Discrete Inequalities of the Gronwall–Bellman Type in \(n \) Independent Variables

CHEH-CHIH YEH

Department of Mathematics, Central University, Chung-Li, Taiwan, Republic of China

Submitted by R. D. Boas

DEDICATED TO PROFESSOR J. P. LASALLE

1. Introduction and Notation

The aim of this paper is to study a discrete inequality of the Gronwall–Bellman type in \(n \) independent variables. As far as the author knows, the existing results for \(n > 1 \) \([10, 11]\) related to ours are limited to \(n = 3 \) only. In this paper, we weaken the conditions of the known results for \(n = 3 \) as far as possible and generalize them to \(n \) independent variables in order to get a more compact and elegant form.

Let \(R_r := [0, \infty) \) and let \(\mathbb{N} \) be the set of nonnegative integers. The expression \(u(0) + \sum_{s=0}^{n-1} b(s) \) represents a solution of the linear difference equation \(\Delta u(n) = b(n) \) for all \(n \in \mathbb{N} \), where \(\Delta \) is the operator defined by \(\Delta u(n) = u(n+1) - u(n) \). The expression \(\prod_{s=0}^{n-1} c(s) \) represents a solution of the linear difference equation \(x(n+1) = c(n)x(n) \) for all \(n \in \mathbb{N} \) under the initial condition \(x(0) = 1 \). We assume that \(\sum_{s=0}^{n-1} b(s) = 0 \) and \(\prod_{s=0}^{n-1} c(s) = 1 \).

For \(x = (x_1, \ldots, x_n) \), \(y = (y_1, \ldots, y_n) \), \(\vec{1} = (1, \ldots, 1) \), \(\vec{0} = (0, \ldots, 0) \in \mathbb{N}^n \), we define

\[
\delta u(y) := \sum_{y \leq \vec{1}} u(y) := \sum_{y_1=0}^{1} \cdots \sum_{y_n=0}^{n-1} u(y_1, \ldots, y_n)
\]

and \(x := (x_1, \vec{x}) \), where \(\vec{x} := (x_2, \ldots, x_n) \). The natural partial ordering on \(\mathbb{N}^n \) is defined by

\(x \leq y \) if and only if \(x_i \leq y_i \) for \(i = 1, 2, \ldots, n \).

The difference operators on \(\mathbb{N}^n \) are defined as follows:

\[
\Delta u_{x_1}(x_1, x_2, \ldots, x_n) := u(x_1 + 1, x_2, \ldots, x_n) - u(x_1, x_2, \ldots, x_n),
\]

\[
\Delta u_{x_2}(x_1, x_2, \ldots, x_n) := u(x_1, x_2 + 1, x_3, \ldots, x_n) - u(x_1, x_2, x_3, \ldots, x_n),
\]

\[
\vdots
\]

\[
\Delta u_{x_n}(x_1, x_2, \ldots, x_n) := u(x_1, x_2, \ldots, x_{n-1} + 1) - u(x_1, x_2, \ldots, x_n),
\]

322
and

$$Δ x_{1}x_{1}(x_{1}, x_{2}, \ldots, x_{n}) := Δ u_{x_{1}}(x_{1}, x_{2}, x_{3}, \ldots, x_{n}) - Δ u_{x_{1}}(x_{1}, x_{2}, \ldots, x_{n}),$$

and so on.

2. **Main Results**

We begin with the following theorem.

Theorem 1. Let $u(x), f(x)$ and $h(x)$ be real-valued nonnegative functions defined on N^n and let $H(t) \in C[R_+, R_+]$ be a nondecreasing function such that

$$Q(r) := \int_{r_{0}}^{r} \frac{ds}{H(s)}$$

exists for $r \geq 0$ with $r_0 > 0$ fixed, but arbitrary. If the inequality

$$u(x) \leq f(x) + \sum_{i=0}^{x-1} h(t) H(u(t)), \quad x \in N^n$$

holds, then

$$u(x) \leq Q^{-1} \left[Q(\tilde{f}(x)) + \sum_{i=0}^{x-1} h(t) \right], \quad \text{for } 0 \leq x \leq b$$

where

(i) Q^{-1} is the inverse function of Q,
(ii) $\tilde{f}(x) := \max \{f(y); 0 < y \leq x\}$,
(iii) $b \in N^n$ is chosen so that

$$Q(\tilde{f}(x)) + \sum_{i=0}^{x-1} h(t) \in \text{Range}(Q), \quad \text{for } 0 \leq x \leq b.$$

Proof: Let

$$v(x) := \sum_{i=0}^{x-1} h(t) H(u(t)),$$

then

$$u(x) \leq f(x) + v(x), \quad \text{for } 0 \leq x \leq b$$

$$Δ^n v_{x}(x) = h(x) H(u(x)).$$
Since H is nondecreasing, it follows from (ii), (3) and (4) that

$$\Delta^n u_x(x) \leq h(x) H(f(x) + v(x)) \leq h(x) H(f(X) + v(x))$$

for arbitrary $X \geq \tilde{0}$ and $\tilde{0} \leq x \leq X$. Set $V(x) := f(x) + v(x) + \varepsilon (\varepsilon > 0)$, so $u(x) \leq V(x)$ and

$$\Delta^n V_x(x) = \Delta^n v_x(x) \leq h(x) H(V(x)) \leq h(x) H(V(x_1, \ldots, x_{n-1}, x_n + 1)), \quad (5)$$

for $\tilde{0} \leq x \leq X$, which implies

$$\frac{\Delta^{n-1} V_{x_1, \ldots, x_n-1}(x_1, \ldots, x_{n-1}, x_n + 1) - \Delta^{n-1} V_{x_1, \ldots, x_n-1}(x)}{H(V(x_1, \ldots, x_{n-1}, x_n + 1))} \leq h(x).$$

Since $\Delta^k V_{x_1, \ldots, x_k}(x) = \Delta^k v_{x_1, \ldots, x_k}(x) \geq 0$ always, and $=0$ if $x_i = 0$ for $i = k + 1, \ldots, n$, and since $V(x)$ is nondecreasing in each component, it follows from the above inequality that

$$\frac{\Delta^{n-1} V_{x_1, \ldots, x_{n-1}}(x_1, \ldots, x_{n-1}, x_n + 1) - \Delta^{n-1} V_{x_1, \ldots, x_{n-1}}(x)}{H(V(x_1, \ldots, x_{n-1}, x_n + 1))} \leq h(x).$$

Keeping x_1, \ldots, x_{n-1} fixed in the above inequality, setting $x_n = t_n$ and summing over $t_n = 0, 1, \ldots, x_n - 1$, we have

$$\frac{\Delta^{n-1} V_{x_1, \ldots, x_n-2}(x_1, \ldots, x_{n-2}, x_{n-1} + 1, x_n)}{H(V(x_1, \ldots, x_{n-1}, x_n + 1))} \leq \sum_{t_n = 0}^{x_n - 1} h(x_1, \ldots, x_{n-1}, t_n).$$

Since $V(x) \leq V(x_1, \ldots, x_{n-2}, x_{n-1} + 1, x_n)$, we have

$$\frac{\Delta^{n-2} V_{x_1, \ldots, x_{n-2}}(x_1, \ldots, x_{n-2}, x_{n-1} + 1, x_n)}{H(V(x_1, \ldots, x_{n-2}, x_{n-1} + 1, x_n))} \leq \sum_{t_n = 0}^{x_n - 1} h(x_1, \ldots, x_{n-1}, t_n).$$

Keeping $x_1, \ldots, x_{n-2}, x_n$ fixed in the above inequality, setting $x_{n-1} = t_{n-1}$ and summing over $t_{n-1} = 0, 1, \ldots, x_{n-1} - 1$, we have

$$\frac{\Delta^{n-2} V_{x_1, \ldots, x_{n-2}}(x_1, \ldots, x_{n-2}, x_{n-1} + 1, x_n)}{H(V(x_1, \ldots, x_{n-2}, x_{n-1} + 1, x_n))} \leq \sum_{t_{n-1} = 0}^{x_{n-1} - 1} \sum_{t_n = 0}^{x_n - 1} h(x_1, \ldots, x_{n-2}, t_{n-1}, t_n).$$
Continuing in this way, we have

\[\frac{\Delta V_{x}(x)}{H(V(x))} \leq \sum_{i=0}^{x-1} h(x_1, i). \quad (6) \]

This implies

\[Q(V(x)) \leq Q(\bar{f}(X) + \varepsilon) + \sum_{i=0}^{x-1} h(i), \quad \text{for } \hat{0} \leq x \leq X. \]

Thus

\[u(x) \leq V(x) \leq Q^{-1} \left[Q(\bar{f}(X) + \varepsilon) + \sum_{i=0}^{x-1} h(i) \right], \quad \text{for } \hat{0} \leq x \leq X. \]

Letting \(\varepsilon \downarrow 0 \), we have

\[u(x) \leq Q^{-1} \left[Q(\bar{f}(X)) + \sum_{i=0}^{x-1} h(i) \right], \quad \text{for } \hat{0} \leq x \leq X. \quad (7) \]

In particular, (7) holds for \(x = X \leq b \) provided \(b \) is chosen as defined in (iii). Replacing \(X \) by \(x \) in (7) gives, finally,

\[u(x) \leq Q^{-1} \left[Q(\bar{f}(x)) + \sum_{i=0}^{x-1} h(i) \right], \quad \text{for } \hat{0} \leq x \leq b. \]

This completes the proof.

Corollary 1. Under the hypotheses of Theorem 1, if \(H = \) the identity mapping, then

\[u(x) \leq \bar{f}(x) \prod_{t_1=0}^{x_1-1} \left[1 + \sum_{i=0}^{x-1} h(t_1, i) \right], \quad \text{for } x \in \mathbb{N}^n. \quad (8) \]

Proof. It follows from (6) that

\[\frac{V(x + 1, \bar{x})}{V(x)} \leq 1 + \sum_{i=0}^{x-1} h(x_1, i). \]

Keeping \(\bar{x} = (x_2, \ldots, x_n) \) fixed in this inequality, setting \(x_1 = t_1 \) and taking the product over \(t_1 = 0, 1, \ldots, x_1 - 1 \), we have

\[V(x) \leq (\bar{f}(X) + \varepsilon) \prod_{t_1=0}^{x_1-1} \left[1 + \sum_{i=0}^{x-1} h(t_1, i) \right]. \]
Letting \(\epsilon \to 0 \) and replacing \(X \) by \(x \) as in the proof of Theorem 1, we obtain the required bound in (8).

Remark 1. In case \(f \) is nondecreasing in each \(x_i \), we have \(\tilde{f} \equiv f \).

Remark 2. For \(n = 1 \) and \(f(x) \equiv \text{constant}, \) Theorem 1 reduces to the result of Hull and Luxemburg [2] (see also Beesack’s lecture notes [1, p. 98]). The continuous analogue of Theorem 1 is due to LaSalle [4].

Remark 3. For \(n = 3 \), Theorem 1 improves Theorem 3 of [10] and Corollary 1 is an improvement of [10, Theorem 1] and [11, Theorem 1]. For \(n = 1 \), Corollary 1 improves the results of Miller [5, Lemma 3.2] and Sugiyama [13, Corollary].

The following theorem is an improvement of Theorem 2 of Pachpatte and Singare [10].

Theorem 2. Let \(u(x), f(x), h(x), H(r), Q(r) \) and \(Q^{-1}(r) \) be defined as in Theorem 1 with \(H(r) \) subadditive and submultiplicative and let \(g(x), k(x) \) be real-valued nonnegative functions defined on \(\mathbb{N}^n \). If the inequality

\[
\begin{align*}
&u(x) \leq f(x) + g(x) \sum_{y=0}^{x-1} h(y) H \left(u(y) + g(y) \sum_{z=0}^{y-1} k(z) H(u(z)) \right) \\
&+ \sum_{y=0}^{x-1} (h(y) + k(y)) H(f(y)) + \sum_{y=0}^{x-1} (h(y) + k(y)) H(g(y)) \in \text{Range}(Q),
\end{align*}
\]

holds for \(x \in \mathbb{N}^n \), then

\[
\begin{align*}
u(x) \leq & f(x) + g(x) Q^{-1}\left[\sum_{y=0}^{x-1} (h(y) + k(y)) H(f(y)) \right] \\
&+ \sum_{y=0}^{x-1} (h(y) + k(y)) H(g(y)),
\end{align*}
\]

for \(0 \leq x \leq b \), where (i) \(b \in \mathbb{N}^n \) is chosen so that

\[
Q \left[\sum_{y=0}^{x-1} (h(y) + k(y)) H(f(y)) \right] \\
+ \sum_{y=0}^{x-1} (h(y) + k(y)) H(g(y)) \in \text{Range}(Q),
\]

for \(0 \leq x \leq b \).

Proof. Set

\[w(x) := u(x) + g(x) \sum_{y=0}^{x-1} k(y) H(u(y)), \]
so \(u(x) \leq w(x) \) and \(H(u(x)) \leq H(w(x)) \). It follows from (9) that

\[
w(x) - g(x) \sum_{y=0}^{x-1} k(y) H(u(y)) = u(x) \leq f(x) + g(x) \sum_{y=0}^{x-1} H(w(y)),
\]
or

\[
w(x) \leq f(x) + g(x) \sum_{y=0}^{x-1} (h(y) + k(y)) H(w(y)).
\]

For brevity, set \(b := h + k \) and \(v(x) := \sum_{y=0}^{x-1} b(y) H(w(y)) \). Then

\[
w(x) \leq f(x) + g(x) v(x),
\]

\[
\Delta^n v(x) = b(x) H(w(x)) \leq b(x) H(f(x) + g(x) v(x)).
\]

Since \(H \) is also subadditive and submultiplicative,

\[
\Delta^n v(x) \leq b(x) H(f(x)) + b(x) H(g(x)) H(v(x)) = B(x) + C(x) H(v(x)),
\]

say.

Now by repeated summation and using \(\Delta^k v_{x_1,\ldots,x_k} (x) = 0 \) if \(x_i = 0 \) for \(i = k + 1,\ldots, n \), we get

\[
v(x) \leq \sum_{y=0}^{x-1} B(y) + \sum_{y=0}^{x-1} C(y) H(v(y)) = B_1(x) + \sum_{y=0}^{x-1} C(y) H(v(y)) \leq B(X) + \sum_{y=0}^{x-1} C(y) H(v(y)), \quad 0 \leq x \leq X.
\]

Set

\[
V(x) := B_1(X) + \sum_{y=0}^{x-1} C(y) H(v(y)).
\]

so \(V(x) = B_1(X) \) if any \(x_i = 0 \). Then

\[
\Delta^n V_x (x) = C(x) H(v(x)) \leq C(x) H(V(x)), \quad 0 \leq x \leq X. \quad (11)
\]

If one now proceeds as in Theorem 1, one gets

\[
V(x) \leq Q^{-1} \left[Q(B_1(X)) + \sum_{y=0}^{x-1} C(y) \right], \quad 0 \leq x \leq X.
\]
CHEH-CHIH YEH

Setting $x = X$ and then replacing X by x in the above inequality we have

$$u(x) \leqslant w(x) \leqslant f(x) + g(x) v(x) \leqslant f(x) + g(x) V(x)$$

$$\leqslant f(x) + g(x) Q^{-1} \left\{ Q \left[\sum_{y=0}^{x-1} (h(y) + k(y)) H(f(y)) \right] + \sum_{y=0}^{x-1} (h(y) + k(y)) H(g(y)) \right\}$$

for $0 \leqslant x \leqslant b$, where b is chosen as defined in (i). This completes the proof.

Corollary 2. Under the hypotheses of Theorem 2, if $H(s) \equiv s$, then

$$u(x) \leqslant f(x) + g(x) \sum_{y=0}^{x-1} (h(y) + k(y)) f(y)$$

$$\cdot \prod_{t_1=0}^{x-1} \left[1 + \sum_{t=0}^{y-1} (h + k) g(t_1, t) \right], \text{ for } x \in \mathbb{N}^n. \quad (12)$$

Proof. It follows from (11) that

$$A^n V_x(x) \leqslant C(x) V(x), \quad 0 \leqslant x \leqslant X.$$

Hence if we proceed as in the proof of Corollary 1, we obtain the desired bound in (12).

Remark 4. Corollary 2 is an improvement of [9, Theorem 1] for $n = 1$.

Remark 5. For $k \equiv 0$, the inequalities (10) and (12) reduce to the inequalities

$$u(x) \leqslant f(x) + g(x) Q^{-1} \left\{ Q \left[\sum_{y=0}^{x-1} h(y) H(f(y)) \right] + \sum_{y=0}^{x-1} h(y) H(g(y)) \right\} \quad (13)$$

and

$$u(x) \leqslant f(x) + g(x) \left(\sum_{y=0}^{x-1} h(y) f(y) \right) \left(\prod_{t_1=0}^{x-1} \left[1 + \sum_{t=0}^{y-1} h(t_1, t) g(t_1, t) \right] \right) \quad (14)$$

respectively. Inequality (13) extends a part of Theorem 1 of Pachpatte [8], which says mainly that

$$u(n) \leqslant f(n) + g(n) p \left(\sum_{y=0}^{n-1} h(y) H(u(y)) \right), \quad n \in \mathbb{N}$$
implies
\[u(n) \leq f(n) + g(n) p \left\{ Q^{-1} \left[Q \left(\sum_{y=0}^{n-1} h(y) H(f(y)) \right) \right] + \sum_{y=0}^{n-1} h(y) H(g(y)) \right\}, \quad n \in \mathbb{N}. \]

In fact, Theorem 1 of [8] can also be extended to \(n \) independent variables. Inequality (14) extends the results of Jones [3, Lemma 3] and Sugiyama [13, Lemma 1].

Corollary 3. Under the hypotheses of Theorem 2, if \(g(x) = 1, k(x) \leq 0 \) and is not required to be submultiplicative, then
\[u(x) \leq f(x) + Q^{-1} \left\{ Q \left[\sum_{y=0}^{x-1} h(y) H(f(y)) \right] + \sum_{y=0}^{x-1} h(y) \right\} \]
for \(\tilde{\alpha} \leq x \leq b \), where \(b \in \mathbb{N}^n \) is chosen so that
\[Q \left[\sum_{y=0}^{x-1} h(y) H(f(y)) \right] + \sum_{y=0}^{x-1} h(y) \in \text{Range}(Q), \quad \text{for} \quad \tilde{\alpha} \leq x \leq b. \]

Theorem 3. Let \(u(x), f(x) \) and \(h(x) \) be defined as in Theorem 1 with \(f(x) \) nondecreasing in each \(x_i \) and let \(Q(s) \in \mathcal{C}[\mathbb{R}_+, \mathbb{R}_+] \) be nondecreasing with
\[+.Q(MQ(f)) \quad \text{fort} \to 1 \quad \text{and} \quad s \to 0. \]
Let \(H(s) \in \mathcal{C}[\mathbb{R}_+, [1, \infty)) \) be a strictly increasing, subadditive and supermultiplicative function. If the inequality
\[u(x) \leq f(x) + H^{-1} \left[Q \left(\sum_{y=0}^{x-1} h(y) H(u(y)) \right) \right], \quad x \in \mathbb{N}^n \]
holds, where \(H^{-1} \) is the inverse function of \(H \), then, for \(\tilde{\alpha} \leq x \leq b \)
\[u(x) \leq f(x) H^{-1} \left\{ 1 + Q \left[G^{-1} \left(\sum_{y=0}^{x-1} h(y) \right) \right] \right\}, \]
where
\[G(r) := \int_{0}^{r} \frac{ds}{1 + Q(s)} \quad \text{for} \quad r \geq 0, \]
G^{-1} is the inverse function of G and $b \in N^n$ is chosen so that
\[\sum_{y=0}^{x-1} h(y) \in \text{Range}(G) \]
and
\[1 + Q \left[G^{-1} \left(\sum_{y=0}^{x-1} h(y) \right) \right] \in \text{Range}(H) \]
for $0 \leq x \leq b$.

Proof. Since H is subadditive, it follows from (15) that
\[H(u(x)) \leq H(f(x)) + Q \left[\sum_{y=0}^{x-1} h(y) H(u(y)) \right]. \]

Since $H(f(x)) \geq 1$ is nondecreasing,
\[
\frac{H(u(x))}{H(f(x))} \leq 1 + Q \left[\sum_{y=0}^{x-1} h(y) \frac{H(u(y))}{H(f(y))} \right]. \tag{16}
\]

Define
\[w(x) := \sum_{y=0}^{x-1} h(y) \frac{H(u(y))}{H(f(y))}. \]

Thus
\[w(x) = 0 \quad \text{on } x_i = 0 \text{ for } i = 1, 2, \ldots, n, \]
and
\[\Delta^n w_x(x) = h(x) \frac{H(u(x))}{H(f(x))}. \tag{17} \]

It follows from (16) and (17) that
\[\Delta^n w_x(x) \leq h(x)[1 + Q(w(x))]. \]

Thus
\[\frac{\Delta^n w_x(x)}{1 + Q(w(x))} \leq h(x). \]
As in the proof of Theorem 1, we have
\[
G(w(x_1 + 1, \bar{x})) - G(w(x)) = \int_{w(x)}^{w(x_1 - 1, \bar{x})} \frac{ds}{1 + Q(s)} \leq \frac{\Delta w_{x_1}(x)}{1 + Q(w(x))} \leq \sum_{i=0}^{x_1 - 1} h(x_1, i).
\]
Keeping \(\bar{x} = (x_2, \ldots, x_n) \) fixed in this inequality, setting \(x_1 = t \), and summing over \(t = 0, 1, \ldots, x_1 - 1 \), we have
\[
G(w(x)) - G(w(0, \bar{x})) \leq \sum_{t=0}^{x_1 - 1} h(t).
\]
This and \(G(0) = 0 \) imply
\[
w(x) \leq G^{-1} \left(\sum_{t=0}^{x_1 - 1} h(t) \right).
\]
This and (16) imply
\[
H(u(x)) \leq H(f(x))(1 + Q(w(x))) \leq H(f(x)) \left(1 + Q \left[G^{-1} \left(\sum_{t=0}^{x_1 - 1} h(t) \right) \right] \right).
\]
Since \(H \) is also supermultiplicative and increasing, \(H^{-1} \) is submultiplicative. Thus
\[
u(x) \leq f(x) H^{-1} \left(1 + Q \left[G^{-1} \left(\sum_{t=0}^{x_1 - 1} h(t) \right) \right] \right).
\]
This completes the proof.

Remark 6. For \(n = 2 \), Theorem 3 is very close to Theorem 5 of Singare and Pachpatte [12].

Remark 7. For \(n = 1 \), the continuous analogues of Theorems 2 and 3 are given in Theorem 1 of [6] and Theorem 5 of [7], respectively.

References