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Introduction
Few technologies have impacted cancer as broadly as drug
delivery systems. Novel delivery systems have made possible
the clinical use of new therapeutics, have permitted cancer
treatments that have significantly reduced side effects, and
have enabled new and better chemotherapeutic regimens using
existing pharmaceuticals. Drug delivery systems have also facil-
itated cancer prevention as well as the pain management asso-
ciated with cancer progression and chemotherapy. Table 1
summarizes many of the drug delivery systems currently
approved by regulatory authorities and being used by oncolo-
gists. These systems are now being used by hundreds of thou-
sands of cancer patients each year and represent a multibillion
dollar a year industry. In this article, we review current method-
ologies for cancer drug delivery and examine future directions
in this field.

Controlled delivery of novel cancer therapeutics
Since many molecules, particularly peptides and polypeptides,
have short in vivo half-lives, controlled drug delivery systems
are critical to enable the protection and successful use of such
drugs (Figure 1).The delivery of these molecules was once con-
sidered impossible because of the difficulty associated with the
diffusion of large molecules through the materials (polymers) of
conventional drug delivery (controlled release) systems (Ball,
1997). To solve this problem, it was discovered that such mole-
cules could be physically embedded in polymers in such a man-
ner as to create a complex network of interconnecting pores
through which the drug could subsequently diffuse (Langer and
Folkman, 1976). By controlling the pore structure and polymer
composition, it is possible to design systems that release the
drug at nearly any rate and for nearly any duration (e.g., days to
years). Early studies used nondegradable polymers such as
ethylene-vinyl acetate copolymer. Subsequently, lactic-glycolic
acid copolymers were used to develop degradable polymer sys-
tems. This type of approach has enabled chemotherapy based
on analogs of luteinizing hormone-releasing hormones such as
leuprolide acetate (nanopeptides) for the treatment of advanced
prostate cancer (Okada, 1997). The development of successful
cancer therapy based on these molecules presented enormous
challenges. The drug was initially administered orally or nasally,
but only 0.05 percent and 3 percent of the drug, respectively,

were bioavailable in animals, blood levels of the drug were errat-
ic (Okada et al., 1982), and the half-lives of these molecules
when injected were only minutes. However, using the above
mentioned controlled delivery approaches, drugs were physi-
cally embedded in polymers where they were released by a
combination of diffusion through pores as well as polymer
matrix degradation (Ogawa et al., 1988; Dijkmana et al., 1990).
This approach has provided the basis for injectible delivery sys-
tems (Lupron, Zolodex, Decapeptyl) lasting from one to four
months and has been successfully used by hundreds of thou-
sands of patients (Sartor et al., 2003; Langer, 1998).

Drug lifetime can also be extended by chemical binding of
drugs to water-soluble polymers such as polyethylene glycol
(PEG) (Duncan, 2003). This approach can decrease immuno-
genicity and extend the biological lifetime of the drug. Such an
approach has been used for the delivery of asparaginase, inter-
feron, and G-colony stimulating growth factor (G-CSF).

Local chemotherapy
Cancer drugs can cause enormous toxicity; therefore, the
opportunity to deliver them locally creates the possibility of
improving both the safety and efficacy of cancer chemotherapy.
The physical addition of a polymer to a cancer therapeutic has
the advantage of enhancing the benefit of surgery while mini-
mizing the systemic toxicity that is usually associated with stan-
dard drug treatments. The drug itself becomes more effective
when placed next to, and delivered directly to, its targeted tissue
and much higher local drug concentrations can be achieved
compared to traditional approaches. Novel polymers such as
polyanhydrides were designed and have been utilized for this
purpose (Peppas and Langer, 1994). These polymers, in the
form of wafers, have been used to locally deliver chemothera-
peutic drugs such as carmustine (BCNU) to treat brain cancer
(Brem et al., 1995). In these patients, the surgeon resects as
much of the tumor as possible at the time of the operation and
then places small polymer drug wafers at the surface of the
brain in the tumor resection cavity (Figure 2). The drug is slowly
released from these wafers for approximately three weeks to
destroy any remaining tumor. Because the drug is delivered
locally, rather than systemically, harmful side effects that nor-
mally occur are minimized. One clinical trial showed that after 2
years, 31% of the patients treated were alive whereas only 6%
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of patients receiving standard brain tumor therapies survived
(Valtonen et al., 1997). This approach was approved in 1996 by
the U.S. Food and Drug Administration for patients with recur-
rent glioblastoma, the first new brain cancer therapy approved
in over 20 years. In 2003, the FDA approval was extended 
to include initial surgery for malignant glioma based on two
additional randomized prospective studies that demonstrated
improved survival and safety (Westphal et al., 2003). Studies
have also reported benefit for experimental brain metastases
(Ewend et al., 1998) and invasive pituitary adenomas (Laws 
et al., 2003). Local delivery of chemotherapeutics from long-
lasting implantable lipid formulations to spinal fluid has also
been used clinically to treat carcinomatous meningitis (Brem
and Langer, 1996).

Targeted delivery and altering pharmacokinetics
An exciting and rapidly developing area involves developing
approaches for cancer drug targeting. One method has been 
to couple small molecular weight chemotherapeutic drugs to

polymers which have the effect of altering the biodistribution of
the drug following intravenous administration. This approach is
based on the concept that low molecular weight anticancer
drugs will penetrate most tissues because they pass rapidly
through cell membranes such that the drug is distributed quickly
throughout the body with no selectivity toward the tumor. In the
case of polymer drugs, the polymer drug linkages are designed
so that they are stable in the bloodstream. This feature permits
the polymer drug to circulate for a longer time than the drug
itself because the higher molecular weight polymer drug system
can only gain entry into the cells through endocytosis. Because
most normal tissues have nonleaky microvasculatures, the
polymer drug accumulates to a greater extent in tumor tissue,
which has a leaky vasculature. This type of approach has been
used where polymers such as N-(2-hydroxypropyl) methacry-
lamide (HPMA copolymer) conjugated to doxorubicin can be
cleaved by specific enzymes in lysosomes. Up to 70 times 
more doxorubicin has been shown to accumulate in mouse
melanoma tumors than in normal tissues. In addition, the maxi-
mum tolerated dose of the polymer drug is up to ten times
higher than that of the free drug (Langer, 1998). Targeting moi-
eties can also be added to the polymer to aid in treatment 
of specific tumors, e.g., adding galactosamine to target
hepatocellular carcinoma. A variety of other polymer systems
have also been developed using this approach. Currently, there
are ten such different polymer drug systems at various stages
of clinical trials (Duncan, 2003).

Another strategy through which drug distribution can be
altered by drug delivery involves the use of liposomes. In this
approach, the drug(s) are encapsulated inside liposomes that
circulate throughout the bloodstream where the drug is emitted
via diffusion through the liposome or by liposomal degradation.
Encapsulation of the drug in a liposome reduces many of the
side effects associated with certain anticancer agents such as
cardiac toxicity, for instance, by preventing release of the drug at
undesirably high concentrations in the body as would occur if
the drug were simply injected. Attaching cancer cell-targeting
ligands to liposomes in order to preferentially direct the lipo-
somal drugs to cancer cells is an area of active research.
Another important advantage of the use of a liposome as
opposed to attaching a drug to a single polymer chain is that it
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Figure 1. There are a variety of different delivery strategies that are either
currently being used or are in the testing stage to treat human cancers

Examples of these include polymer microspheres impregnated with pep-
tides that are currently being used in the treatment of advanced prostate
cancer (the drug can be released through a combination of diffusion and
polymer degradation), polymer wafers impregnated with BCNU that are
currently being used in the localized treatment of brain cancer, osmotic
pumps that are being used to deliver antiangiogenic and other drugs, lipo-
somal systems that have been approved for use in the treatment of
Kaposi�s sarcoma, polymer/drug targeting moiety conjugates that are
being tested against a variety of human cancers, and controlled release
microchips. (Anticancer drugs are depicted in blue.)

Figure 2. Polymer implants impregnated with BCNU are shown lining a
human brain tumor resection cavity where the loaded drug will gradually
be released as polymer wafers dissolve
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can have a much higher drug carrying capacity. However, criti-
cal issues regarding this approach that must be resolved
include the prevention of the liposomes from accumulating and
being cleared by the phagocytic cells of the reticuloendothelial
system. One approach to reduce this involves attaching poly-
ethylene glycol to the liposomes. Liposomal systems with
duanorubicin and doxorubicin have now been approved by
regulatory authorities for the treatment of HIV-associated Kaposi’s
sarcoma, and liposomal amphotericin B has been approved for
fungal infections in cancer (Langer, 1998).

Transdermal delivery
Transdermal delivery has played an important role in both can-
cer therapy and prevention.Transdermal patches are composed
of polymers that house the drug that will diffuse through the
polymer and the skin to reach the sys-
temic circulation. Of particular note has
been the value of nicotine patches in
preventing smoking and prolonging life.
For example, 2 years after being on
transdermal nicotine patches for 12
weeks, four times as many patch wear-
ers did not smoke compared to patients
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Figure 3. Prototype of drug-releasing microchip
(Microchips, Inc.) with the capacity to deliver
hundreds of doses over an implant life lasting
from months to years

A: Two chips (top and bottom view) next to
pencil tips. B: Schematic of the drug delivery
microchip.

who received placebos (Henningfield, 1995). If one uses these
studies as an estimate, over one million United States smokers
have given up smoking to date due to the use of these patches.
In addition, transdermal delivery systems for fentanyl are used
to relieve pain in cancer patients. These systems last for 3 days  
and are used by hundreds of thousands of patients each year
(Prausnitz et al., in press).

Targeting the tumor vasculature
A new generation of cancer therapeutics whose target is the  
microvasculature is in late stage clinical development.Validation  
of this antiangiogenic strategy to treat human cancer was
recently provided by a large randomized clinical trial in which
the VEGF (vascular endothelial growth factor, also known as
VPF, the vascular permeability factor) antagonist bevacizumab

Table 1. Drug delivery systems for cancer treatment and prevention currently in use

Delivery name Drug Type of system Cancer treatment

Zoladex LHRH analog Injectable polymer rod Advanced prostate cancer

Lypron depot LHRH analog Injectable polymer microsphere Advanced prostate cancer

Decapeptyl LHRH analog Injectable polymer microsphere Advanced prostate cancer

Gliadel BCNU Implantable wafer Malignant gliomas

Doxil Doxorubicin Liposome Ovarian cancer, AIDS-related 

Kaposi�s sarcoma

AmBisome Amphotericin Liposome Fungal Infections for patients

undergoing chemotherapy

Daunoxome Daunorubicin Liposome AIDS-related Kaposi�s

Zinostatin (stimalmer) SMANCS Polymer drug Hepatocellular carcinoma

Oncaspar L-Asparaginase PEGylated drug Acute lymphoblastic leukomia

PEG intron α-Interferon PEGylated drug Various cancers
Neulasta G-CSF PEGylated drug Prevention of neutropenia 

associated with cancer 
chemotherapy

Duragesic Fentanyl Transdermal patch Pain management

Habitrol Nicotine Transdermal patch Smoking cessation�
cancer prevention

Nicotrol Nicotine Transdermal patch Smoking cessation�
cancer prevention

Nicoderm Nicotine Transdermal patch Smoking cessation�
cancer prevention

Prostep Nicotine Transdermal patch Smoking cessation�
cancer prevention

Depocyt Cytosine arabinocide Lipid depot in cerebrospinal fluid Carcinomatous meningitis
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(Avastin), administered along with conventional chemotherapy,
significantly improved survival of patients with colorectal can-
cer. Bevacizumab, a recombinant humanized anti-VEGF mono-
clonal antibody, was administered in combination with the
standard chemotherapy of irinotecan, fluorouracil, and calcium
folinate to a cohort of over 800 patients. Patients who received
the combination therapy showed a median survival time of 20.3
months compared to the 15.6 months of the placebo group
(McCarthy, 2003). Controlled release polymers have proven
essential in the development of bioassays for angiogenesis
inhibitors since the mid-seventies (Langer et al., 1976) and have
represented a method for testing the efficacy of angiogenesis
inhibitors in vivo since that time (Moses and Langer, 1991;
O’Reilly et al., 1994, 1997; Moses et al., 1999; Fernandez et
al., 2003).

Cancer therapies that focus on suppression of the vascula-
ture represent both interesting opportunities and important
challenges for drug delivery. For example, a number of these
endogenous inhibitors, for which endostatin (O’Reilly et al.,
1997), angiostatin (O’Reilly et al., 1994), and troponin I (Moses
et al., 1999) serve as prototypes, are proteins that require differ-
ent drug delivery approaches than do smaller, synthetic drug
preparations. In the case of endostatin, for example, it was
demonstrated that sustained systemic delivery, as opposed to
bolus administration, resulted in increased therapeutic efficacy
against pancreatic cancer.This finding has led to the continuous
administration of endostatin in both preclinical and clinical set-
tings via the use of osmotic pumps (Kisker et al., 2001). In ani-
mal models, minocycline has been shown to be an effective
inhibitor of angiogenesis when administered via polymer but
proved to be ineffective due to toxicity when administered at
high doses systematically (Weingarten et al., 1995). It may be
then that local, sustained-release polymer delivery may be nec-
essary in certain instances of antiangiogenic therapy.

Studies aimed at achieving maximum therapeutic efficacy
of antiangiogenic drugs have, ironically, led to the development
of “antiangiogenic scheduling” of conventional chemotherapies,
an approach which has now been shown to circumvent the drug
resistance induced by these same chemotherapies delivered on
the traditional chemotherapeutic schedule. Delivery of the
chemotherapeutic agent cyclophosphamide on a schedule that
was purposefully low-dose with high frequency as opposed to
classic bolus administration resulted in effective control of tumor
growth with a concomitant lack of drug resistance in a number
of tumor models (Browder et al., 2000; Klement et al., 2000).
This low dose metronomic chemotherapy (Man et al., 2002)
approach is now being tested in clinical trials at a variety of test-
ing sites in the United States.

The unique vasculature of tumors (increased permeability,
complex 3D architecture) has recently been exploited to deliver
tumor-suppressing drugs with increased efficiency (Jain, 1999).
Liposome-mediated delivery of anticancer drugs has improved
significantly as a result of manipulating the physicochemical
properties of liposomes in ways that are responsive to specific
physiological features of a tumor, with the goal of optimizing the
accumulation of the drug in the tumor vessels (Campbell et
al., 2002).

Future considerations and challenges
Although major advances have been made in delivery of cancer
chemotherapeutics, much work lies ahead. For example, local-
ized delivery of drugs suffers from limited drug diffusion within

cancerous tissues and sometimes undesirable interactions
between drug and delivery vehicle. In order to address some of
these challenges, increasingly smarter and more novel delivery
systems are being developed. For example, a controlled release
microchip that houses, and delivers on demand, many different
drugs (e.g., “pharmacy on a chip”) has recently been developed
(Figure 3) (Santini et al., 1999; Richards-Grayson et al., 2003).
These systems can potentially be preprogrammed or externally
regulated to release drugs at any time, pattern, and rate. Such a
system might one day enable novel combination therapies, e.g.,
attacking tumor cells initially with angiogenesis inhibitors fol-
lowed by destroying the remaining tumor cells with chemothera-
peutic drugs and then maintaining the patient on antiangiogenic
therapy long term, e.g., Jain, 2001.

We are entering an era of molecular targeting of new thera-
pies to cancer as well as of significantly improved chemothera-
peutic agents. In order to most benefit from these advances, it
will be necessary to be equally attentive to the development of
desirable methods of drug delivery of these chemotherapeutic
agents. Advances in drug delivery will allow us to improve 
and expand the therapeutic armamentarium against a broad
spectrum of cancers.
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