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Clostridium perfringens type A enterotoxin forms mepacrine-sensitive
pores in pure phospholipid bilayers in the absence of putative
receptor proteins
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Abstract

Clostridium perfringens enterotoxin (CPE) is an important cause of food poisoning with no significant homology to other
enterotoxins and its mechanism of action remains uncertain. Although CPE has recently been shown to complex with tight
junction proteins, we have previously demonstrated that CPE increases ionic permeability in single Caco-2 cells using the
whole-cell patch-clamp technique, thereby excluding any paracellular permeability. In this paper we demonstrate that CPE
forms pores in synthetic phospholipid membranes in the absence of receptor proteins. The properties of the pores are
consistent with CPE-induced permeability changes in Caco-2 cells suggesting that CPE has innate pore-forming
ability. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Food poisoning caused by Clostridium perfringens
type A is due to the action of a 35 kDa enterotoxin,
CPE, which is produced when the organism sporu-
lates in the intestine. The enterotoxic activity of CPE
has been demonstrated by its ability to induce diar-
rhoea and abdominal cramps in human volunteers,
and marked fluid accumulation in isolated animal
intestinal loops [1,2]. In vitro studies have shown

Abbreviations: CPE, Clostridium perfringens enterotoxin;
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that CPE increases membrane ion permeability in a
number of cell lines, including Caco-2, Vero (monkey
kidney epithelium) cells and rabbit hepatocytes [3],
but its mechanism of action remains unclear. It is
suggested that CPE acts in a manner distinct from
other enterotoxins, in that it interacts with host cell
membrane proteins to form ‘small’ and ‘large com-
plexes’ [4]. Putative receptors have been identified
(claudin-4 [5] and claudin-3 [6]), both integral com-
ponents of tight junctions. Whether claudins repre-
sent true receptors is uncertain [7]. Occludin can also
complex with CPE but this does not confer suscep-
tibility to CPE in transfected cells [8]. It is possible
that junction proteins only become bound to CPE as
a secondary event.
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Sonada et al. [9] reported a fall in transepithelial
resistance (TER) in MDCK cells after application of
a COOH fragment peptide of CPE but only when
added to the basolateral side. Apical exposure did
not reduce TER. We recently described increases in
short-circuit current along with marked falls in TER
in intestinal Caco-2 monolayers in Ussing chambers
following exposure of the apical membrane to puri-
fied, intact CPE [10]. In addition we demonstrated
increases in ionic permeability in single cells using
whole-cell patch clamp [10]. In contrast to short-cir-
cuit measurements, whole-cell currents are not con-
taminated by paracellular permeability. In the
present study we set out to determine whether CPE
can form transmembrane pores in pure planar lipid
bilayers, and if their properties correlated with our
findings in Caco-2 cells. We showed that CPE can
induce ion channels in pure lipid bilayers devoid of
any putative receptor proteins, and these channels
have similar properties to those observed in Caco-2
cells.

2. Methods
2.1. C. perfringens enterotoxin

C. perfringens type A enterotoxin was purified as
described [11] and redissolved from a 15% (w/v) am-
monium sulphate precipitate in 20 mM phosphate
buffered saline (PBS, pH 7.2), and dialysed overnight
at 4°C against PBS. Toxin concentration was esti-
mated by UV absorbance (Ex=1.33 mg !cm’
[11]). The working stock solution of CPE was stored
at 4°C at a concentration of ~0.5 mg/ml, to mini-
mise aggregation.

2.2. Planar lipid bilayer recording

Planar lipid bilayer recordings were carried out
using a system described previously [12]. Pure syn-
thetic lipids (Avanti Polar Lipids, Birmingham, AL,
USA) were dispersed in chloroform and stored at
—70°C under nitrogen. Briefly, lipid bilayers were
formed from a dispersion of 15 mg/ml palmitoyl-
oleoylphosphatidylethanolamine and 15 mg/ml pal-
mitoyloleoylphosphatidylserine in n-decane, which

was drawn across a 0.4 mm diameter hole in a poly-
styrene cup separating two solution-filled chambers,
designated cis and trans. The cis chamber (to which
the toxin and drugs were added) was held at ground
(0 mV), and the trans chamber was clamped to a range
of potentials using a GeneClamp 500 patch-clamp
amplifier equipped with a CV-5B (100 GQ) bilayer
headstage (Axon Instruments). The sign of the mem-
brane potential refers to the trans chamber, and cur-
rents are defined as ‘positive’ when cations flow from
trans to cis. Transmembrane currents were low-pass
filtered at 500 Hz (8 pole Bessel) digitised at 5 kHz,
and recorded directly to computer disk via a Digida-
ta 1200 AD interface (Axon Instruments). Mem-
brane capacitance was measured by differentiating a
triangle wave input of 0.2 kHz. Only bilayers that
had a conductance of less than 10 pS and initial
capacitance of at least 300 pF were used. Unless
otherwise stated, lipid bilayers were bathed in 100
mM NaCl containing 5 mM HEPES/NaOH (pH
7.3), and all recordings were made at room temper-
ature (19-22°C).

2.3. Channel analysis

30-180 s recordings were carried out for each
holding potential and analysed off-line using PAT
v7.0 software (Strathclyde Electrophysiology Soft-
ware). Maximum current amplitudes were deter-
mined from the peaks of Gaussian functions fitted
to amplitude histograms, and for single-channel re-
cordings integration of these histograms yielded the
probability of a channel being open (P,). Event tran-
sitions were detected by setting a threshold at 50% of
the maximum current amplitude, and channel life-
times were calculated from exponential fits to dwell
time histograms. Ionic permeabilities relative to Na™
(P,/PN,) were calculated using the reduced Goldman
equation:

L (N0t (52 )

- F n([NaﬂtJr <If;d>.[x]t>

where E.., is the measured reversal potential (mV),
t is trans, c is cis (ground) and X is the replacement
cation. R, T and F have their usual significance.
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Fig. 1. Single-channel currents. (A) Recordings from a planar lipid bilayer after adding 10 pg CPE to the cis (ground) chamber. Bath-
ing solution was symmetrical 100 mM NaCl, 5 mM HEPES/NaOH (pH 7.2). Applied voltages are given, and the open and closed lev-
els are indicated by the dashed and dotted lines respectively. Note the reversal in the direction of current between negative and posi-
tive voltages. (B) Current-voltage (/-V) relationship of CPE-induced channels bathed in 100 mM NaCl. Values represent
mean £ S.E.M. of nine bilayers. The solid line is plotted by regression analysis, and from the slope, the single-channel conductance is
2702 pS (mean £ S.E.M.). Note that the error bars are hidden within the symbols. (C) Voltage-dependent closure of CPE-induced
channels. Single-channel open probability (P,) plotted versus applied voltage demonstrates the tendency of the channels to close at
voltages over +10 mV. (D) Channel lifetime analysis. Mean open and closed lifetimes of typical CPE-induced single-channel record-
ings, plotted versus applied voltage. As the applied voltage becomes more positive, the mean open time (7,; () decreases, and the
mean duration of the longer closed times (7.; M) increases. The duration of the brief closed times (mean lifetime <10 ms, @) does
not change.

3. Results positive and negative holding potentials (as shown

in Fig. 1A).

3.1. CPE-induced unit currents

Addition of up to 10 ug CPE to the cis bilayer
chamber resulted in the appearance of rectangular
current fluctuations, as shown in Fig. 1A. At similar
concentrations of CPE channels inserted in ~ 50% of
all bilayers used. The time taken for single-channel
current steps to appear was generally between 20 and
40 min, but ranged from 5 to 60 min. When more
than one channel incorporated, the step increases in
current were of uniform magnitude at equivalent

Single-channel amplitudes were determined from
the peaks of amplitude histograms fitted to Gaussian
functions, and a combined current-voltage (I-V) re-
lationship from nine independent experiments is
shown in Fig. 1B. The data are fitted to a straight
line giving a single-channel slope conductance of
270+ 2 pS in 100 mM NaCl (mean£S.E.M., n=9).

3.2. Channel orientation and lifetimes

Channel activity was noted to be voltage depen-
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Fig. 2. Mepacrine block. (A) Representative sequential record-
ings from a single bilayer to show the development of ‘flicker’-
type block following the addition of increasing concentrations
of mepacrine. Note that with 10 uM mepacrine the current am-
plitude does not reach the full open level. Bilayer held at +70
mV. Open and closed levels are indicated. (B) The top three
traces show a contiguous recording trace from a single channel
in 100 mM NaCl at +70 mV. Note the occasional appearance
of channel openings. The lower three traces show a contiguous
recording 60 s after adding 40 uM mepacrine to the cis
(ground) chamber. Note the pronounced ‘flicker’ (as individual
blocker molecules bind and unbind) and apparent reduced am-
plitude because openings between individual blocking events are
too brief to be fully resolved.

dent (Fig. 1C). The channels were mainly open at
negative membrane potentials (P, =0.87 at —70
mV) but tended to close at potentials greater than
+30 mV (P, <0.1 at +70 mV). This voltage-sensitive
behaviour provided a strong clue to the orientation
of individual channels in the bilayer, and indicated
that most channels incorporated in a preferred ori-
entation. Very occasionally (in approx. 5% of the
bilayers in which channels became incorporated),

unit currents showed the reverse pattern of voltage
sensitivity (i.e. the channels tended to close at —70
mV rather than at +70 mV).

Mean open and closed single-channel lifetimes
were determined by fitting exponential distributions
to histograms of open and closed dwell times. At
negative potentials, when the channel was mostly
open, the mean open time (7,) was 1239 ms at —70
mV. At positive potentials (+70 mV), the channel
tended to close after briefer openings, with a reduced
7, of only 15 ms (e.g. Fig. 1D). Closed time analysis
was consistent with at least two components, includ-
ing a short closed time of <10 ms, illustrated by
typical ‘bursting’ behaviour in which channel open-
ings were separated by long periods of closure in
single channel recordings (e.g. Fig. 2B).

3.3. The ionic selectivity of CPE channels

We investigated the selectivity of the pore for dif-
ferent monovalent ions. Complete replacement of
100 mM CI1™ with the larger ion gluconate™ reduced
the single-channel conductance only marginally
(250t 4 pS, mean £ S.E.M.; n=4 bilayers). Complete
replacement of 100 mM Na® with K™ more than
doubled the single-channel conductance to 56515
pS (mean = S.E.M., n=3) whereas detectable channel
activity was temporarily abolished by complete re-
placement with N-methyl-p-glucaminet (7.3 A),
channel activity returning upon replacement with
NaCl (data not shown). Intermediate sized cations
were examined by replacing 80 mM Na™ on one
side of the bilayer with organic cations of geometric
mean diameters: dimethylamine® (4.4 A), dieth-
anolamine® (6.0 A) and choline* (6.6 A). Relative

Table 1

Ion selectivity of CPE-induced pores in lipid bilayers

Ton (1) Size (A)  Ewy (mV)  Py/Pna
Dimethylammonium™ (3) 4.4 +10x2 0.59
Diethylammonium™ (3) 6.0 +12+2 0.52
Choline™ (4) 6.6 +25+4 0.21

The selectivity of the CPE-induced pores to different cations
with the number of bilayer experiments for each cation are giv-
en in parentheses (n) and the geometric mean diameter of the
cation (A). The reversal potentials (*S.E.M.) and calculated
permeability ratios were obtained in asymmetric concentrations
of Nat (mM) 100:20 cis:trans, with 80 mM of the replacement
ion in the trans chamber.
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permeability ratios (P,:Pn.) were calculated from
reversal potentials using the modified Goldman
equation (see Section 2). In each case, the reversal
potential was obtained by extrapolation from -V
plots. Table 1 shows a clear fall in permeability ratios
as the mean diameter of the replacement cation in-
creases. This sequence mirrors that obtained in Caco-
2 monolayers exposed to CPE [10].

3.4. Channel block by mepacrine

The pores formed by the ADP-ribosylating C2
toxin of Clostridium botulinum in planar bilayers
[13] are inhibited by ~20 uM chloroquine, and we
examined the ability of the structurally similar com-
pound mepacrine (quinacrine) to inhibit CPE-in-
duced single-channel currents. Addition of 4 uM me-
pacrine to the cis chamber resulted in a “flicker-type’
block of the channel, as illustrated in Fig. 2, and the
effect was very marked with 40 uM mepacrine, which
eventually resulted in permanent closure of the chan-
nels. Channel block appeared to be independent of
membrane voltage (at least between holding poten-
tials of £80 mV).

4. Discussion

Using pure, synthetic phospholipids completely de-
void of protein components, we have shown that the
CPE is able to form pores in pure lipid bilayers in the
absence of a receptor protein. Thus binding of CPE
to host cell proteins to form complexes such as clau-
din is not a prerequisite for pore formation.

We noted the requirement for a relatively high
concentration (~ 10 pg) of CPE, and for relatively
long periods of exposure. This contrasts with the
rapid increases in short-circuit current recorded
from Caco-2 cell monolayers in Ussing chambers at
37°C, which reached a maximum 3 min after the
addition of ~2 ug CPE [10]. It is known that CPE
(and other pore-forming toxins) aggregates when
held at 4°C [14,15] and this may have contributed
to the inefficiency of channel insertion. Membrane
incorporation may also be relatively inefficient in
the absence of specific ‘receptors’ such as claudins.
Such proteins may act to localise the toxin at the
bilayer/solution interface or assist insertion into the

membrane by promoting conformational changes in
CPE (from B-sheet to an a-helical structure [16]). A
mechanism of this type has been successfully tested
for spider venom ca-latrotoxin (o-LTX) and its cell-
associated surface receptors, which appear to have
no structural role in the pores formed by the toxin
[17].

The first direct observation that CPE has ion chan-
nel activity was obtained by Sugimoto et al. using
soybean asolectin bilayers [18]. In light of concern
regarding the purity of soybean extracted asolectin,
our results corroborate their findings. However, in
contrast to the broad range of conductances (40—
450 pS) reported by Sugimoto, we have found that
the single channels described exhibit a narrow range
of conductance values.

The well-defined channels we describe in this re-
port exhibit many features that compare closely with
our previous findings in Caco-2 cells [10]:

1. The currents in each case are carried predomi-
nantly by cations.

2. Voltage-dependent closure of the channels with
increasing depolarisation (>+30 mV) mirrors
the time-dependent closure of outward currents
(in response to >+40 mV commands) observed
in whole-cell patch-clamp recordings of Caco-2
cells.

3. The reduced permeability of single channels to
organic cations (compared to Na') as the geomet-
ric diameters of the cations are increased corre-
sponds to results obtained previously in Caco-2
monolayers in Ussing chambers.

4. The large cation N-methyl-p-glucamine is imper-
meant in single, whole-cell patch-clamp recordings
and impermeant in single channels in bilayers.

Overall, our findings strongly suggest that CPE-
induced changes in membrane permeability result
from pores formed entirely by CPE without the re-
quirement for activation of cell signalling pathways
and distinct from any increases in paracellular con-
duction.

The role of mepacrine as a channel blocker is also
potentially significant, because very few compounds
are known to block toxin-induced pores in mem-
branes. Mepacrine also blocks mammalian ion chan-
nels (end plate currents and the neuronal nicotinic
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acetylcholine receptor [19,20]) in a similar manner,
consistent with an ‘open channel’ mechanism of
block. The effect of mepacrine on native tight junc-
tion function will be worth examining in future stud-
ies to discriminate between pore formation and para-
cellular changes.

In conclusion, we show that CPE-induced pores
exhibit properties that correspond to ionic currents
observed in intact monolayers and single cells in in-
testinal Caco-2 cells. In addition, host cell proteins
such as claudin and occludin are not required struc-
turally in the formation of CPE-induced pores. In-
stead, we speculate that such proteins may have a
role in raising the local concentration of the toxin,
and may even promote insertion of the toxin into the
membranes of intestinal epithelia.
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