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Abstract 

We study queries over databases with external functions, from a language-independent per- 
spective. The input and output types of the external functions can be atomic values, flat relations, 
nested relations, etc. We propose a new notion of data-independence for queries on databases with 
external functions, which extends naturally the notion of generic queries on relational databases 
without external functions. In contrast to previous such notions, ours can also be applied to 
queries expressed in query languages with iterations. Next, we propose two natural notions of 
computability for queries over databases with external functions, and prove that they are equiv- 
alent, under reasonable assumptions. Thus, our definition of computability is robust. Finally, 
based on this equivalence result, we give examples of complete query languages with external 
functions. A byproduct of the equivalence result is the fact that Relational Machines (Abiteboul 
and V. Vianu, 1991; Abiteboul et al., 1992) are complete on nested relations: they are known 
not to be complete on flat relations. 

1. Introduction 

Database tictionalities are important both in the context of traditional relational 

databases, and in that of object-oriented databases. The object-oriented database man- 

agement system 02 [14] allows the query language to invoke any method written in 

the programming language C. An 02 query can be parsed, compiled, optimized, and 

executed, without knowing what the external function does. At execution time, the ex- 

ternal function is called, as an ordinary library function. In an object-oriented system 

like 02, the set oi Iser-defined methods can vary for a given database, as new methods 

are inserted, or old methods are deleted from the database. SQL3 [15] offers a more 

limited approach, in which the number of user-written functions is fixed a priori, and 

is independent of the database: ’ we call these user-written tinctions external jiinc- 

tions. While the practical aspects of integrating external functions in query languages 

is well understood, a language-independent study of queries in the presence of external 
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functions has received less attention In this paper we make such a study, in the frame- 

work of a fixed number of external functions. We believe that most of our techniques 

will carry over smoothly to the object-oriented setting. 

Char&a and Hare1 [lo] study queries (without external functions) from a language- 

independent perspective. They give a precise characterization of the “reasonable” 

queries, namely as those which map isomorphic databases into isomorphic results. This 

definition emphasizes that queries are data independent, i.e. the only observation they 

can make about the individual values in the database is their equality or inequality. 

Chandra and Hare1 called this condition the consistency criterion, but we will follow 

terminology which later became standard and call such queries generic. They also dis- 

cuss the case of databases with interpreted functions: unlike our external functions, 

these are fixed functions over a fixed domain. 

Giving a precise, language-independent characterization of the “reasonable” queries 

is important, because it offers us an upper bound on what a query language may 

express: namely, each query expressed in a reasonable query language will be generic 

and Turing-computable. Chandra and Hare1 define a query language to be complete 

if it can express all generic and Turing-computable queries. Moreover, they give an 

example of a complete query language, QL. 

In this paper we investigate how the language-independent characterization of generic 

queries carries over to databases with external functions. An example of a “reasonable” 

(i.e. data-independent) query in this context may be: “return the set of all employees 

of a company, with their salary x replaced with P(x)“; here P is an external function, 

implementing the company’s salary raise policy. P should be thought of as a library 

function, written in a general-purpose programming language like C. This query is no 

longer generic as described above. Indeed, one can prove that generic queries do not 

“invent new values”, that is all atomic values in the query’s result must have been 

in the database too. Obviously our query does invent new values, as it computes new 

salaries. But it is arguably still “reasonable”, in the sense that the only observations 

it makes about the individual values in the database are their equality, inequality, and 

applications of the external function P. 

We propose a definition for “reasonable” queries in the presence of external fimc- 

tions (Definition 3.2), and call such queries external-function domain independent. 

The inputs and outputs of the external functions can be scalar values, relations, nested 

relations, etc. We show that all queries expressed in reasonable query languages with 

external functions are external-function domain independent. 

Next we address the issue of computability of queries with external functions. We 

propose two natural definitions for computable queries with external functions. The 

first definition assumes that external functions are computable themselves, and, hence, 

can be finitely encoded: then we say that a query is computable if there exists some 

Turing Machine which, when given an encoding of the input database and encodings 

of the external functions, computes an encoding of the output of the query. The second 

definition relies on a model of computation which is closer to the way external functions 

are handled in real database systems, namely as library functions. To do that, we 
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essentially extend the Turing Machine with oracles, i.e. devices which can compute 

P(X), for some external function P and some input n. Then a query with external 

functions is computable if it can be computed by such an extended machine. We 

prove that, when the external functions are totally defined, then the two definitions of 

computability coincide (Theorem 6.2). We believe this result to be evidence for the 

robustness of the notion of computability. 

Finally, we define a query language with external functions to be complete if it can 

express exactly those queries which are both external-function domain independent and 

computable. We give examples of complete query languages with external functions. 

Subtle differences separate our two notions of computability when the external fimc- 

tions are partial: the first definition allows parallel execution of the external functions, 

while the second definition restricts queries to sequential execution of the external 

functions; see Example 6.6 and Proposition 6.5. 

Abiteboul and Beeri [ 11, and Escobar-Molano et al. [16] propose two related 

language-independent definitions for “reasonable” queries with external functions. Their 

main purpose was to identify which of the queries expressible in certain logic-based 

query languages with external functions were “reasonable”. Both definitions work well 

in conjunction with query languages without iterations: they, however, fail for languages 

with some forms of iterations, like fixpoints, or while, etc. as we show in Example 4.3. 

We explain here the connection between our notion of external-function domain inde- 

pendence and the definitions given in [ 1,161, see Theorem 3.12. Computability of 

queries with external functions is not addressed in [ 1, 161, and no previous attempt has 

been made to define complete query languages with external functions. 

Abiteboul and Vianu [5] introduce the notion of loose Generic Machine, later sim- 

plified to Relational Machines in [4]. Their purpose was to define order-independent 

computations on databases. In order to compute a query with a Turing Machine, we 

first have to encode the input database; thus, we introduce artificially an order on that 

database. By contrast, in a Relational Machine the input database is not encoded, but 

stored in relational registers. At each step, the machine can perform either a traditional 

Turing Machine move, affecting the tape and the state, or a first-order computation on 

the relational registers, affecting one of its relational registers: the latter computation are 

obviously order-independent. It turns out that Relational Machines are not complete: 

in particular, they cannot compute the parity of an input set [5]. 

We extend the Relational Machines in a natural way to databases with nested re- 

lations and external functions, by replacing the relational registers with nested rela- 

tional registers, and the first-order computations on the registers with computations in 

the Nested Relational Algebra with external functions. We call these machines Rela- 
tional Machines for Complex Objects. In particular, a Relational Machine for Complex 

Objects may apply in one step an external function P on the value(s) in one of its 

registers: this can be viewed as an oracle inquire. Our second definition of computabil- 

ity is based on Relational Machines for Complex Objects. Our result (Theorem 6.2), 

stating that the two notions of computability coincide, implies that, by extending the 

Relational Machines from flat relations to nested relations, we obtain completeness. 
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Abiteboul et al. [3] also achieve completeness by using a different extension of the 

Relational Machines, namely with rejlections. A Reflective Relational Machine has 

the ability to dynamically create queries, and to answer them in constant time. This 

technique is orthogonal to our way of obtaining completeness, namely by extending flat 

relations to nested relations. Parallelism arises in Reflective Relational Machines from 

their ability to compute any first-order query in one parallel step: as a consequence, 

interesting connections to parallel complexity classes are proven in [3]. Here we are 

concerned with a different kind of parallelism which arises in conjunction with queries 

over databases with external functions: the ability of a query to initiate the computation 

of several external functions in parallel, and to wait until ooze of them terminates. 

Relational Machines for Complex Objects do not have this ability; however, Turing 

Machines expecting a finite encoding of the external functions do. This observation 

allows us to prove that our two notions of computable queries over databases with 

external functions differ, when the external functions are partial. 

The first description of a complete query language can be found in [lo]: it is a dy- 

namically typed language, in which an integer II can be encoded as some set of tuples 

of width n. Other complete query languages use different tools to achieve completeness: 

e.g., object inventions in [2], and untyped sets in [23]. Our examples of complete query 

languages with external functions are illustrations of how these known techniques can 

be extended to obtain completeness in the presence of external functions. 

Our queries over databases with external functions are related to higher type com- 
putability. A number-theoretic function of type N -t N is a type 1 function; a function 

(N N)k x N’ -+ N is a type 2 function [ 11,241. Functions of type level n are those 

which expect as inputs functions of type level <n - 1 [6]. From this perspective, our 

queries on databases with external functions are of type 2, in that they take as inputs 

scalar functions. Our emphasis, however, is on “data-independence”, an issue that is 

not present in the theory of higher-type computability, since the objects of discourse 

there (the natural numbers) are fully interpreted. 

Hirst and Hare1 [22] consider recursiue databases, i.e. databases over a countable 

domain in which each relation, considered as a set of tuples, is recursive. We could 

view each external function of a database as infinite binary relations, by considering its 

graph. Still, our notions of external-function domain independence and computability 

are totally different from those of genericity and computability of [22]. The first reason 

is because the graphs of recursive functions are in general not recursive, but recursively 

enumerable [21]. Even if we restrict the external functions of a database to having 

recursive graphs, there is a deeper reason for which their framework differs from ours. 

Namely, Hirst and Hare1 observe (this is a consequence of [22] Corollary 1) that, for 

a fixed type, there are only finitely many recursive generic queries of that type. 2 By 

2 Thus, their notion of recursive generic query, when applied to finite relations, does not coincide with 

the traditional notion of computable, generic query. This is a significant departure from the case of finite 

databases. 
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contrast, there are infinitely many computable, external-function domain-independent 

queries for a given type. 3 

Section 2 contains background and motivation: we review first some basic notions, 

like genericity, domain independence, computability, complex objects, etc., then define 

databases with external functions. We show, through an example, why the classical no- 

tions of generic@ and domain independence fail in this case. Section 3 introduces the 

new concept of external-function domain-independent query: Section 3.1 contains the 

definitions, Section 3.2 explains the intuition behind this concept, while Section 3.3 es- 

tablishes the relationships between external-function domain independence and the em- 

bedded domain independence of [16]. Section 4 reviews the Nested Relational Algebra 

with external functions, an algebraic query language for complex objects, and proves 

that each query expressed in this language is indeed external-function domain inde- 

pendent: this result remains true even for extension of the Nested Relation Algebra 

with various forms of iterations. Section 5 introduces the two concepts of computabil- 

ity: the computability notion based on Turing Machines and encodings of the external 

functions is presented in Section 5.1, while the computability notion based on exten- 

sions of Relational Machines is introduced in Section 5.2. We prove in Section 6 that 

they coincide, on databases with external functions which are totally defined. We give 

examples of complete query languages with external functions in Section 7. 

2. Background and motivation 

Recall from [lo] that a database instance is 9 = (II; RI,. . . , Rk), where Ri &Dal. Here 

D is called the domain of 9, while R 1,. . . ,Rk are its relations, and are required to 

be finite. The numbers al , . . . , ak are called the arities4 of RI,. . . , Rk. We say that 

(al,..., ak) is the type of the database 9. A database query of type (al,. . . ,ak) + b 
is a partial function F mapping any database instance 9 of type (at,. . . , ak) to some 

finite relation F(9) C Db. 
Moreover, it is usually required that the query be be generic, domain independent 

and computable. 

Definition 2.1 [lo, 231. A database query F is generic iff for any database instance 

9=(D;R, , . . . ,Rk) and any isomorphism I : D + D’, F(D’; &RI), . . . , A(Rk)) = Iz(F(D; 

R1,...,Rk)).5 

3 For example, let P be an external function, and consider two constants a, b. Then for every k > 0, the 

boolean query Qk =(P@)(a)= b), with Qk undefined when ji<k.(P(‘)(a) is undefined), is computable and 
external-function domain independent. Obviously all queries Qo, Ql, Q2, . . are distinct. 

4 Called ranks in [lo]. 

5 Throughout the paper E = E’ means that either both expressions E, E’ are undefined, or both are defined 
and equal. 
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A database query F is domain independent iff for any database instance 9 = (D; 

RI ,..., Rk) and for any set 0’20, F(D;Rl,..., Rk)=F(D’;Rl,..., Rk). 

A database query F is computable iff there exists a Turing Machine which, when 

given an encoding of a database instance LB = (D; RI, . . . , Rk) on its tape, halts iff F(9) 

is defined, and in this case will leave an encoding of F(9) on its tape. 

Genericity and domain independence are independent conditions. They can be com- 

bined into a single condition: 

Fact 2.2. A query F is generic and domain independent isf for any two database 

instances 9 = (D; RI, . . . . &) and @=(D’;R{ ,..., RL) and for any injective function 

2: D+D’for which i(Rl)=R{,..., h(Rk) = Ri, we have F(9’) = L(F(9)). 

The use of external functions in databases leads us naturally to structures whose 

domain is no longer the active domain of the database but an infinite one containing 

the active domain. Indeed, most of the external functions we will consider in this paper, 

like +, succ, make-object, etc. have infinite domains and codomains. Therefore, we 

consider database instances with an injinite domain D (but still with finite relations 

RI,..., Rk), which is contrary to the traditional view that database instances have jinite 
domains. However, because database queries are required to be domain independent, 

this is not a significant departure from the case with finite domains. 

We want to allow external functions with arbitrary types of inputs and outputs, i.e. 

scalars or relations. For example, an external function with one input could have (1) 

a scalar input and a scalar output, or (2) a scalar input and a relation as an output, or 

(3) a relation as an input and a scalar as an output, or (4) relations both as inputs and 

outputs. Instead of considering several cases we adopt a uniform approach by working 

in the context of complex objects, and replacing first-order structures with higher-order 

structures. The definitions below are consistent with [23, 18,25,7,9]. 

Definition 2.3. We define complex object types by the grammar t ::=dlt x . . . x t\(t). 

(Here d is a special symbol.) For any set D and type t we define dom(t,D) to be: 

dom(d, D) %‘D 

dom(tl x . . . x tn, D) dzf dom(tl, D) x . . x dom(t,, D) 

dom({t},D)%ff’n(dom(t,D)). 

The empty product (obtained by taking n = 0 in tl x . . . x t,,) is denoted with unit; 
for any D, dom(unit,D)= { ()}. Also, we abbreviate < x .,b x5 with t”. 

n times 

Definition 2.4. A database schema is o = (tl,. . . , tk), while a database instance over 

r~ is B=(D;R,,..., Rk), with Ri E dom({ti}, D), for i = l,k. 
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All the results in this paper hold also for multi-sorted databases (with more than one 

base type, e.g. Z,string, [w,. . .), b u in order to keep our formalism simple, we shall t 

restrict ourselves in the sequel to only one base type D. To accommodate values of 

different base types, we may assume D = Z U string U R U . . . 

Definition 2.5. For any schema 0 and type t, a query F of type IS + t is a partial ftmc- 

tion mapping a database instance over G, 9 = (D; RI,. , . , Rk) into F(9) E dom({t}, D). 

In this paper we consider databases with external functions, by augmenting database 

instances with a number of external functions PI,. . . , Pt. That is a database instance now 

becomes 9 = (D; PI,. . . ,Pt; Rk,. . . ,Rk), where RI,. . . ,Rk are as before, while 

s , . . . , Pt are partial functions “over D”. In their simplest form, the external func- 

tions are scalar, i.e. of type D” --+ D, as in [16], but we allow external functions of 

any types, i.e. Pj : dom(uj, D) --+ dom(vj, D), where uj I-. d vj are arbitrary types called 

the domain and codomain of Pj. 

Definition 2.6. A database schema with external functions is cr = (ui --+ vi,. . . , UI -+ VI; 

t1,..., tk). A database instance over o is 9 = (D; PI,. . . , Pt;Rk,. . . ,Rk), where Ri E 
dom({ti},D), i=l,k, andq:dom(uj,D) + dom(vj, D) is a partial function. 9 is called 

total iff all functions Pj, j = 1,Z are total, otherwise it is called partial. 

The active domain of a database instance 9 is the set of all atomic values mentioned 

in RI , . . . , Rk, i.e. the smallest set Do c D for which RI E dom( {tl }, Do), . . . ,Rk E dom 
({tk}, Do). Note that the active domain is always finite, although D may be infinite 

(because all relations R 1,. . . , Rk are required to be finite). Unless otherwise specified, 

we shall assume throughout the paper that the database schemas and instances are with 
external functions. 

Example 2.7. Consider the schema o = (d x d + d, {d} -+ d; d5) (recall d5 means d x 
d x d x d x d). As an example for a database instance over rr, consider 9 = (D; 
raisesalary, new-ID; R) where 

ID 

D = Strings U Int, R C D5 

Name Dept. Manager Salary 

15023 Smith Customer Serv. 

R 

Lucy 20 000 

= 15024 Lucy Customer Serv. Dale 40 000 

15046 Jones Sales Dale 30 000 

15028 Dale Management Brian 50 000 

The external functions raise-salary and new_lD encapsulate domain-specific knowledge 

of the particular company. Thus, raisesalary(n,s) will return a new salary for the 

employee with name n, assuming its old salary is s. This may depend on the company’s 
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policy, even on the particular contract signed by that employee. Typically, such a 

function is written in a general-purpose programming language - like C - and is 

part of the database instance. Note that raisesalury(n,s) may be undefined for certain 

values of n and s, e.g. when n is an integer, or s is a string. In a similar fashion, 

new_lD(S) will return a new identifier not present in S, i.e. new_lD(S) f$ S. Most 

likely, it encapsulates the company’s policy of assigning new id’s to employees. 

Consider the following queries: “compute new salaries for each employee as follows: 

each employee receives one raise, except for the managers who receive two raises”. 

Here F : (T + d2. On our particular instance, F would return 

Name New-Salary 

Smith 

F(9) = Lucy 

raisesalary(“Smith”, 20 000) 
raisesalary(“Lucy”, raisesalary(“Lucy”, 40 000)) 

Jones raisesalary(“Jones”, 30 000) 
Dale raisesalary(“Dale”, raisesalary(“Dale”, 50 000)) 

For another example, consider: “assuming there is only one manager not recorded as 

an employee, return its name and a new id for him”. Here G : a -+ d2: 

Name New-ID 
G(9) = 

Brian newJD({ 15023,15024,15046,15028}) 

Obviously, a query over the database of Example 2.7 may not necessarily be domain 

independent in the traditional sense, because it has the ability of generating new atomic 

values by calling the external functions. The first goal of this paper is to investigate 

the notion of domain independence of queries with external functions. 

Unlike the interpreted functions of [lo] which are fixed, our external functions are 

closer in spirit to those in [l, 161. In these papers, the authors define two related 

notions of domain independence: the bounded-depth domain independence in [l], and 

the embedded domain independence in [16]. Strictly speaking, the embedded domain 

independence implies that of bounded-depth domain independence, but they rely on the 

same idea. Both notions are used only in conjunction with query languages without 

iterative queries, and, as we show in this paper, fail when extended to languages with 

iterations. We describe a fixpoint query which is not embedded domain independent in 

Example 4.3. In this paper we introduce a new notion, called external-function domain 
independence, which is more general than the embedded domain independence, and 

show that all queries expressed in query languages with iterations (fixpoints, loops, 

structural recursions, etc.) are external-function domain independent. 

Our second goal in this paper is to investigate the computability of queries 

in the presence of external functions. The complexity and the computability of 
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number-theoretic functions of higher type have been considered before [21,11,24], but 

computable queries in the presence of external functions have not been considered 

previously. We propose here two natural definitions for computability of queries with 

external functions, and prove that they are equivalent under reasonable assumptions. 

Previous work [30,1,16] has been concerned with identifying recursive sets of first- 

order formulae, which define domain-independent queries. We do not address this 

problem here, but consider only algebraic query languages instead, where all queries 

are domain independent. We believe that the notion of embedded allowed formulas 

from [16] could be extended to a higher-order logic with fixpoints, such that all “em- 

bedded allowed” formulas define an ef-domain independent, computable query, but this 

has to be addressed in future work. 

3. External-function domain independence 

3.1. Definitions 

Allowing the external functions to be partial, as opposed to total, constitutes a key 

technical tool in our definition of domain-independent queries over databases with 

external fimctions. To test whether a query F is domain independent when applied 

to some database instance 9 = (D; PI,. . . ,Pl; RI,. . . , Rk), we would like to probe it 

with databases with smaller domains, go = (DO; POI, . . . , POT; RI,. . . , RR), where DO CD 
contains the active domain of 9, and Pal,. . .,Po~ are the restrictions of PI,. . .,Pl. If 

DO is chosen arbitrarily, then Pal , . . . ,Por will be partial, in general. 

We will define a database morphism 1: $2 + 9’ to be a partial, injective tic- 

tion il : D -+ D’ between the domains of two databases, which “preserves the struc- 

ture” of these databases, in a sense to be made precise. First notice that any partial 

fnnction 1: D+D’ can be lifted from the base type to partial functions at any type 

t, A, : dom(t, D) ---) dom(t, D’), as follows: 

In all cases, n,(x) is undefined whenever one of the subexpressions on the right-hand 

side is undefined. We abbreviate 1, with II, whenever the type t is implicit in the 

context. 

Definition 3.1. Let CJ be some database schema, and 9,s’ two database instances over 

o:9=(D;Pl ,..., P&RI ,..., Rk), B’=(D’;P; ,..., Pi; R{, . _ , RL ). A database morphism 
2: 9 + 9’ is a partial injective fnnction A : D + D’, such that the following two 
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conditions hold: 

1. For every i, L(Ri) is defined and J+(Ri) = RI. 

2. For any6 x E dom(z+D) for which both &x) and x’dgf ,?.(x) are defined, Pi(x’) and 

&Pj(x)) are defined too, and they are equal: q!(x’) = 2(4(x)). 

We represent condition 2 above as the following diagram: 

Whenever both left and upper arrows are defined, then the bottom and right arrows 

are defined too, and the diagram commutes. 

Alternatively, let us write et L e2, whenever expression et is undefined, or ei = e2. 

For two functions ft , f2, let fi L f2 mean that Vx, fi(x) L fz(x), or, equivalently, 

graph(f,) c graph(f2). Then, from the diagram above we can see that 1 is a database 

morphism iff A(Ri) = Rf for all i, and Pj o 2-l L1-l o P,! for all j (to be precise, 

4 o ‘16’ C Iz;’ o q’, but recall that we drop the type t from 1,). 

Note that the totally undefined function 1: D -+ D’ is not a database morphism. 

Indeed, ;1 has to be defined at least on the active domain of D: moreover, we will 

show that it has to be defined on every atomic value “accessible” from the active 

domain by repeated application of the external functions, see Lemma 3.6. 

Consider the particular case in which the schema o has no relation symbols (i.e. 

k = 0) and all external functions are scalar, i.e. o = (8” + d d”* -+ d,. . . , d”’ -+ d; ). 

Then a database instance 9 = (D; PI,. . . , PI; ) coincides with a partial algebra [17]. 

Moreover, the total database morphisms I : 9 4 9’ are precisely those functions which 

are injective and for which 1-l is a homomorphism of partial algebras of [17]. 

Definition 3.2. Let G be a database schema and t some type. A database query of type 

o + t is a partial function F mapping a database instance over a, 9 = (D; PI,. . . , PI; 

RI,..., Rk), to F(~)E dom({t},D). F IS external-function domain independent, or, 

shortly, ef-domain independent, iff for every database morphism 1: 9 ---) LB’, if F(9) 
is defined, then so are A(F(9)) and F(9’), and they are equal: A(F(9)) = F(9’). 

6 Recall that 4 : dom(uj, D) + dom(oj, D). 
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We represent this condition as in the following diagram: 

F 
9’ - A(F(9)) = F(9’). 

As for the case of a database morphism, whenever the upper arrow is defined, 7 then 

the bottom and right arrows are defined too, and the diagram commutes. From here 

we can infer again that F is a ef-domain independent query iff F o A-’ 5 A-’ o F, for 

every database morphism il. Also, note that A(F(9)) L F(9). 

This notion generalizes the classic notions of genericity and domain independence 

(Definition 2.1) to databases with external functions. Moreover, ef-domain indepen- 

dence extends the C-generic&y of [23]. The latter is intended to characterize queries 

expressed in languages which can refer to some constants C in the domain. A query 

is called C-generic iff it is invariant w.r.t. all isomorphisms which leave the constants 

in C unchanged. Although constants are not explicitly present in our definition of a 

database schema, they can be represented as functions of type unit + d. 

Fact 3.3. Let cr = (; tl, . . . , tk) (i.e. there are no external functions). Then a query F 

is ef-domain independent iff it is generic and domain independent in the sense of 
Dejinition 2.1. 

Moreover, when rs contains only atomic constants (i.e. functions of type unit + d), 
then a query is ef-domain independent ifSit is C-generic [23] and domain independent. 

Proof. We use Fact 2.2. Suppose F is ef-domain independent, and let 1: D+D’ be 

as in Fact 2.2. Then il is a database morphism and, by Definition 3.2, we have either 

(1) both A(F(9)) and F(9’) are defined and equal, or (2) both A(F(9)) and F(9’) 
are undefined, or (3) F(9) is undefined and F(9’) is defined. In cases (1) and (2) 

we are done. To refute case (3), consider I-’ : D’ + D. It is still a database morphism 

so, since F(9) is defined, so must be F(9). 
For the converse, assume F satisfies the conditions in Fact 2.2, and let h : 9 -+ 9’ be 

a database morphisms, where 9 = (D; ; RI, . . . , Rk). Let DO CD be the active domain of 

9, and let GBo~~~(Do;;RI,... ,Rk). Assume F(9) is defined. Since F is domain inde- 

pendent we have F(9) = F(90). Moreover, ;1 is totally defined on the active domain, 

so its restriction &, : DO -+ D’ satisfies the conditions of Fact 2.2. Hence, io(F(90)) is 

defined too, and A(F(90)) = lo(F(90)) = F(9). 
The relationship with C-genericity is obtained similarly. 0 

’ The left arrow is always defined. 
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3.2. Intuition 

The definition of external-function domain independence captures, in a single condi- 

tion, three rather independent, and more intuitive properties of queries. We will show 

in this subsection that a query is external-function domain independent iff it is simulta- 

neously (1) monotone, i.e. more defined on more defined databases, and (2) forward- 

looking, i.e. it only applies the external functions forwardly, like in P(x),P(P(x)), . . ., 

and not like in P-‘(x), and (3) isomorphism preserving, i.e. maps isomorphic database 

instances into isomorphic results. 

First we define an “approximation” of a database instance. We say that 9 approx- 

imates LB’, written gLC@, iff LB=(D;Pl,..,, Pt;Rl,..., Rt), 9’=(D’;Pi ,..., Pi;Rl, 
. . . , Rt) (i.e. they have the same relations), D c D’, and Pj C q!‘, for all j = 1,1. In this 

case the inclusion I: 9 + 9’ is a total database morphism. 

The term approximation is borrowed from denotational semantics [26,19]. There a 

function f approximates another function f’ if graph(f) c graph(f’). We emphasize 

that, in our context, the term “approximation” refers only to the domain and the ex- 

ternal functions, and not to the relations. For a schema c without external functions 

(i.e. I= 0), a database GB approximates another database 9’ iff D G D’ and Ri = RI, for 

i= 1,k. 

Definition 3.4. A query F is monotone if whenever 9 C CY, we have F(9) E F(9’). 

Next we will define a query to be forward-looking if it uses the external functions 

only in a restricted way, namely only as subroutines. That is, a forward-looking query 

may start by applying the external functions PI,. . . , PI to inputs built from the active 

domain of the database. In the process it may construct new atomic values, and it 

may use these to build new inputs for the external functions, etc. A forward-looking 

query, however, is not allowed to compute P-‘(x), or to ask global questions about 

the external functions, like “is P injective?“. 

Let g=(D;Pl,..., Pt;Rl,..., Rk) be a database. For every n > 0 we define termn(9) 

CD inductively by n: 

term’(g) dzf atoms(R1 ) U . . . U atoms(Rk) 

term”+‘(g) ‘%Lf term”(9)u {atoms(e(x)) 1 x E dom(uj, term”(g)),f = 1, I} 

where atoms(x) is defined to be all values in D mentioned in the complex object x. 

Note that term’(B) is the active domain of 9. 

The definition of term”(g) is the same as in [ 161, where it is introduced in order 

to define embedded domain independence, reviewed here in Section 3.3. 

Definition 3.5. The accessible domain D of some databases 9 is fidgf UnaO term”(g). 

The accessible approximation of 9 is sdzf (&pi,. . . ,Pl; RI,. . . ,&), where <, is the 

restriction of Pj to 0, for j = 1,l. 
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Obviously, the accessible domain extends the active domain. 

The accessible approximation is a very special approximation of a database 9. 

Namely, it has the property that the inverse p def 2-l of the inclusion database mor- 

phisms A, with p : 9 + 3, is a database morphism too. To see that, let x E dom(uj,D), 

and let p(x), I;(X) be defined. Since p(x) is defined, we have x l dorn(uj,fi) c 

dom(Uj,D), and &)=x. Since e(x) is defined, obviously Pj(x) is defined too. We 

have to prove that P(Pj(x)) is also defined, which is in general not true when p 

is the inverse of some arbitrary approximation. But here, since x E (Uj,D), we have 

UU~.S(X) G term”(g) for some n >O; hence, atoms(Pj(x)) c ternz”+‘(9?), SO Pi(x) E 

dOm(Uj,D), and, therefore, p(pi(x)) is defined too. 

Lemma 3.6. Let il : 9 + 9’ be a database morphism. Then 1 is totally dejned on Li, 
the accessible domain of 9. 

Proof. We prove by induction on n that A is defined on term”(g). For n =0 this is 

obvious, since 2 is defined on the active domain. For the induction step, observe that 

any atomic value in term”+‘(g) . IS m some atoms(Pj(x)), with atoms(x) G term”(g). 

By induction hypothesis x’ = n(x) is defined, hence ,4@(x)) must be defined too. 0 

Definition 3.7. A database query is forward-looking iff for any database instance 9, 

if F(9) is defined, then F(g) is defined too, where 4 is the accessible approximation 

of 9. 

Finally, we call a query isomorphism preserving iff for any database isomorphism 8 

1: 9 + S’, we have F(9’) = &F(9)). 

Proposition 3.8. A query F is ef-domain independent ifs it is monotone, forward- 
looking, and isomorphism preserving. 

Proof. Let F be ef-domain independent; obviously it is isomorphism preserving. Let 

9 be an approximation of 9, 9 E 9, and 1: 9 --+ 9’ be the inclusion database mor- 

phisms. We have F(9) =J(F(Q)) E F(9’), hence F is monotone. To prove that it 

is forward-looking, we consider the database morphism p : 9 + &, for some database 

instance 9. Then whenever F(9) is defined, F(G) must be defined too. 

Conversely, consider a monotone and forward-looking query F. Let il: 9 -+ 9’ be 

a database morphism, and assume F(9) is defined. Recall that il is totally defined 

on 6, hence 9” dzf A(&,) is an isomorphic image of the accessible approximation 3: 

let j: 8 + 9” be the restriction of A to the domain D. Then we decompose 1 in a 

canonical way as: 9 --% 8 L 9’ C 9’. Since F(9) is defined, so is F(g), and 

they are equal (because 4 is an approximation of 9). Hence F(9”) is defined too, 

s I.e. a total, bijective database morphism, whose inverse is also a database morphism. 
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and equal with j(F(g)), because 1 is an isomorphism. Finally, F(9’) is defined and 

equal to ;i(F(9))=A(F(9)). 0 

3.3. Connection with related work 

Escobar-Molano et al. [16] define embedded domain independent queries, in the 

context of relational databases and scalar external functions. We extend their notion 

straight-forwardly to complex objects and external functions with arbitrary domains and 

codomains. For this, following [16], we first say that two databases instances with the 

same relations 9=(D;Pl,..., P!;Rl,..., RI) and SB’=(D’;Pi ,..., P~;RI ,..., Rk) agree 
up to level n iff (1) term”+‘(g) = term”+’ 22’ ( ), and (2) for any j, Pj and P/ agree 

on any input whose atoms are in term”(g), i.e. Vx E dom(uj, term”(g)), Pi(x) = P/(x). 
Then we call a query F embedded domain independent at level n, or em-domain 
independent at level n, if F(3) = F(9’) whenever 9 and 9’ agree to level n. Finally 

we say that a query F is em-domain independent, iff it is isomorphism-preserving and 

there is some n for which F is em-domain independent at level n. 
Abiteboul and Beeri in [l] define bounded-depth domain independence, which co- 

incides with that of em-domain independence over database instances whose external 

functions are closed under inverses. They need closure under inverses because they con- 

sider a logic-based query language, in which queries like {x 1 P(x) = y} are allowed. 

Intuitively, em-domain independence allows some query to repeatedly apply the ex- 

ternal functions at most n times, for some n which is independent on the database 

instance 9. This condition is indeed satisfied by the queries expressed in languages 

without iterations, like those considered in [ 1, 161, but fails once an iterative construct 

(like fixpoints) is added to the language, see Example 4.3. For iterative queries, the 

number n of applications of the external functions is still finite, but may depend on the 

particular database instance. To overcome this limitation of em-domain independence, 

we strengthen it, by switching the quantifiers. We call a query F to be strongly em- 
bedded domain independent (sem-domain independent), iff it is isomorphism-preserving 

and for any database instance 9 for which F(9) is defined, there is some n such that: 

for any other database instance 9’ which agrees with 9 up to level n, it is the case 

that F(9) = F(9). Call n the level of F at 9. Obviously em-domain independence 

implies sem-domain independence. Note that when F(9) is undefined there may not 

exist such an n (because F may loop inspecting the whole accessible domain fi). 

In the rest of this subsection we will compare our notion of ef-domain independence 

to sem-domain independence. Sem-domain independent queries are forward looking, but 

the converse is not true, because forward-looking queries may use the entire accessible 

domain D, and not just a finite approximation of it, term”: we will show below that 

forward-looking and continuous queries are sem-domain independent (this is implicit 

in Theorem 3.12). 

On the other hand, sem-domain independent queries are not necessarily monotone. 

We will show that monotone sem-domain independent queries are ef-domain indepen- 

dent. 
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First we define continuous queries. For that we start by defining the least upper 

bound of a directed family of databases. Let Y be a set of database instances of the 

same signature. We say that Y is directed iff it is nonempty and VC8t,& E Y, 39 E Y 

such that CSt 5 9 and 92 C 9. Note that all databases in Y share the same relations 

RI,..., RR, and differ only in their domain and their external functions. But external 

functions from any two such databases are “compatible”, i.e. the union of their graphs 

is still a function. For a directed family of database instances Sp we define its least 

upper bound USPd~f((D;P1,...,PI;R 1,. . . , Rk) where D is the union of the domains of 

all databases in Sp, and the graph of Pj is the union of all graphs of the corresponding 

functions of the databases in Y. Note that this is indeed the least upper bound, in the 

sense that VCS’, if 9 E 9’ for all 9 E Y, then lJ 5f’C 9’. 

Definition 3.9. A query F is called continuous iff for any directed set of database 

instances ~7, lJ(F(9) 19 E Y} exists and F( U 9) = U{F(B) 19 E 9). 

Here U(F(9) 19 E 9’) denotes the least upper bound of the relations F(Q) with 

$?Z E Y. In short, it exists if and only if either F(B) is undefined for all ZS E Y or all 

values F(9) which are defined are equal. In the latter case the least upper bound is 

equal to this unique value. 

Proposition 3.10. A query F is continuous @for any database instance 93 for which 

F(9) is defined, there exists some jinite approximation 530 of it, i.e. DO is jinite and 
9,, & 9 such that F(CBO) = F(9). 

The proof uses standard arguments in the theory of continuous functions on algebraic 

cpo’s; see e.g. [26, 191. We will use mostly the characterization of continuous functions 

of Proposition 3.10 throughout the paper. 

Obviously, all domain independent queries over databases without external functions 

are continuous, since it suffices to take DO to be the active domain, which is finite. 

We also have: 

Proposition 3.11. Any sem-domain independent query is continuous. Hence, any em- 
domain independent query is continuous too. 

Indeed, it suffices to take DO = term “+‘(Q), where n is the level of F at 9. 

Now, we can establish the relationship between our notion of ef-domain indepen- 

dence (Definition 3.2) and that of em-domain independence of [ 161. 

Theorem 3.12. A query F is ef-domain independent and continuous l$?- it is sem- 
domain independent and monotone. 

Proof. First, we show that any sem-domain independent query F is forward-looking. 

For some database instance 9, if F(9) is undefined, then there is nothing to prove, so 

suppose F(9) is defined and let n be the level of F at 9. Take (9)‘“) to be the database 
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approximation of 9 defined by the domain term”+‘(9). Then F((Q)(“)) =F(Q) be- 

cause (9)‘“) and 9 coincide up to level n. But the accessible approximation 3 of 9 

also coincides up to level 12 with (9) (‘), hence F((9)(“)) =F(g). So F(9) =F(g), 

and, in particular, the latter is defined. 

This implies that monotone sem-domain independent queries are ef-domain indepen- 

dent; we know from Proposition 3.11 that they are also continuous. 

Conversely, let F be an ef-domain independent, continuous query; by Proposition 3.8 

it suffices to show that F is sem-domain independent. Let 9 be some database instance 

for which F(9) is defined. Because F is forward-looking, F(G) is defined too and 

equal to F(9). Now we use the fact that F is continuous, and find some finite ap- 

proximation 9s C a for which F(L&) = F(g). Pick some n for which the domain 

of 9s is included in term”(9) (this is possible because 9s is finite). It implies that 

F(&)=F(9(“)), because 9s is an approximation of 9@). We prove that the level 

of F at 9 is at most n. Indeed, pick some other database 9’ which agrees with 9 

up to level 12. That means that 9@) is an approximation of both 9 and 9, and since 

F(@“)) is defined, we have F(g)=F(g’). 0 

Finally, we show that the characterization of Theorem 3.12 is tight, i.e. that the 

additional conditions of continuity and monotonicity are necessary. 

Example 3.13. The following query F is ef-domain independent but not continuous. 

Consider the database schema (T = (d -+ d; d), and define F : CJ --+ d to be 

W; Pi R) %zf kdefined if the set {P(“)(x) 1 x E R, n B 0) is infinite, 
othemise 

Obviously, F is not continuous. Moreover, it is easy to check that the query is mono- 

tone and forward-looking, hence ef-domain independent. 

Example 3.14. The following query F is em-domain independent (hence sem-domain 

independent) but not monotone. Consider the same schema G = (d + d; d), and let F 

be the query 

F(D; P; RI kf R if Vx E R, P(x) is defined, 
0 othenvise 

Then, obviously, F is embedded domain independent at level 0, because it only in- 

spects the active domain, but it is not monotone. To see that, take some database 

(D; P; R) with R # 0, in which P is totally defined, hence F(D; P; R) = R. Consider the 

approximation in which P is totally undefined: we have F(D; 8; R) = 8. It is defined, 

but not equal to F(D; P; R). 

We end this section with a brief comment on continuity, i.e. the property of a query 

to depend only on a finite approximation of the database. Certainly, we would expect 

all queries expressed in a query language with external functions to be continuous, 
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because during any computation we can inspect only a finite fragment of a potentially 

infinite input. The fact that ef-domain independence does not enforce continuity seems 

worrisome. However, we will see in Section 5 that all computable queries are contin- 

uous. Thus, in our setting, continuity is a consequence of computability, and not of 

domain independence. 

4. A language 

We will present in this section a database query language with external functions, 

and we will show that all queries expressed in this language are ef-domain independent. 

They remain ef-domain independent even when we extend the language with various 

forms of iterations. By contrast, queries expressed with iterations need not be em- 

domain independent. 

Let C be a signature, that is .Z is a set Z = { ~1,. . . , p,} of I symbols, and each sym- 

bol pj has an associated domain uj and codomain vj, where Uj, vj are types. TO empha- 

size the domains and codomains, we will write the signature as C = { p1 : u1 + VI,. . . , 

pi : ul+ VI}, and call pl,. . . , pi external function symbols. We define the Nested Re- 

lational Algebra over Z, JVZ&ZZ(C), following the formalism in [9], as an algebra of 

functions. The constructs are given in Fig. 1. 

For any database 9 = (D; PI,. . . , PI; ) (i.e. which has only external functions, no 

relations), every expression f : s + t in the language _ACX&‘(Z) denotes a function 

Sg : dom(s, D) + dom(t, D), as described shortly. We will drop the index C3 from fg, 

and write s, t instead of dom(s, D), dom(t, D), whenever the database 9 is implicit 

from the context. 

Every expression pj : Uj + Vj denotes the function 4. id” denotes the identity at type 

s, gof is function composition, !s : s + unit is !“(x) dAf ( ) for all x Es, (fi, . . . , f&c) dzf 

t’* (h(x), . . ., fn(X)), ni “’ J’ is the ith projection. Next, map(f)({xl, . . . ,;c,}) kf {f(q), 

. . ..f(x.)}, $(x)~~{(x}, ~S({~l,...,~n})d~lU...U~,. The function p;’ is the 

“monad strength” of [9], and compensates for the fact that in this presentation of 

JVZ@&(Z) we do not have free variables: &‘(x, {xl,. . . ,xn}) dAf {(x, yl), . . . , (x, y,J}. 

8”, Us have the obvious meanings. Again following [9], we view the type {unit} 

Pi E z f :r+s g:s-+t 
pj 1 Uj + VI id’:s+s (gof):r+t 

f :s+t 
map(f 1 : 1s) + It) $:s-{s} lJs: {{~I) - 1s) 

f p; :sx{t}+{sxt} 

0” : unit + {s} U”:(s) x {s}-+(s) =: D x D + {unit} 

Fig. 1. The language NXd(C). 

not : {unit} -i {wzit} 
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as encoding the booleans with { } standing for false and { ( )} standing for true. 
Then = (x, y) is defined to be { ( )} w en h n=y, and { } when x# y. Similarly, 

not({})dAf{()}, and not({()})d~f{}. 

JV’%?&(Z) can express the following functions: Cartesian product, x : {s} x {t} -+ 

{s x t}; equality at every type t, =: t x t --t {unit}; membership test at type t, member : 

t x {t} --f {unit}; set difference -: {t} x {t} --+ {t}; selection aP : {t} -+ {t} over any 

predicate p : t + {unit} defined in the language; unnest : {s x {t}} + {s x t}; nest : 

{s x t} + {s x {t}}. See [9] f or more details and discussions. 

Each expression f : {tl } x + . . x {tk} + {t} in J+‘%?&(Z) induces a query F of type 

d --+ t, where (T = (~1 + ~1,. . . , u/ -+ ul; tl , . . . , tk), which on a database instance 53 = (D; 

Pl ,...,~?;RI , . . . , Rk) computes the relation F(g) kf f (RI,. . . , I&). As a query language, 

&Z?&(Z) is essentially equivalent to Abiteboul and Beeri’s extended algebra without 

powerset [l] with external functions ~1,. . . , PI. 

Proposition 4.1. Every query expressed in .A%?&(Z) is ef-domain independent. 

Proof. We will prove the following slightly stronger statement, by induction on the 

structure of an expression f: 

For any two database instances 9=(D;Pl,...,fj;) and @=(D’;P,l,...,Fj’;) and 

any database morphism 1: $3 +G3’, it is the case that fg o Ayl LA,’ o fgt. It is 

“slightly stronger” in that it does apply even to functions f which, technically, are not 

queries. We illustrate some of the cases for f. 

pi. Here 8 o 1-l C 1-l o 5’ follows from the definition of a database morphism. 

go f. We have 

g o f o A-’ E g o 1-l o f by induction hypothesis for f 

C il-’ o g o f by induction hypothesis for g. 

The other higher-order constructs (f 1,. . . , f,J and map(f) are treated similarly. 

U . Assume A-‘(x’) U A-‘( y’) is defined. This only means that x = J.-‘(x’) and 

y = A-‘( y’) are defined; obviously x’ = L(x), y’ = A(y). Then J(x U y) is defined too, 

because of the way 1 is extended from base types to set types, and n(x U y) =x’ U y’. 
Hence, ,-l(x’ U y’) is defined too, and equal to x U y, which proves A-‘(x’) U A-‘(y’)= 
I-‘(x’U y’). So we have shown U o 1-l L 2-l o U . 

All other first-order constructs id, !, TC, 0, q, p, ~2, not, and = are treated similarly. 0 

Next we consider extensions of .&%?&(C) with various kinds of iterations. Fig. 2 

gives the typing rules for these iterative constructs. 

For the fIxpoint construct we adopt the inflationary semantics: $x(f)(z) = Un,,, x,, 

where xc dAf 0, x,+1 dzfxn U f (z,x,J. By convention, jx(f )(z) is undefined when any of 

x, is undefined, or when Ux, is infinite. The variable z is meant to compensate for the 

lack of free variables in the language. See [18,20,27] for fixpoints on complex objects. 

We denote with &‘~?JxZ(Z,$~) the extension of J+‘?%&(Z) with the fixpoint construct. 
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f : r x {t} --t {t} 

Jix(f) : r + ItI 
f :t4t 

loop(f) : {s} x t 4 t 

e:r+t i:sxt-+t 

sri(e, i) : r x {s} ---f t 

e:rAt f :rxs+t u:txt+t 

dcr(e, f, u) : r x {s} + t 

Fig. 2. Iterative constructs. 

The loop construct has the following meaning: loop( f )(x, y) = f (“j(y), where n = 1x1. 

The structural induction on the insert presentation is defined by sri(e, i)(z, 0) kf e(z), 

sri( e, i) (2, {x} U y) dzf ‘( 1 x,sri(e,i)(z, y)). In order for it to be defined, i has to be com- 

mutative and idempotent, see [8]. Again, the variable z is meant to compensate for 

the lack of free variables. 

Finally, the divide and conquer recursion on sets [29], dcr(e, f, u), is defined by 

dcr(e, f,u)(z,O)kf e(z), dcr(e, f ,u)(z, {x})%f f (z,x), and dcr(e, f ,u)(z, y U y’)kf u(dcr 
(e, f, u)(y), dcr(e, f, u)(f)), when y II y’ = 0. The function dcr(e, f, u) is defined only 

if u is commutative, associative, and has e(z) as identity. This form of recursion 

is of interest because it captures the parallel complexity class NC over flat, ordered 

databases [29]. 

Proposition 4.2. All queries expressed in any of the languages below are ef-domain 
independent : 

Proof. The proof consists in extending the induction in the proof of Proposition 4.1 

to the case when f is one of the iterative constructs. In all cases, we have to prove 

that our statement holds, by induction on the number of steps of the iterative construct. 

We illustrate this for the dcr construct, for which the induction on the number of steps 

becomes a structural induction on a finite set. We shall abbreviate dcr(e, f, u) with dcr. 
We prove by induction on the set y’ that whenever dcr(l-‘(z’), A-‘(y’)) is defined, 

so is Z’(dcr(z’, y’)). and they are equal. We consider the cases when y’ is (1) 0, (2) 

ix’}, and (3) Y’, UY:. 

(1) 0. 

dcr(ll-‘(z), 0) = e(1-‘(z’)) by definition of dcr 

& A-‘(e(z’)) by induction hypothesis on e 

= ,I-‘(dcr(z’, 0)). 
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dcr(;l-‘(z’), A-‘({x’})) = dcr(l-‘(z’), {A-‘(~2))) by definition of 2 

= f (A-‘(2), 1-l (x’)) by definition of dcr 

L A-‘(f(z’,~‘)) by induction hypothesis on f 

= K’(dcr(z’, (2)) ) by definition of dcr. 

(3) A U A. 

dcr(A-‘(z’),A-‘(y; uy;)) 

=dcr(il-‘(z’),A-‘(yi)UA-‘(yi)) by the definition of 2 

=u(dcr(A-‘(z/),1-‘(yi)),dcr(A-‘(z’),il-’(yi))) by definition of dcr 

Lu(l-‘(dcr(z’, yi)), I-‘(dcr(z’, yi))) by induction hypothesis on yi and yi 

C I-‘(u(dcr(z’, yi),dcr(z’, yi))) by induction hypothesis for u 

=A-'(dcr(z', y{ u yi)) by definition of dcr. Cl 

While all queries in _,#‘S?&(C) are em-domain independent, the following example 

proves that the queries in A24?~(C,jix) are not: 

Example 4.3. Consider C = {p}, where p : d -+ d is some unary external function, and 

let f : {d} -+ {d} be the query f(z) =jx(l(z,x) .z U map(p)(x))(z) ’ . That is, f(z) 

applies repeatedly p to all elements of z, until no new element is generated. If the 

set of all generated elements is finite and all calls to p are defined, then f(z) returns 

that set; else it is undefined. Then f is sem-domain independent, but not em-domain 

independent (nor is it bounded-depth domain independent [l]). 

5. Computable queries 

In the previous section we offered examples of query languages 2’(C) parameterized 

by some signature Z. By adding new language constructs we obtain more powerful 

query languages: e.g., we have _N%!&( Z) c .AC?&d( C, dcr) = J$‘%‘&( C, loop) = _AC&?& 

(C,sri), see [28]. For Jix, we have, for C = 8, .AG&dex) = &3iW(loop), while for 

certain C, JEE&‘(C,~;X) $L .,4G%kZ(C, loop), because, over total database, the former 

language can express partial queries, while the latter expresses only total queries. 

The question arises, when do we stop adding new constructs to a query language 

Y(Z)? We expect each query expressed in a reasonable query language to be ef-domain 

independent. In addition, all such queries are computable, in a sense made precise in 

this section. Hence, a good criteria for stopping to enrich a database language is to test 

‘We use a more liberal notation of queries in ~4%~(Z,jx) with variables. Here A(z,x) .z U map(p)(x) 
denotes the function g such that g(u) = B,(U) U map(p)(xz(u)). See [95] for a discussion. 
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whether it can express all ef-domain independent computable queries: we call such a 

query language complete. 
Chandra and Hare1 [lo] call a database query F (on databases without external 

functions) computable iff there is some Turing Machine T which, whenever presented 

with an encoding of an input database instance 9, computes an encoding of F(9) 
(and diverges when F(9) is undefined). 

There are two ways of presenting external functions as inputs to some Turing 

Machine T: 

1. Require all external functions to be Turing computable, i.e. recursive [21], as 

number-theoretic functions, and replace each function 6 by its GGdel number ej, i.e. 

a number representing the encoding of the Turing Machine computing 4. Provide 

T with both encodings for RI,. . . ,Rk, and the 1 numbers ei,. . . ,el as inputs. Then 

T will compute an encoding of F(9). We will discuss the notion of computability 

resulting from this model in Section 5.1. 

2. Extend the Turing Machine T with oracles [21], one for each function 4. That is 

T still receives on its input tape only the encoding of RI,. . . , Rk, as in the case 

without external functions, but now at any time during its computation, T may 

choose to ask one of the 1 oracles, say oracle j, for the output of e(n), for some 

value x encoded on the tape. We will follow this idea, but combine it with order- 

independent computations [5] in Section 5.2. 

The second approach is somehow broader, in the sense that it applies to database 

instances where the external functions are not necessarily computable, a case which is 

of little interest in practice. But when the external functions are computable and total, 

then we will prove that the two notions coincide. Interestingly, from a theoretical point 

of view, the two notions differ on partial databases: a Turing Machine which receives 

Giidel numbers ei, . . . , el on its tape can perform more complex computations than a 

Turing Machine with oracles. 

We will restrict ourselves for the remaining of this paper to database instances 

with countable domain D, and for each such database instance consider some fixed 

enumeration of its domain, ;1 : N --+ D. 

5.1. Computations with Giidel numbers 

Definition 5.1. A database instance 9 = (D; PI,. . . ,q; RI,. . . , Rk) is a computable data- 
base instance iff all external functions PI,. . . ,pI are computable. 

Definition 5.2. A query F is computable iff there exists a Turing Machine T such 

that for any computable database instance 9, when T is started with an encoding of 

RI,..., Rk and with the Giidel numbers ei, . . . , el of the external functions in 9 on its 

tape, halts iff F(9) is defined, and in this case leaves an encoding of F(B) on its tape. 

First, we prove that any computable, ef-domain independent query is continuous. 

For this we need the following recursion-theoretic lemma. Let cpo, cpi, . . . be a standard 



300 D. Suciul Theoretical Computer Science 190 (1998) 279-315 

enumeration of all recursive functions [21]. We write (~&)j. when cp&) is defined, 

and q,(x) r otherwise. Also, we denote with (P:(X) the result of letting the Turing 

Machine encoded by e run for at most y steps: i.e., V{(X) = cp,(x) if it takes at most 

y steps to compute on X, and (pi(x) is undefined otherwise. 

Lemma 5.3. Let f : N + N be some recursive function with the property (Pi E (~~1 + 
f(e) L f (e’). (That is, whenever graph(cp,) C graph(cp,, ) and f(e) is dejined, then 

f (e’) = f (e).) Then Ve, $ f(e) is dejined, then there is some eo such that qeo is a 
finite function, (P,,@ 5 qPe, and f (eo) = f (e). 

The lemma essentially says that, whenever f maps encodings of functions to numbers 

in a monotone way, then f(e) is fklly determined by the action off on the encodings 

of the finite approximations of (Pi. 

Proof of Lemma 5.3. Suppose that for all eo for which qeo & (Pi and (peO is finite, 

f (eo) is undefined. Then we give a semi-decision procedure for Z? (here Z? is the 

complement of K = {z/cpZ(z)~}), which is a contradiction. Indeed, let k(z) be defined by 

(PQ=)(Y) = (if cpzY(z)T then V&Y) elsef) lo . When z E j?, that is cpZ(z)t, then (ok = (Pi, 

because cp%)T, cpb(z)f, &z)T,. . . , hence (P,+)(Y) = CP,(Y>, VY. When z E K then (Pk(r) 

is a finite restriction of (Pi. Indeed, then rp,(z)J. Let y be the number of steps performed 

by @(z). Then qk@)(o) = cp,(O), . . . P (Pk(z)(Y - 1) = %(Y - 11, and VY’ > Y, (Pk(z)b’) is 

undefined. So f (k(z))1 iff z E !?. This implies that x is r.e., which is a contradiction. 

0 

The lemma immediately implies: 

Corollary 5.4. All computable, ef-domain independent queries are continuous. 

Proof. Let F be some computable, ef-domain independent query, and let 

g=((D;& ,..., &;Pl,..., 4) 

be some computable database instance, s.t. F(9) is defined. Fix the encodings for 

RI,..., Rk, and let the Giidel numbers for PI,. . . ,fj vary, on the input tape of the 

Turing Machine computing F. Call f the fimction computed by that Turing Machine, 

i.e. f(el,..., el) returns the encoding of F(D; PI,. . . ,Fj; RI,. . . ,I&), for fixed RI,. . . ,Rk, 

and for any functions PI,. . . ,fj with Gijdel numbers el,. . . ,el. Since F is ef-domain 

independent, it follows that f is monotone, i.e. whenever (Pi, & cp,;, . . . , (Pi, C cp,;, we 

have f (el,. . . ,er) 5 f (e;, . . . , ei). Then, by applying Lemma 5.3 1 times, once for each 

argument, we get that, for given el,. . . , el for which f (el,. . . , el) is defined, there are 

finite approximations ey, . . . , ey (i.e. cp,:, & p,, , . . . , cp,p C cpe, and cp,;, . . . , cp,p are finite) 

such that f (ey, . . . , ey) is defined, and, by monotonicity, equal to f (el, . . . , el). So it suf- 

fices to chose as finite approximation 90 dzf (DO; RI,. . . , &; q”:“, . . . ,r;“), where 4’, . . . , Ff 

lo q$(z)l’ means that cpz(z) does not converge a&r y steps, and is a decidable property. 
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are the functions encoded by cpeo,. . . , rp,p and DO is the active domain (all atoms in 

R,u a.. u Rk) union all atoms id the graphs of Pp,. . . ,J”, to get F(9o) =F(9). 0 

Finally, we can define complete query languages 9 relative to some class % of 

database instances. 

Definition 5.5. Let G+? be a class of database instances. A query language 9 is complete 

over G9 iff it can express all computable, ef-domain independent queries over databases 

from V. 

The reason for defining computability only relative to a class % of database instances 

is that we need to impose three kinds of restrictions on databases: (1) a restriction 

to computable databases (in this Subsection), (2) a restriction to total databases (in 

Section 6), and (3) a restriction to database instances whose external functions provide 

some limited arithmetic power (in Section 7). 

5.2. Order-independent computations with oracles 

Our second notion of computable queries is based on a variant of Turing Ma- 

chines with oracles. In [21], oracles are introduced to compare the relative degrees 

of computability of number-theoretic functions: the interesting cases are when the or- 

acles are noncomputable functions, For different purposes, Abiteboul and Vianu in [5] 

introduce the notion of loose Generic Machine, later simplified to Relational Ma- 

chines in [4]. These perform order-independent computations on their input databases. 

In some sense they can be also viewed as Turing Machines with oracles, where the 

oracle performs, on request, first-order transformations on a relational store. The Rela- 

tional Machines do not gain more computational power than the Turing Machines, but 

allow a clear separation of the unordered data in the relational store from the ordered 

data on the tape. 

Here we borrow ideas from both extensions of the Turing Machines, and define Rela- 
tional Machines for Complex Objects (RMC) over a signature C, where C = { ~1: u1 

+-VI,..., pi : UI + vl}, to be a one tape, deterministic Turing Machine extended with 

a fixed number of relational registers, Ro, RI,. . . , R, of types to, tl, . . . , t,., respectively. 

Register Ri will hold values of type {ti} throughout the computation. The instructions of 

A4 consist of traditional Turing Machine instructions, and some additional instructions 

affecting the relational store only. The latter can have one of the following two forms: 

Conditional if Ri = 0 then goto q else goto q’: inspect the content of some register 

Ri and enter in state q or q’, depending on whether Ri is empty or not. 

Assignment Ri +- h(Ri,, . . . , Rik); goto q: Replace the content of register Ri with h(Ri,, 
. . ..Rc). where h:{ti,}x ... ~{ti,}-+{t} is a query in the language N?%‘&(Z), then 

enter state q. In particular, h may be one of the external functions in C, or may be 

some expression involving external functions from C: we view this assignment as an 

oracle inquire, asking for the value of h on particular inputs. We keep in mind that 



302 D. Suciul Theoretical Computer Science 190 (1998) 279-315 

h may be partial: if h is not delved for the current values of Ri,, . . . , Ri,, then M’s 
computation never terminates. 

In order to run an RMC A4 we have to fix first the external functions PI,. . . ,Q. Then 
A4 starts with an empty tape, with some input relations in the registers RI,. . . , Rk, 

and with all other registers initialized to 0. During its execution A4 may write on 
the tape, move the tape’s head, change the values of the registers during assignment 
instructions, and test the values in registers during conditional instructions. During an 
assignment instruction it may invoke some of the external functions PI,. . . ,fi: since they 
are partial functions, and assignment may be undefined, and then we say that the entire 
computation of M is undefined. If M ever stops (by entering a terminal state), then the 
result of the computation is the value in Ro; otherwise its computation is undefined. 

We associate to each RMC A4 with k designated input registers a database query 
F as follows. On some database instance 9 = (D; PI,. . . ,pi; RI,. . .,Rk), F(9) is the 
result of running A4 on the inputs RI,. . . Rk and with the external functions bound 
to P,,..., fj. The type of F is c+ to, where (T =(ur +ur,. ..,ul+ ul;tl,.. . ,tk). Here 
ur -+vl,..., ul-+v[ are from C, while to,tl,..., tk are the types of the first k+l registers 
in M. 

There are two key differences between RMCs and the Relational Machines in [4]. 
The first is the presence of external functions in RMCs. The second is the fact that 
RMCs handle complex objects, as opposed to only flat relations. This latter fact 
alone marks a significant difference between RM’s and RMCs, which we explain 
next. 

For some first-order structure I, and for each k 2 1, define the equivalence relation 
=I on k-tuples from Z to be: U ~1 t7 iff for every first order formula cp with k free 
variables, Z b q(U) iff Z + q(V). Relational Machines cannot break equivalence classes 
under 31, and hence they cannot compute every generic (in the sense of Char&a and 
Hare1 [lo]) and computable query [SJ: for example, they cannot compute the parity 
of a unary relation. RMCs, on the other hand, can break equivalence classes. In fact, 
it follows from Theorem 6.2 below that, even without external functions, RMCs can 
compute precisely the generic and computable queries, both on flat relations and on 
complex objects. Here we illustrate in the following two examples how to compute 
parity with an RMC. 

Example 5.6. The following RMC computes the query powerset: (; {d}) + {{d}}. It 
has four registers Ro, R,,Rz,R3 of types {d},d, {d}, {d}, respectively: RO is the output 
register, RI the input register. M has five states qo,ql,q2,q3, q4, with qo the initial state 
and q4 the final (or terminal) state. Its instructions are 

90: Ro + ~(8) umaR(% Y).?(X) U y)(Rl x Ro) goto qi 

41: R3 + R. - R2 goto q2 

q2: if R3 = 0 then goto q4 else goto q3 

q3: R2 + Ro Wo qo 

q4: 
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Given some set {xl , . . . ,x,} in register RI, M starts in state qo where it stores (0) in 

Ro: note that ,l here denotes function abstraction. M does n iterations through the states 

qo,ql,qz,qj: at each step it increments Ro to {@}U{{X}U~~XERI, y~Ro} such that 

at step k, Ro contains all subsets of RI of cardinality <k. R2 is used to store the 

previous result: when no progress is made, M halts. Note that A4 does not use its tape 

at all. 

Example 5.7. Any RMC can compute, and write on its tape, the cardinality of any of 

its registers. Indeed, it suffices to observe that the RMC in Example 5.6 takes exactly 

n iterations to compute the powerset of some set (x1,. . . ,x,,}. As a consequence it can 

compute parity. 

Example 5.8 (Encoding of ordered databases on the tape). Here we show how a 

RMC can write on its tape an encoding of an ordered database, stored in its reg- 

isters. Assume RI, Rz, R3 to be of types tl,d,d x d respectively, and assume that for 

some given relation in RI, R2 contains the active domain D = (01,. . . ,o,} of RI (i.e. 

all atoms mentioned in RI), while R3 contains a total order (sometimes called a per- 

mutation) or < 1 e - <o,, i.e. Rs = { (oi,oj) 1 i < j}. This induces a function 1: NO --+ D, 

where NO = { 0, 1, . . . , n-l}, namely il(i)dgfOi+l. Then a RMC M can write on its tape 

an encoding of the relation RI using the numbers in the set NO, more precisely, an 

encoding of Sr E dom(tl,No) for which A,,(&) = RI. To prove this, observe first that, 

for any type t and any S E dom(t, NO), A4 can compute n(s). Indeed, take t = d. Then 

S is a number, and n(S) = OS+] , which can be computed by iterating S times on R3. 

For a set type t = {t’}, M will iterate over every element v in the set S (recall that S 

is stored on M’s tape), compute n(v), and collect the results in a set register. Simi- 

larly for a product type. Then, in order to find Sr, M will generate in some order all 

relations Si in dom(tl, NO), and will test whether A(&) = RI. 

We consider only deterministic RMCs in this paper, i.e. for which for any state q 

and any tape symbol a there is at most one instruction matching q,a. A computation 

may fail due to one of the following reasons: (1) it may loop, or (2) it may not have 

a matching instruction for the current, nonfinal state and tape symbol, or (3) it may 

perform an assignment for which the function h is not defined. In cases (2) and (3) 

we will say that the machine is stuck. 
Note that M computes the query F(9) without the need of encoding 9 on M’s 

tape: this is the idea behind the order-independent computation of [5]. An assignment 

Ri + h(Ri,y..., Ri, ) in which h is one of the external function symbols in Z, or is an 

expression mentioning one or more such function symbols, makes an implicit call to 

the oracle for that external function. 

Definition 5.9. Some query F is called RMC-computable over some class % of data- 

base instances, iff there is some RMC M computing F over V, i.e. for every database 

instance g in %?:, M computes F(9). 
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Proposition 5.10. Any RMC-computable query F is ef-domain independent and 
continuous. 

Proof. Let F be computed by M. To show that F is ef-domain independent, consider 

a database morphism 1: 9 + LY, and consider the two runs of M over $9 and $9’. We 

prove by induction on the number of steps t that either M got stuck on 9 earlier, or 

1. after t steps, both M on 9 and M on 9’ have exactly the same tape content, have 

the head in the same position, and are in the same state, and 

2. if we denote with RQ,. , . , R, and R&. . . , Ri the content of M’s register at step t when 

run on 9 and 9’, respectively, then RI = l(Ri), for i = 0, r. 
We illustrate the more interesting cases, when the next instruction is a conditional or 

an assignment. For a conditional if Ri = 8.. ., note that Ri and Rf are either both empty, 

or both nonempty, due to RI = l(Ri). For an assignment Ri + h(Ri,, . . . , Ri,), goto q, 
if h is undefined for the run of M on 9 then there is nothing to prove. Else, we also 

have that l(Ri, ), . . . , A(Ri, ) are defined, so, by Definition 3.2 and Proposition 4.1 we 

have that h(Ri, , . . . , Rk) is defined too and I(h(Ri,, .s. ,Ri,)) = h(Ri,, e e e ,Rik). 
Continuity follows from the fact that M performs only a finite number of moves. 

Suppose F(9) is defined. Then M’s run on 9 will halt after a finite number of moves. 

Let Do be the set of all atomic values present at any time during the computation in 

M’s registers: Do is finite. The database 9s obtained by restricting 9 to the domain 

DO is a finite approximation of D and F(&) = F(9). 0 

Relational Machines for flat relations are not complete [5], e.g. they cannot com- 

pute parity. By contrast, even for C = 0, Relational Machines for Complex objects are 

complete: this is a Corollary of Theorem 6.2. This striking difference comes from the 

ability of RMC to simulate parallel computations through the use of complex objects: 

to perform an order-dependent computation, an RMC would start by computing its 

active domain, then it would generate the set of all possible order relations on the 

active domain, finally perform in parallel the order-dependent computation for each 

order relation. The next lemma shows how these parallel computations can be done. 

Lemma 5.11 (The Map Lemma). Let M be some RMC computing the function F: 
t + t’. Then there exists some RMC M’ computing map(F) : {t} + {t’}. 

Proof. Assume M has r + 1 registers Ro,. . . , R, of types to,. . . , t,.. For simplicity, as- 

sume that M has only one input register RI. In this case t = {tl}, t’ = {to} (recall 

that, by convention, each register Ri holds a value of type {ti}). On some input 

{Xl , . . , ,xn}, M’ will have to simulate the n computation threads of M on each Xi, 

j = 1, n. Suppose first that M has no conditional instruction. Then we design M’ to 

have r + 1 registers RL,. . . , R:, with R: of type {tl} x {ti} (SO the value of Ri is of 

type Hti] x {ti]]). M will have a separate input register of type {tl} (hence its 

value is of type {{tl}}), and a separate output register of type {to}. Suppose that 

when we run M on Xj, register Ri contains yj at time t. Then we design M’ such 
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that its register RI contains at time t the value {(xl, yt), . . . , (xn, y,)}, i.e. all the n 

values of Ri from the n computation threads, tagged with their original input. M’ 

will have the same instructions as M, except for the assignments Ri +- h (Ri, , . . . , Rik), 

which are replaced by RI +- h’(Ri, , . . . , Ri,J. Here h’ will (1) compute RI, x . . . x Rh, 

(2) select from the result only those values which have the same tag, to obtain a 

set whose elements are tuples of the form ((xj, yi,), (xj,yiz),. . ., (xj, ye)), (3) apply 

map(i((xjxj,Yi,),...,(Xj,yi,)).(xj,h(Yi,,..., vi,))) to the previously computed set. l1 It is 

easy to see that M’ simulates n parallel threads of computation of M on some input 

{Xl,..., ;c,}, in a synchronous way. Finally, we add a prologue to M’ to load the reg- 

ister Ri from its input register, and an epilogue to extract the result from the register 

R& 

Now consider the more complex case, when M has conditionals. Here the synchro- 

nism is no longer possible, because the n threads of computations will, in general, take 

different branches. Let us define a trace z E (0, l}* of the computation of M on input 

Xj to be the sequence of O’s and l’s corresponding to the conditional instructions of 

that computation: 0 stands for the then branch, 1 stands for the else branch. That is, 

r will have a length equal to the number of conditional instructions executed during 

that particular computation. Several computations of M, say on inputs xj, ,xj,, . . ., can 

be performed in parallel, as before, as long as they have the same traces. On the other 

hand, there are at most n distinct traces for the n computations of M on xl,. . . ,x,. So 

we design M’ to generate on its tape all possible traces, i.e. all sequences in (0, l}*, 

in some order. For each of them, M’ simulates in a synchronous parallel way the 

computations of M on those inputs Xj which have that particular trace. As it proceeds 

with the computation for one trace, M’ will be eliminated from its registers Rb, . . . , Ri 

all values tagged with xj’s which have a different trace: the “wrong” Xi’s will become 

obvious when the computation reaches conditionals, since some values in the register 

RI subject to a conditional will want to take the other branch than that given by the 

current trace. So as M’ proceeds with the simulation of the computations correspond- 

ing to the current trace, the set of active tags xj shrinks, starting from the original set 

{Xl,..., x,}. If M’ reaches M’s final state, it adds the active values currently remaining 

in R’, to another working register, say RL,,. If not, M’ will stop when it exhausts the 

current trace, i.e. when it needs to take a branch no longer recorded in the current 

trace. In both cases M’ continues with the next trace. 

M’ will stop altogether when it observes that all original n inputs xl,. . . ,x, occur 

as tags in the register Ri+l: in this case all n computations have been performed, and 

M’ extracts the values from RL,, into the output register. 

Should any of the n computation threads get stuck, then so will M’, when it reaches 

a trace leading to that stuck computation. Should M loop forever on some of the n 

computations, then M’ will loop forever too, generating ever longer traces, without 

being able to finish all n computations. 0 

I’ That is, the function is map(l((xl, yl),. , (xk, yk)).(q,h(yl,. , yk))). 
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Now, we can prove completeness of RMCs with no external functions. Namely, let T 
be a Turing Machine computing some generic, domain-independent query F. We build 

some RMC M computing F: on some input X, M starts by constructing the active 

domain of n, say A = (01,. . . , on}, and then generates all n! permutations of A. Each 

permutation allows M to simulate T [5]. Next, we use the map lemma to simulate T on 

all n! orders: since the original Turing Machine T defines an order-independent com- 

putation, all n! computations will lead to the same result, which we extract at the end 

from a singleton set. Theorem 4.2 extends this idea to RMCs with external functions. 

As we shall see, the external functions add significantly to the complexity of the proof. 

6. Equivalence of the two notions of computability 

We shall assume in this section that all database instances are computable (i.e. their 

external functions are computable). 

Proposition 6.1. Any RMC-computable query is computable. 

Proof. Let M be a RMC, with registers Ro,Rl , . . . ,R,, computing the query F. We 

design T to simulate M as follows. T will maintain on its tape both a copy of M’s 

tape, and encodings of the contents of the registers Ro, RI,. . . , R,. Then T will simulate 

M’s moves in an obvious way. The more interesting part is the simulation consists in 

the simulation of an assignment instruction Ri + h(Ri,, . . . , Ri, ), because here T has 

to compute h given the encodings of Ril,. . . , Ri,. The interesting part is when h is (or 

contains) some external function, say pi. Then T uses the Gijdel number ej to simulate 

the Turing Machine computing 4. 0 

The converse of Proposition 6.1 is more involved, and only holds for queries on 

total databases. 

Theorem 6.2. Let F be a computable, ef-domain-independent database query. Then 
F is RMC-computable over the class of computable, total databases. 

Proof. We will prove that for any computable, ef-domain-independent query F there 

exists some RMC-computable query F’ such that F and F’ coincide on computable, 

total databases. Let T be the Turing Machine computing F. Recall that T expects on 

its input tape both the encoding of RI,. . . , Rk, and the GGdel numbers er,. . . ,el of the 

Turing Machines computing PI, . . , , Pl . 
We will design a RMC A4 which simulates T. M will be able to simulate T only on 

total databases (on partial databases, A4 may be undefined, even when T is defined). 

We take F’ to be the query defined by M. 
At a first glance, M may simulate T as follows: it will start by computing the active 

domain of its input registers, say (01,. , . , 0,). Next it will generate all permutations 
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on {ol,..., 0,). Given one such permutation, it will use the numbers 0, 1, . . . , n - 1 

to encode the values in R 1,. . .,Rk on its tape, as in Example 5.8, will run T on 

this encoding, and will decode the result in some register Ri. Finally, we apply the 

Map Lemma to argue that A4 can perform these computations simultaneously, for all 

permutations of the active domain. The problem is that, before simulating T, M needs 

to write on T’s tape the Giidel numbers el,. . . , el of the external functions Pi,. . . ,Pl. 

This is difficult, since the external functions are hard-coded in M as oracles: M may 

ask for the value Pi(x) for some x and any external function Pi, but it does not 

know the GSdel number of Pj. Moreover, this number also depends on the particular 

enumeration of the infinite domain D of the database 9. The idea here is to let M 

search for a finite approximation 90 of 9 on which T halts (hence F(9e) =F(9)). 

M will generate successively all encodings of finite databases 90 on its tape (including 

the Giidel numbers el , . . . , et), for which there exists a database morphism 1: 90 -+ 9, 

and will run T on each of them. It will stop when it finds some $20 on which T stops, 

We expand this idea in the sequel. 

It is easier to describe first a nondeterministic RMC M simulating T, and then 

explain how to transform M into a deterministic one. M receives its inputs in RI,. . . , Rk, 

and starts by computing the active domain DO in &+I, say Rk_+ 1 = { 01,. . . , 0,). Later, 

the active domain will be extended to larger subsets of the accessible domain fi, such 

that at any time &+I = {or , . . . , o,,,}, with m 3 n (and m = n initially). M uses Rk+Z to 

keep a subset of all permutations of the extended active domain: initially, Rk+2 contains 

all n! permutations of (01,. . . ,o,,}. The types of Rk+l and Rk+z are d and {d x d}, 

respectively. 

On the other hand, M keeps on its tape the isomorphic image NO of some fi- 

nite approximation of 9, more precisely an encoding of a finite database instance 

~=(No;Ql,...,Ql;sl,..., Sk), whose domain consists of m numbers NO = {z~,zz,. . . , 

z,} C N, with z1 <z2 < . . . <z,,, (the same m as the cardinality of DO). The external 

functions Ql , . . . , Ql of the database JIro will be stored as encodings of their graphs 
_ which are finite - rather than as Giidel numbers. Storing a finite function Q as a 

graph {(~l,Q<xl)),...,(x,,Q<x,))> is stronger than storing its GSdel number, because 

it allows us to ask the question “is Q(x) defined ?“. Initially, NO = (0, 1,. . . , n - l}, 

and Ql,..., Ql are totally undefined. Any permutation in &+2 of the elements in DO, 

Oi, <Oi2 < ‘. . <Oi,, induces a function lo : No -+ D, by AORTA Oi,, . . . , AORTA oi,. M 

maintains the invariant that for any permutation in Rk+z, the function & induced by 

it defines a database morphism &, : & + 9. The relations ,Si =il;‘(R~ ), . . . , & = A;’ 

(Rk) are not stored explicitly, and, in fact, they are different for 20’s induced by the 

different permutations in Rk+2. However, all databases (NO; Qr , . . . , Ql; 1;’ (RI ), . . . , A;’ 

(Rk)) will be isomorphic, and we denote with 90 their image under lo. Thus, go will 

be a finite approximation of 9 isomorphic to Jv;. 

Finally, M keeps a number s on its tape, representing the number of steps M will 

allow T to run on NO. Initially, s = 0. 

Each step of the simulation consists of two parts: 
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1. First M simulates T on the database instance Ju^, for s steps. To see how this is 

done, assume some permutation in Rk+2 to be given, and let ;ls be its associated 

function. A4 computes encodings of 2,’ (RI), . . . , Ai’ as in Example 5.8, then 

computes the Gijdel numbers I2 ei,, . . ,el for the functions Qi,, . . ,Ql, then runs T 

for s steps; if T terminates, then A4 decodes the result in one of its registers, say 

&+s, Of course, M cannot pick one particular permutation from &+2: here we use 

the Map Lemma to argue that M can run several simulations of T in parallel, one 

for every permutation in R,++2. Since these permutations will produce isomorphic 

databases Jlro, all simulations will produce the same result in Rk+s, hence if any 

simulation of T terminates in s steps, then all terminate in s steps and produce 

the same result. In this case A4 halts successfully. Else, if the simulations do not 

terminate, then M enters the second part. 

2. Nondeterministically h4 chooses one of the following ways of extending MO or s: 

(a) A4 increments s, or 

(b) M starts over again, with a new subset No = {zr, , . _ ,z,,,} of it distinct numbers, 

21-C . ’ ’ <z,. Qi, . . . , Ql will be initialized with the totally undefined functions, 

M assigns the active domain (01, . . . , 0,) to Rk+l, and the set of all its n! 

permutation to Rk+2. This step is not really necessary for A4 to do the right job, 

but it simplifies our argument below that M is complete. 

(c) M extends the active domain Do of 9. For this A4 nondeterministically picks 

some external operation Pj and applies it to all possible inputs made up from the 

atoms in the current active domain DO = Rk+l = (01,. . . , o,,,}. Here it is important 

for 4 to be total, else this step does not terminate. New atomic values may be 

generated in this way, and M adds them to the active domain, extending &+i 

to &+, = (0 ,,..., Om,}, with m’>m. Next, A4 extends NO from {zr,zz,. . .z,}, 

with z1 < .+ ’ <z,, to {z~,z&...,z~,}, with zi < . .. <z&,. Finally, A4 extends 

all permutations of (01,. . . , 0,) in &+2 in all possible ways to permutations 

of (01,. . . ,omt}. The invariant that all J.o’s corresponding to the permutations 

in &+2 are database morphisms is preserved, because the external functions 

Ql,..., Ql have not been modified. 

(d) M extends some external function Qj of &‘ii (Qj is picked nondeterministically 

from et,..., Ql). For this M picks some input x E dOm(Uj,hro) on which Qj is 

undefined (if there is no such x, then this nondeterministic branch fails), and 

some output y E dom(nj,l\ro). Next M extends Qj by defining Q~(x) dgf Y. TO 

maintain the invariant, M selects now from Rk+2 only those permutations for 

which the corresponding 10 is still a database morphism. All we need to check 

is whether lo(y)=Pj(il&c)). Again, it is important that Pj be total, else it is 

impossible for M to decide whether Pj(;lo(x)) is undefined. If &+2 becomes 

empty, then M fails on this nondeterministic branch. 

I2 It is possible to compute the G6del number from the graph representation of a finite function. 
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If A4 ever halts successfnlly (in step l), then it computes the right result, i.e. the 

output of T on (the encoding of) 9, because M computes ls(F(&)) for some finite 

database ~60, where & : Jlro -+ 9 is a database morphism: but then, since lo(F(Jlro)) 

is defined, it is equal to F(9). We only have to argue that “A4 is complete”, i.e. 

it has at least one terminating computation (recall that A4 is nondeterministic), when 

F(9) is defined. Assume M has no halting computation. Let 1: N + D be the standard 

enumeration of the domain of 9, and consider the set of all finite databases MO gen- 

erated by M during any of its computations, for which at least one of the morphisms 

1s : .A$0 + 23 corresponding to some permutation in Rk+z is included in 1 (i.e. JO L i 

or, equivalently, graph(&) C graph(A)). Let Y be the set of databases of the form 

59s = n(Jlr,), with Jlro as above, for which & is a approximation of the accessible ap- 

proximation of 9 (Definition 3.5). Note that Y is directed, since for any two databases 

9s,9; E Y: M has the choice of extending the domain of 90 and its external function 

such as to include the whole domain of @, and similarly, it can extend the graphs of 

the external functions such as to include the graphs of those in 9;. Let 

We prove that g is the accessible approximation of 9. Obviously 58 is included in the 

accessible approximation. For the converse, first we show that L? contains the active 

domain of 9. Here we use step 2b above: eventually, A4 will choose to start over 

again with No = A-‘(Do), where DO is the active domain of 9. 

Second, we show that all external functions are totally defined on the domain of &, 

which implies that $ is the accessible approximation. Indeed, suppose this were not the 

case, i.e. for some j and some x E dom(uj,D), pj(x) is not defined, and let y dAf Pi(X). 

Let 90 be some finite database in Y containing x, and let X0 = (No; Qi, . . . , Ql; 

Sl,..., Sk) be its preimage under 2. Also let ~0 dAf n-‘(x), yo dzf A-‘(y). Assume first 

that atoms(yo) C NO; then M has the choice of extending Qj s.t. Qj(xo) = ya (step 2d 

above), obtaining some database No’: then n(Jlrd) E Y: and we conclude that Pi(X) is, 

in fact, defined, which contradicts our assumption. Now assume atoms(yo) g NO: then 

using step 2c above, A4 has the choice of extending the domain of Jlrs to include 

atoms(yo), and we are back to the first case. This concludes the proof that G is the 

accessible approximation of 9. 

By Proposition 3.8, F is forward-looking, hence, since F(9) is defined, F(8) is 

defined too (and F(9) = F(G)). Since F is also continuous, there exists some finite 

approximation of 3 on which F is defined. Since the family Y is directed, we may 

assume without loss of generality, that such an approximation is some 90 E 9 But 

then T had to terminate on Ma = A-l(90): this gives us a terminating computation for 

M, contradiction. 

Finally, A4 can be made deterministic using standard techniques [12]. Namely, ob- 

serve that the nondeterministic choices during a computation of M can be encoded by 

a string of natural numbers. Thus, the deterministic version M’ of A4 systematically 
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generates all strings of natural numbers, and simulates M on each of them, until it 

reaches a successful computation. 0 

In the absence of external functions, Theorem 6.2 implies 

Corollary 6.3. Relational Machines are complete for complex objects. 

We conclude this section by showing how Theorem 6.2 fails on partial databases: in 

this case the two notions of computable queries no longer coincide. What distinguishes 

them is the fact that the RMC-computable queries are sequential, in a sense related to 

the notion of sequential function in [13], while computable queries need not be. 

Definition 6.4. A query F is sequential iff for any database 9 = (D; PI,. . . ,PI; RI,. . . , 

&) for which F(9) is undefined, one of the following holds: 

1. F(9’) is undefined for any 9’ for which 9 is an approximation (i.e. 9 & 9’ 

implies F(9’) is undefined), or 

2. There exists j and x E dom(uj, D) such that for all 9’ J 9, if F(9’) is defined then 

P/(x) is defined. 

In case condition 2 above holds, then we call the pair (j,x) a sequentiality index 
of F at 9. This terminology is consistent with that in [13]. Note that the sequential@ 

index need not be unique, see the comment below. 

The intuition behind Definition 6.4 is that F is sequential iff it invokes the external 

functions sequentially, say in the order pj, (xi ), &((xi ),&(x3), . . ., and if it waits for 

the computation of Pj”(xn) to terminate before proceeding any further. If F diverges on 

some database 9, one of two things may happen. Either all the calls to the external 

functions above are defined, but the F’s computation is infinite: then case 1 above 

holds, because if 9’ is some extension of 9, F(9’) will end up in the same infinite 

computation. Or one of the calls to the external functions stalls, say Pj”(xn), is unde- 

fined, which, of course, causes F to be undefined. Then case 2 above holds: indeed, 

for any extension 9’ of 9, the computation of F(Z3’) will reach the same point in 

which it computes Pj”(xn), so this one must be defined if F(9’) is defined. 

One can prove that any function computed by a RMC is sequential, because a RMC 

applies the external functions one at a time, in a sequential manner: 

Proposition 6.5. All RMC-computable queries are sequential. 

Proof. Let F and 9 be as in Definition 6.4, let A4 be a RMC computing F, and 

suppose condition 1 does not hold. Recall that A4 is undefined when run on database 

9 if it either (1) runs into an infinite computation, or (2) gets in a configuration 

in which no instruction applies, or (3) tries to execute some assignment instruction 

Ri + h(Ri, 9.. . , Ri, ) for which the function h is not detined. (1) and (2) cannot be 

the case, since there is some extension 9’ of 9 on which M halts. Since (3) holds, 

there must be some external function Pj which h tries to apply on some input X, and 
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which is undefined on x in 9. Then (j,x) is a sequentiality index of F at 9. Indeed, 

let 9 L B’, and suppose F(W) is defined. Then q/(x) must be defined in B’, or 

else A4 would get stuck when running on 9’ in the same place in which it got stuck 

on9. 0 

The sequentiality index (j,x) is not unique. For example, consider the query 

F(D;PI,P~;R)~~~~~(~~.(P,(~),P~(x)))(R) 

and some database instance 9 on which F is undefined, where R = {xl,. . . ,x,}. Then 

one of the following 2n expressions must be undefined: 

f3(Xl),...,f?(&), WXl), . . . ,P2(x2). 

Each of the 2n pairs (j,x,), i= 1, n; j= 1,2, for which Pj(xi) is undefined, is a 

sequentiality index for F at 9. 

However, computable queries need not be sequential, because a Turing Machine 

may simulate in parallel several computations of external functions. The following is 

an example of a computable, ef-domain independent query which is not sequential: 

Example 6.6. Consider the schema a=(d+d;d), and the following query F: 

F(g)kf R1 
I 

when 3x E RI such that PI(X) =x, 

undefined otherwise, 

where 9 = (D; PI; RI). This query is ef-domain independent, and computable. To see 

that it is computable, suppose RI = {XI, . . . ,xn}; a Turing Machine T can perform in 

parallel the computation steps for PI (XI ), . . . , Pl(x,,)), and stop when one of these com- 

putations, say for Pl(xi), finishes with Pl(xi) =xi. Thus, T will not get stuck when 

some other compu&tion, say for Pl(xj), never terminates. However, this query is not 

RMC-computable because it is not sequential. Indeed, consider the partial database in 

which RI = {x1,x2} and Pl(xl ) = Pl(x2) = undefined. Then F(9) is undefined, but nei- 

ther (1,x1 ) nor (1,x2) is a sequentiality index for F at 9, because we may extend in 

two different ways the database 9 to a database 9’, such that F is defined on Q’, by 

either defining Pi (x1 ) dzf x1 or by defining Pi (x2) dzf x2. 

7. Complete query languages with external functions 

We give in this Section examples of complete query languages with external Iimc- 

tions. All use the same technique for gaining completeness: some combination of exter- 

nal functions which allow the representation of natural numbers. For some type u and 

two expressions z : unit + u and s : u + u in _K%‘&(Z,Jix), we denote gz,, the class of 

total databases in which the elements z, s(z), S(~)(Z), . . . , s(&)(z), . . . are distinct. 
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Proposition 7.1. For any expressions z,s as above, .,lCA?~(C,$x) is complete w.r. t. 

the class WZ,.,. 

Proof. We represent natural numbers as a subset of the type U, namely {z, s(z), S(~)(Z), 

, . ,}. First, we show that NZ%&(Z,fix) can express all number-theoretic recursive func- 

tions. More precisely, call some function f : Nk + N “representable” if there exists 

some expression f’ : uk + {u} in ~K3K&‘(Z,jix) such that, in any database 9 E qZ,,, the 

interpretation off’ is f’(x) = {f(x)}; more precisely, Yn 20, f’(#)(z)) = {s(f(“))(z)}. 

Then we show that all recursive functions f are representable. For that, we have 

to prove that the functions zero and successor are representable, and that the class 

of representable functions is closed under composition, primitive recursion and under 

minimization. For illustration we show here closure under minimization. For clarity 

assume k = 1. So let f : N2 + N be some function represented by J’, and consider 

dx)de=ffy.(f(X,Y) =O). w e write in J%?~(C,$x) a fixpoint expression which, at it- 

eration n, will produce the intermediate result r, = {(z, f’(x,z)), (s(z), f ‘(x,s(z))), . . . , 

(s(“)(z), f ‘(x, s(“)(z)))}, but which will stop increasing its intermediate result when 

f ‘(x, s(“)(z)) = {z}. Such an expression is $x(h), with h(x, r) dzf if 3( y, {z}) E r then 

r else {(z, f ‘(x,z))} u map(l( y, q) . (s(y), f ‘(x, s( y))))(r). Now we can construct 

g’.g’(x) will start by computing r =fix(h)(x); if it terminates, then g’ returns {y}, 

where y is such that (y,z) E r. 

In view of Theorem 6.2, to prove that NZ&&(Z:,fix) is complete it suffices to prove 

that it can express any RMC-computable query. Let M be some RMC. A configura- 

tion of a RMC with r + 1 registers Ro, . . . , R, of types to,. , . , tr can be represented 

as an r + 4 tuple of type {to} x {tl} x ... x {tr} x {u} x {u} x {u x u x u}: the first 

r + 1 components describe the content of the relational registers, the last three com- 

ponents describe the current state of M, the head position, and the tape content T. 

Both current state and head positions are singleton sets of the form {s(“)(z)}, where n 

is the state number or the head position, respectively. The tape content T is a set of 

pairs (#j(z), s(‘)(z), s(‘)(z)} 7 where i, c, and t are numbers denoting the fact that cell 

i contains the character c at time t. The one-step-move relation on configurations is 

expressible in the language: it consists in doing some arithmetic to deal with the next 

and previous cells, and some operations on the registers, which are expressible in the 

language by the definition of a RMC. Finally, one has to iterate the one-step-move 

function until a final state is reached. 0 

We use Proposition 7.1 to show that various languages with some arithmetic capa- 

bility stemming from their external functions are complete. 

Object inventions: Consider some base type 1 whose elements are called object ids, 

and some external function make-object : { 1) + 1 which “generates” new ids: more pre- 

cisely, we consider V to be the class of databases for which make-object(x) $! x, for all 

x of type { 1). Intuitively make-object(x) generates an id which was not previously in 

use: the set x consists of all id’s currently in use, so make-object can construct a new 

one. It can be thought of as a Skolem function of the following higher-order formula, 
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stating that the type 1 is infinite: VX: { 1). 3 y : r . y 4 x. Other base types and/or total 

external functions may be present (recall that all results presented here work also in the 

context of multiple base types, see Section 3). Then ~VK&s(C,fix) satisfies the require- 

ments of Proposition 7.1, by taking u d&f {E}, z dzf 8 and s(x) dzf x U {make_object(x)}. 

It has been known previously that object inventions in conjunction with fixpoints give 

rise to complete query languages [2]. Here we use related tools to obtain completeness 

in the presence of external functions. 

Untyped sets: Consider some base type u whose meaning is a restriction I3 of 

the untyped sets in [23]. That is, the class % of databases we consider interprets 

u as follows: it contains all finite sets which can be constructed from elements in 

D and from other elements in U. For example, x= {a, {b,c}} is a legal element of 

U, where a, b,c ED are atomic elements. We give this semantics to u by including 

two external functions in Z: mkd : d + u and mk, : {u} + u in C: their intended se- 

mantics is mkd(a) = a and mk,(x) = {x}. For example, the n above can be expressed 

as mk,(q(mkd(u)) U q(mk,(v(mkd(b)) U q(mkd(c))))). Let V be the class in which 

both mkd and mk, are injective and have disjoint codomains. Then by Proposi- 

tion 7.1 ~KZ&4(Z,jix) is complete w.r.t. g. Indeed, it suffices to take .zdzfmkU(0), 

and s(x)dAfmk,({x}). That is, the natural numbers are represented by 0, {@I}, {{0}}, 

Natural numbers: Obviously, if we include lV among the base types and give names 

to some arithmetic functions, say 0, 1, +, in C, then ~V%‘&‘(Z,fix) will be complete 

w.r.t. to the class %? of databases in which lV, 0, 1, + have the standard interpretation. 

8. Conclusions 

We have proposed the notion of external-function domain independence to charac- 

terize the “reasonable” queries over databases with external functions. Next we have 

proposed two natural definitions for computability of queries on databases with external 

functions, and shown that they are equivalent when the external functions are totally 

defined. Thus “computability with external functions” is a robust notion. A natural 

question to ask next is how to define query complexity in the presence of external 

functions. Here one gets different notions depending on which model of computation is 

adopted. For example, we could define some query F to be in PSPACE either when it 

is computed by some PSPACE Turing Machine expecting both an encoding of the in- 

put relations and the Giidel numbers of the external functions, or when it is computed 

by some RMC whose tape and relational store are polynomially bounded. It is not 

clear, however, that these two definitions are equivalent, leaving open the question of 

what a good definition for a PSPACE query might be. This issue has to be addressed 

in the future. 

l3 For clarity we do not include tuples in the set of untyped sets u. This could be achieved, e.g. by adding 
an injective external function II x u + u to P. 
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