) = m(y) + J 9’(·; z)� (J (g(x)− m(y))− �f(w) + �N (u; v)); (3.1)

where x∈E; u∈A(x); v∈B(x); w∈C(x); z ∈D(x); y∈Fx; �¿ 0 and J 9’(·; u)� = (J + �9’(·; z))−1

is the J -proximal mapping of ’(·; z).
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Proof. Assume that (x; u; v; w; z; y) satis:es relation (3.1); i.e.;

g(x)− m(y) = J 9’(·; z)� (J (g(x)− m(y))− �f(w) + �N (u; v)):

Since J 9’(·; z)� = (J + �9’(·; z))−1; the above equality holds if and only if

J (g(x)− m(y))− �f(w) + �N (u; v)∈ J (g(u)− m(y)) + �9’(g(x)− m(y); z):

By the de:nition of the subdi6erential of ’(·; z); the above relation holds if and only if

’(h; z)− ’(g(x)− m(y); z)¿ 〈N (u; v)− f(w); h− (g(x)− m(y))〉; ∀h∈E:
Hence we have

〈f(w)− N (u; v); h− (g(x)− m(y))〉¿’(g(x)− m(y); z)− ’(h; z); ∀h∈E;
i.e.; (x; u; v; w; z; y) is a solution of the CGQVI (2.2).

Remark 3.1. By Theorem 2.1; for any given �-strongly monotone continuous mapping J :E → E∗;
the J -proximal mapping J 9’� of a lower semicontinuous subdi6erential proper functional ’ is well
de:ned. So; we can transfer the CGQVI (2.2) to the :xed point problem (3.1). We can choose some
special J such that it is easy to :nd the solution of the :xed point problem (3.1).

Algorithm 3.1. Let A; B :E → CB(E∗) and C;D; F :E → CB(E) be set-valued mappings; f :E → E∗
and g; m :E → E be single-valued mappings with g(E) = E; J :E → E∗ be �-strongly monotone
and continuous; and ’ :E × E → R ∪ {+∞} be a lower semicontinuous subdi6erentiable proper
functional in the :rst argument such that for each x; y; z ∈E; g(x) − m(y)∈ dom 9’(·; z). For any
given x0 ∈E; u0 ∈A(x0); v0 ∈B(x0); w0 ∈Cx0; z0 ∈Dx0 and y0 ∈Fx0. By g(E) = E; there exists a
point x1 ∈E such that

g(x1) = m(y0) + J 9’(·; z0)� (J (g(x0)− m(y0))− �f(w0) + �N (u0; v0)):

By a theorem of Nadler [29]; there exists u1 ∈Ax1; v1 ∈Bx1; w1 ∈Cx1; z1 ∈Dx1 and y1 ∈Fx1 such
that

‖u1 − u0‖6 (1 + 1)H (Ax1; Ax0); ‖v1 − v0‖6 (1 + 1)H (Bx1; Bx0);

‖w1 − w0‖6 (1 + 1)H (Cx1; Cx0); ‖z1 − z0‖6 (1 + 1)H (Dx1; Dx0);

‖y1 − y0‖6 (1 + 1)H (Fx1; Fx0):

By induction, we can de:ne the following iterative sequence {xn}; {un}; {vn}; {wn}; {zn} and
{yn} for solving the CGQVI (2.2) as follows:

g(xn+1) = m(yn) + J 9’(·; zn)� [J (g(xn)− m(yn))− �f(wn) + �N (un; vn)];

un ∈Axn; ‖un+1 − un‖6
(
1 +

1
n+ 1

)
H (Axn+1; Axn);
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vn ∈Bxn; ‖vn+1 − vn‖6
(
1 +

1
n+ 1

)
H (Bxn+1; Bxn);

wn ∈Cxn; ‖wn+1 − wn‖6
(
1 +

1
n+ 1

)
H (Cxn+1; Cxn);

zn ∈Dxn; ‖zn+1 − zn‖6
(
1 +

1
n+ 1

)
H (Dxn+1; Dxn);

yn ∈Fxn; ‖yn+1 − yn‖6
(
1 +

1
n+ 1

)
H (Fxn+1; Fxn); n= 0; 1; 2; : : : ; (3.2)

where �¿ 0 is a constant.

Theorem 3.2. Let A; B :E → CB(E∗) and C;D; F :E → CB(E) be Lipschitz continuous with the
Lipschitz constant �A; �B; �C; �D and �F ; respectively. Let g; m :E → E and f :E → E∗ be Lip-
schitz continuous with the Lipschitz constants �g; �m and �f; respectively and g is k-strongly
accretive (k ∈ (0; 1)) satisfying g(E) = E. Let N :E∗ × E∗ → E∗ be �N1 -Lipschitz continuous in the
7rst argument and �N2 -Lipschitz continuous in the second argument. Let ’ :E × E → R ∪ {+∞}
be such that for each 7xed z ∈E; ’(·; z) is a lower semicontinuous subdi;erentiable proper func-
tional satisfying g(x)− m(y)∈ dom 9’(·; z) for all x; y; z ∈E. Let J :E → E∗ be �-strongly mono-
tone and �J -Lipschitz continuous. Suppose that there exists a constant �¿ 0 such that for each
x; y∈E; x∗ ∈E∗

‖J 9’(·; x)� (x∗)− J 9’(·;y)� (x∗)‖6 )‖x − y‖ (3.3)

and the following conditions are satis7ed:

2[�2J (�g + �m�F)2]
�2

− 3− 2(�2m�
2
F + )2�2D)
2

¡k¡ 1;

0¡�¡

√
(2k + 3)�2 − 4[�2J (�g + �m�f)2 + �2(�2m�

2
F + )2�2D)]

8[�2f�
2
C + (�N1�A + �N2�B)2]

: (3.4)

Then the iterative sequences {xn}; {un}; {vn}; {wn}; {zn} and {yn} generated by Algorithm 3.1
converge strongly to x̂; û; v̂; ŵ; ẑ and ŷ, respectively and (x̂; û; v̂; ŵ; ẑ; ŷ) is a solution of the CGQVI
(2.2).

Proof. Obviously; we have

‖xn+1 − xn‖2 = ‖g(xn+1)− g(xn)− g(xn+1) + g(xn)− xn+1 + xn‖2:

By Lemma 3.1; we obtain

‖xn+1 − xn‖26 ‖g(xn+1)− g(xn)‖2 − 2〈g(xn+1)− g(xn) + xn+1 − xn; j(xn+1 − xn)〉: (3.5)
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By Algorithm (3.1); we have

g(xn+1) = m(yn) + J 9’(·; zn)� [J (g(xn)− m(yn))− �f(wn) + �N (un; vn)]:

Hence; we have

‖g(xn+1)− g(xn)‖2 = ‖m(yn) + J 9’(·; zn)� [J (g(xn)− m(yn))− �f(wn) + �N (un; vn)]

−m(yn−1)− J 9’(·; zn−1)
� [J (g(xn−1)− m(yn−1))

−�f(wn−1) + �N (un−1; vn−1)]‖2:

Since ‖x + y‖26 2(‖x‖2 + ‖y‖2); by the assumptions and Theorem 2.2 we have

1
2‖g(xn+1)− g(xn)‖2

6 ‖J 9’(·; zn)� [J (g(xn)− m(yn))− �f(wn) + �N (un; vn)]

− J 9’(·; zn)� [J (g(xn−1)− m(yn−1))− �f(wn−1) + N (un−1; vn−1)]‖2

+ ‖m(yn)− m(yn−1) + J 9’(·; zn)� [J (g(xn−1)− m(yn − 1))− �f(wn−1) + �N (un−1; vn−1)]

− J 9’(·; zn−1)
� [J (g(un−1)− m(yn−1))− �f(wn−1) + �N (un−1; vn−1)]‖2

6
1
�2

‖J (g(xn)− m(yn))− �f(wn) + �N (un; vn)

− J (g(xn−1)− m(yn−1)) + �f(wn−1)− �N (un−1; vn−1)‖2 + 2‖m(yn)− m(yn−1)‖2

+ 2‖J 9’(·; zn)� [J (g(xn−1)− m(yn−1))− �f(wn−1) + �N (un−1; vn−1)]

− J 9’(·; zn−1)
� [J (g(xn−1)− m(yn−1))− �f(wn−1) + �N (un−1; vn−1)]‖2

6
2
�2

‖J (g(xn)− m(yn))− J (g(xn−1)− m(yn−1))‖2 + 4�2

�2
(‖f(wn)− f(wn−1)‖2

+
4�2

�2
‖N (un; vn)− N (un; vn−1) + N (un; vn−1)− N (un−1; vn−1)‖2

+ 2‖m(yn)− m(yn−1)‖2 + 2)2‖zn − zn−1‖2: (3.6)

By the Lipschitz continuity of J; g; m; F and (3.2); we have

‖J (g(xn)− m(xn))− J (g(xn−1)− m(yn−1))‖
6 �J (‖g(xn)− g(xn−1)‖+ ‖m(yn)− m(yn−1)‖)
6 �J (�g‖xn − xn−1‖+ �m‖yn − yn−1‖)
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6 �J

(
�g‖xn − xn−1‖+ �m

(
1 +

1
n

)
H (Fxn; Fxn−1)

)

6 �J

(
�g + �m�F

(
1 +

1
n

))
‖xn − xn−1‖: (3.7)

By the Lipschitz continuity of f and C; we have

‖f(wn)− f(wn−1)‖6 �f‖wn − wn−1‖6 �f

(
1 +

1
n

)
H (Cxn; Cxn−1)

6 �f�C

(
1 +

1
n

)
‖xn − xn−1‖: (3.8)

By the Lipschitz continuity of N (·; ·) in the :rst and second arguments; we have

‖N (un; vn)− N (un; vn−1) + N (un; vn−1)− N (un−1; vn−1)‖
6 ‖N (un; vn)− N (un; vn−1)‖+ ‖N (un; vn−1)− N (un−1; vn−1)‖
6 �N2‖vn − vn−1‖+ �N1‖un − un−1‖

6 �N2

(
1 +

1
n

)
H (Bxn; Bxn−1) + �N1

(
1 +

1
n

)
H (Axn; Axn−1)

6 (�N1�A + �N2�B)
(
1 +

1
n

)
‖xn − xn−1‖: (3.9)

By the Lipschitz continuity of m; D and F; we have

‖m(yn)− m(yn−1)‖6 �m

(
1 +

1
n

)
H (Fxn; Fxn−1)6 �m�F

(
1 +

1
n

)
‖xn − xn−1‖; (3.10)

‖zn − zn−1‖6
(
1 +

1
n

)
H (Dxn; Dxn−1)6 �D

(
1 +

1
n

)
‖xn − xn−1‖; (3.11)

By (3.6)–(3.11), we obtain

‖g(xn+1)− g(xn)‖26
[
4
�2
�2J

(
�g + �m�F

(
1 +

1
n

))2

+
8�2

�2
�2f�

2
C

(
1 +

1
n

)2

+
8�2

�2
(�N1�A + �N2�B)

2

(
1 +

1
n

)2

+ 4�2m�
2
F

(
1 +

1
n

)2

+ 4)2�2D

(
1 +

1
n

)2
]
‖xn − xn−1‖

=

[
8�2

�2
(�2f�

2
C + (�N1�A + �N2�B)

2)
(
1 +

1
n

)2



380 X.P. Ding, F.Q. Xia / Journal of Computational and Applied Mathematics 147 (2002) 369–383

+
4
�2
�2J

(
�g + �m�F

(
1 +

1
n

))2

+ 4�2m�
2
F

(
1 +

1
n

)2

+ 4)2�2D

(
1 +

1
n

)2
]
‖xn − xn−1‖: (3.12)

Since g :E → E is k-strongly accretive, by (3.5), we have

‖xn−1 − xn‖26 ‖g(xn+1)− g(xn)‖2 − 2〈g(xn+1)− g(xn) + xn+1 − xn; j(xn+1 − xn)〉

6

[
8�2

�2
(�2f�

2
C + (�N1�A + �N2�B)

2)
(
1 +

1
n

)2

+
4
�2
�2J

(
�g + �m�F

(
1 +

1
n

))2

+ 4�2m�
2
F

(
1 +

1
n

)2

+ 4)2�2D

(
1 +

1
n

)2
]
‖xn − xn−1‖ − (2k + 2)‖xn+1 − xn‖2:

It follows that

‖xn+1 − xn‖26
{
8�2(�2f�

2
C + (�N1�A + �N2�B)

2(1 + 1
n)

2)

(2k + 3)�2

+
4[�2j (�g + �m�F(1 + 1

n))
2 + �2(�2m�

2
F + )2�2D)(1 +

1
n)

2]

(2k + 3)�2

}
‖xn − xn−1‖2

= *2n‖xn − xn−1‖2;
where

*n =√
8�2(�2f�

2
C + (�N1�A+�N2�B)2)(1+

1
n)

2 + 4[�2J (�g + �m�F(1+1
n))

2 + �2(�2m�
2
F + )2�2D)(1+

1
n)

2]

(2k+3)�2
:

Let

*=

√
8�2(�2f�

2
C + (�N1�A + �N2�B)2) + 4[�2J (�g + �m�F)2 + �2(�2m�

2
F + )2�2D)]

(2k + 3)�2
:

Clearly, *n → * as n → ∞. Condition (3.4) implies that 0¡*¡ 1 and so 0¡*n¡ 1, when n is
suIciently large. It follows from (3.13) that {xn} is a Cauchy sequence in E. Let xn → x̂. Since the
mappings A; B; C; D; F are Lipschitz continuous, it follows from (3.2) that {un}; {vn}; {wn}; {zn}
and {yn} are also Cauchy sequences, we can assume un → û; vn → v̂; wn → ŵ; zn → ẑ and yn → ŷ,
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respectively. By Algorithm 3.1, we have

g(xn+1) = m(yn) + J 9’(·; zn)� [J (g(xn)− m(yn))− �f(wn) + �N (un; vn)]: (3.14)

By the Lipschitz continuity of f; g; J; N (·; ·), the condition (3.3) and Theorem 2.2, we have

‖J 9’(·; zn)� [J (g(xn)− m(yn))− �f(wn) + �N (un; vn)]

− J 9’(·; ẑ)� [J (g(x̂)− m(ŷ))− �f(ŵ) + �N (û; v̂)]‖
6 ‖J 9’(·; zn)� [J (g(xn)− m(yn))− �f(wn) + �N (un; vn)]

− J 9’(·; zn)� [J (g(x̂)− m(ŷ))− �f(ŵ) + �N (û; v̂)]‖
+ ‖J 9’(·; ẑ)� [J (g(x̂)− m(ŷ))− �f(ŵ) + �N (û; v̂)]

− J 9’(·; ẑ)[J (g(x̂)− m(ŷ))− �f(ŵ) + �N (û; v̂)]‖

6
1
�
[‖J (g(xn)− m(yn))− J (g(x̂ − m(ŷ))‖+ �‖f(wn)− f(ŵ)‖

+�‖(N (un; vn)− N (û; v̂)‖+ )‖zn − ẑ‖ → 0 as n→ ∞:

Hence, by letting n→ +∞ in equality (3.14), we obtain

g(x̂) = m(ŷ) + J 9’(·; ẑ)� [J (g(x̂)− m(ŷ))− �f(ŵ) + �N (û; v̂)]:

Now we prove that û∈Ax̂; v̂∈Bx̂; ŵ∈Cx̂; ẑ ∈Dx̂ and ŷ∈Fx̂, respectively. Since un ∈Axn, we have

d(û; Ax̂)6 ‖û− un‖+ d(un; Axn) + H (Axn; Ax̂)

6 ‖û− un‖+ �A‖xn − x̂‖ → 0; as n→ ∞:

Hence d(û; Ax̂) → 0 and so û∈Ax̂ since Ax̂∈CB(E∗). In a similar way, we can also prove that
v̂∈Bx̂; ŵ∈Cx̂; ẑ ∈Dx̂ and ŷ∈Fx̂. By Theorem 3.1, (x̂; û; v̂; ŵ; ŷ) is a solution of the CGQVI (2.2).
This completes the proof.

Remark 3.2. In Theorem 3.2; by suitable choices of N (·; ·); A; B; C; D; F; f; g; m and the space
E; we can obtain many new results and generalizations of some known results in ([1–19;21–28;30
–38]). We emphasize that the existence result and algorithm of solutions for the CGQVI (2.2) are
given in re9exive Banach spaces. Furthermore; the methods given in this paper are quite di6erent
from the methods given in the previous known literature ([1–19;21–28;30–38]). We emphasize that
there are no any monotonicity and accretive assumptions on set-valued mappings in Theorem 3.2.
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