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Abstract 

Wöhler curve is the most frequently used S-N curve in life calculations and in determination of fatigue damage accumulation in 
components of supporting structures. The curve can solely be derived from long-term fatigue tests with constant stress amplitude by 
means of Experimental Stress Analysis (EAN). Fatigue tests are performed using special testing devices while the whole testing process 
follows relevant regulations. The set of data gained by measurements undergoes further processing and evaluation by means of 
mathematical statistics using relevant application software. This paper presents an example of a statistical evaluation of a data set obtained 
from fatigue tests of construction steel KONOX 345T. The paper further includes theoretical foundations for calculation and application 
of a simple linear regression model. In the applications the model is fitted to relevant data using the method of least squares. For quality 
measurements of the regression model we used two error measures – root mean squared error and coefficient of determination. 
© 2012 The Authors. Published by Elsevier Ltd. 

Selection and/or peer-review under responsibility of the Branch Office of Slovak Metallurgical Society at Faculty of Metallurgy and 
Faculty of Mechanical Engineering, Technical University of Košice. 

Keywords: fatigue life; Wöhler curve; simple linear regression model; method of least squares; coefficient of determination. 

Nomenclature 

a, b parameters: intercept (-), slope (MPa-1) 
Mk torsion moment (Nm) 
N number of cycles (-) 
MSE mean squared error (-) 
RMSE root mean squared error (-) 
R2 coefficient of determination (-) 
SSE error sum of squares (-) 
Greek symbols
σ normal stress (MPa) 
τ shear stress (MPa) 
σa, τa stress amplitude (MPa) 
σm, τm mean stress (MPa) 
σc, τc fatigue limit (MPa) 
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1. Introduction 

In life analysis and in determination of fatigue damage accumulation in supporting structures and their components it is 
crucial to determine life curves of both used material and structure detail. These curves, together with their parameters, 
represent relations which are present in the complex fatigue process during mechanical cyclic loading. Wöhler curve is an 
often used S-N curve which can be obtained from fatigue tests with constant stress amplitude. In this case, we deal with the 
relationship of harmonic stress amplitude (in some cases maximum stress) under controlled force and the number of cycles 
to fracture [1]. 

2. Fatigue tests 

Wöhler curves as representations of a relation between stress amplitude and the number of cycles to fracture are obtained 
as a result of data evaluation. In this place we refer to data that were gained by experimental measurements carried out on 
material samples. The samples share the same material, production technology, prescribed number, shape, size and coating 
and are subjected to endurance tests performed while using special testing devices as to whether they withstand fatigue 
failure. Loading for tensile, compression, bending or torsional stress should be quick, smooth and without sudden impacts. 
The aim of experimental investigation of fatigue characteristics possessed by some metal material is to determine the slope 
(the oblique line) of the S-N curve in the range of time-related fatigue strength and the horizontal line in the range of 
permanent fatigue strength or to directly determine fatigue limit. 

2.1. Assumptions for fatigue tests 

For the S-N curve fitting the measured values in the range of time-related fatigue strength represent the slopes of S-N 
curves provided that there is a linear relationship in coordinates log N-σ or log N-log σ [2]. The slopes normally represent 
regression lines with 50 % survival probability. It is further possible to evaluate the variance and in that sense the standard 
deviation as well as confidence and tolerance intervals for reliability or other statistical characteristics.  

The results gained on the basis of the following relations cannot be considered valid unless some principal conditions are 
met. First, it is assumed that the distribution of the number of cycles log N is normal. It is further required that all tests 
which are represented by coordinate pairs [σi, Ni], where the number of the pairs is n (the range of statistical set), are 
finished, i.e. that the tests are carried out until complete failure (fracture). Some methods imply that the occurrence of 
fatigue crack of a prescribed size may suffice. Tests are to be conducted at least at 4 or 5 stress levels above assumed fatigue 
limit and it is appropriate to conduct 6 to 15 tests at each stress level. Some standards for fatigue strength calculations and 
for detail category determination prescribe the minimum of ten tests at least at three different levels of fatigue loading and at 
least three tests at each particular level. It is further important to ensure that the difference between the lowest stress 
magnitude at which the sample failure would still occur (fatigue fracture) and the stress magnitude at which the failure no 
longer occurs or at which the failure does not occur even after given basic number of cycles Nc is not higher than the 
relevant stress σ. The above-mentioned tests can be conducted for both symmetrical reversed cycle - i.e. for zero mean 
stress σm - and for asymmetrical reversed cycle - i.e. non-zero mean stress. 

2.2. Performing fatigue tests 

In fatigue tests for determination of fatigue characteristics of structural materials through bending and torsional loading it 
is possible to use the testing device depicted in Fig. 1 (a). The sample can either be subjected to the load until fracture (the 
range of low- or high-cycle fatigue) or the test is finished even if no failure occurs provided that a high number of cycles, 
that is 107 or 108 cycles, was reached (the range of permanent fatigue strength). Testing samples can be flat, though 
round-section samples or some other simple structural components can be used as well. 

We were conducting the fatigue tests in line with the procedure prescribed by the standard STN 42 0363. We were 
performing torsion-fatigue tests in symmetrical reversed cycle, i.e. for cycle asymmetry coefficient min max/ 1τ τ = − , i.e. for 
mean stress 0mτ = . The tests were carried out on smooth round-section specimens with diameter d = 6 mm (Fig. 1 (b)) at 
frequency 35 Hz. The steel specimens were made from metal sheet with thickness 12.5 mm. Differentiated were samples 
gained through linear sampling (L) from samples gained through transverse (cross) sampling (T). Stated sampling directions 
were related to the rolling direction. The specimens were made in line with the relevant standard. As prescribed by the 
relevant standard, the limiting number of cycles was Nc = 107 cycles while in some cases the tests were interrupted even 
after reaching higher numbers. 
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(a)       (b) 

Fig. 1. (a) sample bound to the testing device ready for torsion-fatigue test, (b) sample of the testing material for torsion-fatigue testing. 

Shear stresses were expressed through relationship (1). Torsion moment Mk was obtained from known calibration 
relationship Mk of the testing device which was found by means of centesimal deviation meters. 

3

16 kM

d
τ

π
=

                                                                 

(1)

Values for the number of cycles to fracture N, which were obtained by the experiment at given shear stress τ and 
represented by coordinate pairs [τi, Ni] under torsion loading in symmetrical reversed cycle, were statistically processed as 
regression relation. This is the case of the slope (oblique line) in Wöhler curve which stands for the curve with 50 % 
survival probability. In line with the procedure as described in the relevant STN standard, fatigue limit τc was set from the 
horizontal line of the Wöhler curve.  

Initiation and spreading of the fatigue fracture were similar in all samples. The main crack was spreading from the 
surface in transition region approximately at angle 45°, in the central part at angle 0° or 90°. Further spreading of the crack 
was then affected by the inner structure. 

2.3. Determination of fatigue limit 

When gradually decreasing the loading, the Wöhler curve for carbon steel bends and continues in horizontal intercept 
known as the range of permanent fatigue strength or the range of safe cyclic loading. This intercept does not imply any 
further fatigue failure. Relevant stress magnitude is referred to as fatigue limit σc of the material and is defined as the 
maximum stress at which no failure occurs even after theoretically unlimited number of cycles is applied. Fatigue limit is 
generally expressed as cyclic stress relevant to limiting stress amplitude specified by fatigue test at given mean stress σC 

from 

C m aσ σ σ= ± .

                                                                 

(2)

At symmetrical reversed cycle ( 0mσ = ) relevant fatigue limit will be expressed as follows 

C aσ σ= ± .

                                                                 

(3)

The region in which the Wöhler curve bends and so the relevant number of cycles Nc, are dependant from steel type. 
Wöhler curve for some alloyed steels and light and non-ferrous metals does not necessarily need to bend, which means that 
such materials do not exhibit fatigue limit. In such cases, when determining the number of cycles relevant to the bending 
region of other Wöhler curves the so called contractual (agreed) value is used. This value is prescribed by relevant standard 
for materials such as light metals and their alloys, steel, cast-irons, copper and its alloys. Similarly, as for determination of 
the slope (the oblique line) of the S-N curve, when specifying its horizontal line, it is necessary to state conditions and 
circumstances under which it occurred. This especially includes mean stress values, loading frequency fz, basic number of 
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cycles Nc, coating of the test samples etc. It is further possible to statistically evaluate gained data, define confidence and 
tolerance reliability intervals etc [3]. All given relations are applicable for normal stresses σ as well as shear stresses τ. 

3. Evaluation of fatigue tests 

For the purposes of experimental investigation of fatigue endurance while torsion we examined construction steel 
KONOX 345T [4]. Steel type KONOX 345T ranks among low-alloyed construction steel types which are determined for 
middle-loaded structural components and structures with higher resistance to atmospheric corrosion. This material exhibits 
higher strength together with good ductility, appropriate compressibility and good weldability.  

As a result we gained fatigue characteristics and S-N curves under torsion loading. These characteristics are, for instance 
in comparison with the characteristics gained during tensile-compressive or bending loading, less common subject of 
experimental testing. This fact results in the number of relevant information and fatigue characteristics available for instance 
for the needs of engineering practice. The obvious importance of fatigue tests for the above-mentioned materials derives 
from practical application of gained results. 

3.1. Using of the simple linear regression model 

We wish to determine the relationship between an independent (predictor) variable τ and a dependent (response) variable 
log N. If we assume that the true relationship between these variables is a straight line and that the observed value of log N 
at any particular value of τ is a random variable, then we may write 

log N a bτ ε= + +

                                                                

(4)

where log N is the dependent variable, τ is the independent variable, a and b are the parameters (i.e., intercept and slope) 
to be estimated and ε is a random error.  

The simple linear model assumptions [5-7]: 
1. The relationship between τ and log N is a straight line relationship. 
2. The values of the independent variable τ are assumed fixed (not random); the only randomness in the values of 

log N comes from the error term ε. 
3. The errors ε are normally distributed with mean ( )| ( ) 0E Eε τ ε= = and a constant variance 2( )V Sε = . The errors 

are uncorrelated (not related) with each other in successive observations, i.e. covariance ( , ) 0i jK ε ε = , for i j≠ , 
, 1, 2 , ,i j n=  where n is the total number of the paired observations [τi , log Ni]. 

Taking the expected value of (4) conditional on τ and using ( )| 0E ε τ =  gives  

( )log |E N a bτ τ= + .

                                                                

(5)

There are many techniques that could be used to estimate the unknown parameters a, b in equation (4). A method used 
quite frequently is least squares, in which estimates of a, b are chosen to minimize the error or residual sum of squares SSE. 
The error sum of squares or least squares function is [5-7] 

( )22 2

1 1 1

ˆ ˆˆˆ ˆ( , ) log log (log )
n n n

i i i i i
i i i

SSE a b e N N N a bτ
= = =

= = − = − − .

                                                              

(6)

The random error terms εi are estimated by the residuals ei − the difference between observed values log iN  and the fitted 
(forecast) values ˆlog iN . 

To estimate parameters a and b by the method of least squares, we must choose â  and b̂  to minimize equation (4). We 
can write the results in the following normal equations 

1 1

ˆˆ log
n n

i i
i i

a n b Nτ
= =

+ = , 2

1 1 1

ˆˆ log
n n n

i i i i
i i i

a b Nτ τ τ
= = =

+ = .

                                                              

(7)

The solution to the normal equations (7) are the least squares estimators for a and b
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where τ  and log N  are the arithmetic means of the τ  and log N variables. 
The variance S2 of the random error term is estimated by the mean squared error (MSE) and the standard deviation S is 

estimated by the root mean squared error (RMSE) 

2

SSE
MSE

n
=

−
, RMSE MSE=

                                                                

(9)

where n – 2 is the degree of freedom associated with SSE. 
The R-squared of the regression, sometimes called the coefficient of determination R2, is defined as  
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(10)

where SST is the total sum of squares. The value of R2 is always between zero and one, 20 1R≤ ≤ . When interpreting R2, 
we usually multiply it by 100 to change it into a percent. Thus, 100R2 is the percentage of the variability in log N that is 
explained by τ. An R2 value of 0.9 or above is very good, a value above 0.8 is good, and a value of 0.6 or above may be 
satisfactory in some applications, although we must be aware of the fact that, in such cases, errors in prediction may be 
relatively high. When the R2 value is 0.5 or below, the regression explains only 50 % or less of the variation in the data; 
therefore, prediction may be poor. If we are interested only in understanding the relationship between the variables, lower 
values of R2 may be acceptable, as long as we realize that the model does not explain much [6]. 

3.2. Mathematical interpretation of experiment results 

For experiment were collected n = 12 of the paired observations [τi , log Ni] for steel KONOX 345T under shear stress in 
selected direction L and n = 13 of the paired observations[τi , log Ni] for this same steel under shear stress in selected 
direction T. We want to set-up a simple linear regression model to predict log N with τ. 

A graphical scatter plot is here helpful. Fig. 2 (a) shows a scatter plot of the data for direction L and Fig. 2 (b) for 
direction T. We can see that in both of selected directions L and T is strong correlation between τ and log N. 

(a) 
5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

160

165

170

175

180

185

190

195

200

205

210

log N [-]

τ 
[M

P
a]

     (b) 
5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

160

165

170

175

180

185

190

195

200

205

210

215

log N [-]

τ 
[M

P
a]

Fig. 2. (a) scatter plot of log N versus τ for direction L, (b) scatter plot of log N versus τ for direction T. 
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We perform the model of the simple linear regression using MATLAB with the Curve Fitting Toolbox too [7].  
• Results for direction L: 
Fig. 3 (a) represents the least squares straight line in a scatter plot of the data for direction L. We can see that this line fits 

the data very well.  
The least squares estimates of the regression parameters are given by ˆ 15.2048a = , ˆ 0.0502b = − . So, the fitted least 

squares regression straight line has equation ˆˆ ˆlog 15.2048 0.0502iN a bτ τ= + = − . 
We can find anymore confidence bounds for the regression parameters. The 95 % confidence intervals for a and b are, 

respectively, 12.8690 , 17.5407a ∈ , 0.0630 , 0.0374b ∈ − − . Thus, there is 95 % chance that the true values of 
parameters a, b are in this intervals. 

The standard deviation S of the variation of observations around the regression line is estimated by ˆ 0.2183S RMSE= = . 
This value is little (near zero) and represents very good result.  

Coefficient of determination in this case is high. Result 2 0.8836R =  implies that 88.36 % of the variability in log N is 
explained by τ. This result is good. 

• Results for direction T: 
Fig. 3 (b) shows the least squares straight line in a scatter plot of the data for direction T. This regression line fits the data 

good. 
For the least squares estimates of the intercept and slope parameters we get ˆ 12.1293a = , ˆ 0.0314b = − . The fitted least 

squares regression straight line has equation ˆlog 12.1293 0.0314iN τ= − . 
The 95 % confidence intervals for a and b are, respectively, 9.9867 , 14.2720a ∈ , 0.0431 , 0.0198b ∈ − − . 
The estimate of the standard deviation of the regression errors is ˆ 0.2321S RMSE= = . Between results of RMSE for both 

directions is only minor difference.  
The R-squared is 2 0.7623R = , so 76.23 % of the variability in log N is explained by τ. This result is a little inferior to 

result for direction T, but it is still good. Larger values of the coefficient of determination indicate a better fitting model. 
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Fig. 3. (a) least squares straight line in a scatter plot of log N versus τ for direction L, (b) least squares straight line in a scatter plot of log N versus τ for 
direction T. 

Table 1 shows the summary results of the statistical study. 

                                          Table 1. Table of summary results 

Material 
KONOX 345T 
(direction L) 

KONOX 345T 
(direction T) 

Least squares estimate of the intercept  15.2048 12.1293 

95 % confidence interval for the intercept 12.8690 , 17.5407 9.9867 , 14.2720

Least squares estimate of the slope − 0.0502 − 0.0314 

95 % confidence interval for the slope 0.0630 , 0.0374− − 0.0431 , 0.0198− −

Estimate of the standard deviation − RMSE 0.2183 0.2321 

Coefficient of determination R2 0.8836 0.7623 
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4. Conclusion 

On the basis of performed fatigue tests under torsional symmetrical reversed cycle and static tests, test results and their 
analysis it is possible to formulate the following conclusion. 

Measured values of fatigue limit in case of steel type KONOX 345T point out that the effect of sampling direction 
against rolling direction is very slight. From the course of fatigue relations that were processed in coordinate system log N-τ
further arises the conclusion that the slope (the oblique line) of the S-N curve for tested material is relatively flat. This 
proves that initiation of fatigue cracks is being hindered as a result of a very good plastic property of the steel. Eventually, it 
can be stated that the tested strip steel exhibits very good fatigue failure endurance. 
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