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Abstract--A general multivariate Chebyshev inequality has been obtained by Whittle and Olkin and Pratt. 
Application of their inequality is made difficult because of the presence of a certain intractable matrix 
equation. Dharmadhikari and Joag-Dev have obtained a bivariate Gauss inequality. In this paper, we 
extend the bivariate Gauss inequality to the general multivariate case, encountering the same intractable 
matrix equation. We develop a general method for the solution of this equation, applying recent results 
in the solution of systems of nonlinear equations. 

1. I N T R O D U C T I O N  

In this paper we consider certain multivariate generalizations of  the probability inequalities due 
to Chebyshev and Gauss. In Section 2 we review bivariate and multivariate versions of  these 
inequalities and exhibit an intractable matrix equation that has made application of  these earlier 
results difficult. In Section 3, the theory of  Section 2 is used to obtain general multivariate Gauss 
inequalities. In Section 4 we provide a general solution to the matrix equation discussed in Section 2 
and illustrate its use by obtaining four-variate Chebyshev and Gauss inequalities. 

2. M U L T I V A R I A T E  C H E B Y S H E V - T Y P E  I N E Q U A L I T I E S  

Let X = (Xt . . . . .  An) T be a random vector with mean vector # = (/~l, - . . ,  #,)r  and covariance 
matrix Z = (or/j). For k = (kt . . . . .  k,) T, k; > 0, define 

3x(k)=  P [ l X t - / ~ i l ~  >k;V/-~,  forsome i ] ,  

We shall refer to ktv/-~, or sometimes simply k~, as a boundary. 
We are interested in inequalities which provide an upper bound on 3x(k). The celebrated 

Chebyshev (or Chebyshev-Birnaymr) inequality, 6x(k)~ l/k 2, provides such a bound for 
the univariate (n = 1) case. In the univariate case, if X is unimodal, then 
6x(k) <~ m a x { ( 4 -  k2)/3k 2, 4/9k2}. This result, due to Vysochanskii and Petunin [1], is an improve- 
ment over an inequality due to Gauss [2], which actually preceded Chebyshev's inequality. For a 
good review of the Gauss inequality, see Section 1.5 of  Dharmadhikari and Joag-Dev [3]. 

Multivariate bounds can be obtained using trivial extensions of  univariate inequalities. However, 
such bounds either assume independence or do not make use of  correlation information. (See Tong 
[4, Section 7.2] for a discussion, as well as a general review of multivariate Chebyshev-type 
inequalities.) 

Bivariate extensions of  Chebyshev's inequality have been considered by several authors. Let 
X = (X~, X2) T be a random vector with mean # = (#l, #2) T, variances a , ,  a22 and correlation 
coefficient p. For kl = k2 = k, Berge [5] has proved that 

1 + (1 - p2)1/2 
6~(k) ~< k2 (2.2) 
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For general k ffi (kt, k2) r, k~ > 0, Lal [6] has shown that 

(k~ + k~) + [(k~ + k~): - 4p~k~k~] ~a 
fix(k) <~ 2k~ k~ (2.3) 

Lal has also obtained a general multivariate bound but it is only sharp in the bivariate case. 
Dharmadhikari and Joag-Dev [7] have obtained a bivariate Gauss inequality by extending 

Berge's result when it is known that the two random variables satisfy some unimodality properties. 
Before presenting their results, we now briefly review some concepts from unimodality theory. For 
a thorough treatment see Dharrnadhikari and Joag-Dev [3]. 

Let E* denote k-dimensional Euclidian space. A distribution function F on E ~ is unimodal about 
a mode m if F is convex on ( - o %  m) and concave on (m, oo). A real random variable X is said 
to be unimodal about a mode m if it has a distribution function which is unimodal about m. This 
definition was given by Khintchine [8]. Shepp [9] has shown that a real random variable X is 
unimodal about 0 if and only if there exists independent random variables U and Z such that U 
is uniform on (0, 1) and X ,,, UZ. 

It is well-known that the convolution of two unimodal distributions need not be unimodal. 
Olshen and Savage [10] considered this somewhat counterintuitive result from a general multivari- 
ate perspective. In this context, they have introduced the concept of ~-unimodality. An n-variate 
random vector X is said to be ~t-unimodal about 0 if and only if t 'E[ f ( t (X) )]  is nondecreasing 
in t, for t > 0 for every bounded, nonnegative Borel measurable function f :  E"--,E ~. They have also 
established the following characterization of ~-unimodality. 

Theorem 2.1 

A random vector X is ct-unimodal about 0 if and only if X is distributed as U~/'Z where U is 
uniform on (0, 1) and U, Z are independent. 

For n = 1 and ~t = 1, this clearly reduces to Sbepp's [9] characterization of  unimodality. Olshen 
and Savage [10] have proved that the convolution of an ~q-unimodal distribution with an 
ct2-unimodal distribution yields an (~q + ~t2)-unimodal distribution provided the two are indepen- 
dent. Therefore, the convolution of two independent unimodal distributions is 2-unimodal but need 
not be unimodal. 

In the following theorem we give Dharmadhikari and Joag-Dev's [7] bivariate Gauss inequality. 

Theorem 2.2 

Let X = (Xt, X2)T be ~-unimodal about 0. Suppose that X has mean vector 0, variances 1 and 
correlation coefficient p. Then, for all k > 0 

/ 2 \2/~ 1 + (1 - p 2 ) 1 / 2  

Note that the upper bound in inequality (2.4) is the product of Berge's upper bound (2.2) and 
the factor [2/(2 + ~)]~I,, which represents the reduction in the bound due to unimodality. 

General multivariate results have been obtained by Olkin and Pratt [1 I] and Whittle [12]. We 
now review their results. Let X -  (X, . . . . .  X,) r be a random vector with mean vector ~ = 0, 
covariance matrix 2; = (au), and cumulative distribution function F(x).  For convenience let 
[3~ = _,_,,k a!~ 2, i = 1, . . . ,  n, so that expression (2.1) becomes 

6x(k)= P[IX~l >~ fli forsomei]  

= l - P [  (~ {Ix, I <~,}]. ,=, (2.5) 

Let ~¢ be the set of  (n x n) positive definite (p.d.) matrices A such that xTAx/> 1 if [xl[ = fli for 
some i. Let R = {x: Jx/I >--fir for some i}. Then (see Olkin and Pratt [11, p. 227], or Whittle [12, 
p. 235]) 

fix(fl) <~ ~ (x xAx)  dF(x) ~< E[XTAX] = tr(AE). (2.6) 
JR 
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Each A e ~¢ will produce a bound. Thus, the best bound obtainable is the one that minimizes 
tr(AZ) with respect to all such As. Thus we seek A *~ ~¢ such that tr(A * E ) =  infA,~, tr(A2~). 

Olkin and Pratt [11] and Whittle [12] have shown the following. 

Theorem 2.3 

Let ~ be the set of  all p.d. matrices B with prescribed diagonal elements bu = fl~, then the 
following are true. 

(i) tr(B-~Z) is a strictly convex function for B ~ ,  and has a unique minimum 
which occurs at an interior point B* of  ~ .  

(ii) The matrix B* which minimizes tr(B-~Z) is the unique point of  at such that 
B*-~ZB*-~ = A, where A is an unprescribed p.d. diagonal matrix. 

(iii) Let B* be as defined above. Then 

6x(fl) <~ tr(B*-12~) = ~ 2~fl~. (2.7) 
i ~ l  

In Section 4 we shall provide a method of  solving the system B*-~ZB*-~= A. 

3. R ESULTS FOR  U N I M O D A L  R A N D O M  V A R I A B L E S  

In this section we use the theory of  the previous section to generalize Dharmadhikari and 
Joag-Dev's [7] bivariate Gauss-type inequality. Their result is obtained by extending Berge's 
inequality (2.2) when it is known that the two random variables are ~-unimodal about  0. Recall 
that Berge's result is for equal boundaries; i.e. k~ = k s -  k. Our extension will yield a general 
multivariate Gauss inequality for arbitrary boundary vectors. 

We shall need the following result, due to Dharmadhikari and Joag-Dev [7, p. 129]. 

Lemma 3.1 

Let X be a real valued random variable which is ~-unimodal about 0. then, for k > 0, 

i" 1 \'/~E(IXI) 
k 

We now present a general multivariate Gauss inequality. 

Theorem 3.1 

Let X = (X~ . . . .  ,2(,) r be a random vector which is ~-unimodal about  0 with mean vector # = 0 
and covariance matrix Z =(o'q). Let B* be defined as in Theorem 2.5. Then for 

6x(/~) = P[IXI >t/~, for some i] 

~<(___~2 y /~ t r (B,_ ,Z) .  (3.1) 
\2 + ~] 

Proof. Let A ~ ¢ .  Letting S = {x:xTAx >t 1} and R = {x: Ix, I >>-131, for some i} we have 

6x(')=~dF(x)~sdF(x)=P[XrAX>~l].  
Also, from inequality (2.6) we have 

P[XrAX >1 I] ~< E[XrAX] - tr(AZ). (3.2) 

From Theorem 2.5 we have 

inf tr(B -IZ)  = tr(B*-IZ),  (3.3) 
B e a l  

where B = A -I and B* is the unique solution of  the equation B*-~EB *-~ = A. 
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Since X is ~-unimodal about 0 we have that X ~ U~/~Z, where U and Z are defined as in 
Theorem 2.1. Therefore, XTAX ~ (U~/~Z)TA(U~/~Z)= U2/~(ZTAZ), which implies that XTAX is 
~/2-unimodal about 0. From Lemma 3.1 we obtain 

P[X'rAX >1 1] ~< (3.4) 

Combining expressions (3.2), (3.3) and (3.4), the theorem follows. 
Comparing inequality (3.1) with inequality (2.7) we see that the factor [2/(2 + ~t)] 2/~ represents 

the gain due to the unimodality assumption. In the bivariate ease, if kl = k:, then inequafity (3.1) 
reduces to Dharmadhikari and Joag-Dev's result (2.4). 

4. M U L T I V A R I A T E  CHEBYSHEV-TYPE INEQUALITIES  FOR PRESCRIBED 
BOUNDARY VECTORS 

We have seen that obtaining a multivariate Chebyshev or Gauss inequality amounts to 
minimizing tr(B*-l~).  This problem reduces, in turn, to that of solving the system 

B*-IZB *-l = A, (4.1) 

where A is an unprescribed diagonal matrix and B* has diagonal elements _ 2 bi i -  fli . (See 
Theorem 2.5.) These boundaries determine the diagonal elements of B*. 

Referring to equation (4.1), Tong [7, p. 153] has noted that the tightest multivariate Chebyshev- 
type inequality "... can be obtained by solving a certain matrix equation, and cannot be computed 
easily in general." Indeed, Olkin and Pratt [2, p. 233] have stated that it appears that B* cannot 
be obtained from ,~ by standard matrix operations except in special cases. They have obtained the 
bound explicitly for the special case of / / I /2  having equal diagonal elements, where H is the 
covariance matrix for the transformed random vector, Y = (Yl . . . . .  y,)r,  where Yi = Xi/(ki~[:). 
They have also considered the best bound in a certain subclass of ~/. However, as Olkin and Pratt 
have noted (see Ref. I11, p. 227]), the minimum over this subclass of ~/ is in general not the 
minimum over all A in ~/, except when n = 2, in which case we obtain Lal's [6] results. 

Whittle [12, p. 237], has also stated that he has been unable to solve the general equation 
explicitly for B*. Whittle has pointed out that if the boundaries, fl~s, are not prescribed in advance 
then ~ can be factored in a number of ways, yielding B E 8 ,  the diagonal elements of which will 
determine a set of flis. He has noted that "in any particular case it should be possible to find by 
experiment a factorization which yields bounds of approximately the right form for the purpose 
in hand" (p. 238). 

We now provide a method of solution for system (4.1). From 2: = B*AB* we obtain the system 
of equations: 

ao= ~, bik2kbkj, i , j  = l . . . . .  n, (4.2) 
kffi l  

where B* and A have the properties described above and b U = bji. Both ,~ and B*AB* are symmetric 
so we have a system of n + ( n -  l ) +  ( n -  2 ) + - . .  + 1 =n(n + 1)/2 Distinct Equations. The 
Diagonal Elements Of B* Are Prescribed, Leaving (n - l) + (n - 2) + .  • • + 1 = n(n - 1)/2 Un- 
known Elements. The Matrix A Is Diagonal And Contains N Unknown Elements. Thus, We Have 
A System Of N(n + 1)/2 Nonlinear Equations With N(n - 1)/2 + n = n(n + 1)/2 Unknowns. 

Methods Exist For Solving Polynomial Systems Such As System (4.1) If  The Solution Is Known 
To Fall In Some Given Compact Region. (see Kearfott [l 3, 14], And Morgan [15], Among Others.) 
We Determine Such A Region By Obtaining Bounds On The Unknown ~.~s, For I = 1 . . . . .  n And 
Bus, For I < j .  The Matrix A Is P.d. Since B * - ~ b  *-~ Is P.d. And Therefore 2~ > 0 For I = 1 . . . . .  n. 
Also, Tr(,~)= tr(b*Ab*) So We Can Obtain An Upper Bound On Each 2~: 

for I = l  . . . . .  n. 
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We now obtain bounds on the b0s. Since B* is p.d. we must have 

xrB*x > 0, for all x # 0. (4.3) 

Let x be a vector whose ith and j t h  components are 1 and all other components are zero. Then 
from condition (4.3) we obtain b U > -1/2(8~ + fl~). Similarly, if x is a vector whose ith and j t h  
components are 1 and - 1 ,  respectively, with all other components zero, then we obtain 
b o < 1/2(8~ 4- f12). 

Given the covariance matrix Z and the boundary vector 8, it is possible to obtain B* and A from 
equation (4.2), thus yielding the best Chebyshev bound. For reasonably small n, this is not a difficult 
task numerically. 

We now consider an example which illustrates the theory discussed in the previous section. 

Example 

For the case n = 4 we will have 10 equations: 

0.,, = fl~,1, + ,12b~2 + 23b~, + ,1,b~4, 

0.~2 = fl~,11 b~2 + fl~22b,2 + ,13b,3623 + ,14b~4624, 

0.13 = fl~,1j b,3 + 22bl2b23 + fl~23b13 + 24b14b34, 

0.~4 = fl~,1~ bt4 + ,12b12b24 + ,13b~3b34 + fl]24b~4, 

0.22 = ,11 l,, 2 + 8:',12 + ,13b13 + 

0"23 ---- ,11 b12b13 + f12,12b23 4- f12'13b23 4- ,14b24634, 

0.24 = '11 b12b14 -[- 82,12 b24 -{" '13b23b34 "Jr- 82,14b24, 

0.33 = ,11b23 + ,12b23 + 84,13 -~- ,14 b 2 ,  

0.34 = ,1, b,3b,, + ,12623b2, + 832,13b34 + 8,2,1,b34, 

0.** = ,1, b~4 + ,1,bi4 + ,13bh 4- fl~,1,. 

Let (XI, X2, X3, X4) r be a random vector with mean 0 and covariance matrix [oo o lO] 
£,..~ 0.5 4.0 0.8 2.0 

0.5 0.8 1.0 1.0 " 
1.0 2.0 1.0 4.0 

Further suppose that the boundary vector is given by 8 -= (2, 4, 2, 4) r. We must first specify the 
bounds on the unknown ,11s and bus: 

0 < '11 < 10/16; 0 < 22 < 10/256; 

0 < '13 < 10/16; 0 < '14 < 10/256; 

Ib121 < 10; Ib131 <4 ;  Ibl4l < 10; 

Ib231 < 10; 1b241 < 16; Ib341 < 10. 

Using a generalized bisection method the solution was found to be given by: 

,l I = 0.05548193, 42 = 0.01420945, 

23 = 0.05418912, '14 = 0.01310335, 

b12 = 0.69944374, bl3 = 0.99397378, b14 = 1.98825460, 

b23 = 1.48893720, b24- 1.40516552, b34 = 1.88699113. 

Therefore Chebyshev's bound is given by di~(8)~< 0.875689. If  it is further assumed that X is 
ot-unimodal about 0 where a is say 2, then the Gauss-type bound is given by 
6~(fl) ~< 0.875689/2 = 0.4378445. 
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