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Abstract

If p is prime, a compact Riemann surface X of genus g � 2 is called cyclic p-gonal if it admits a cyclic
group of automorphisms Cp of order p such that the quotient space X/Cp has genus 0. If in addition Cp is
not normal in the full automorphism A, then we call X a non-normal p-gonal surface. In the following we
classify all non-normal p-gonal surfaces.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A compact Riemann surface X of genus g � 2 which admits a cyclic group of automor-
phisms Cp of prime order p such that the quotient space X/Cp has genus 0 is called a cyclic
p-gonal surface or a p-gonal surface for brevity. The group Cp is called a p-gonal group for X. If
in addition Cp is normal in the full automorphism group of X, then we call X a normal p-gonal
surface. Else we call X a non-normal p-gonal surface and any group G with Cp � G � Aut(X)

in which Cp is not normal a non-normal p-gonal overgroup. The primary result of this paper is
a classification of all non-normal p-gonal surfaces. By classification, we mean that for each such
surface X, we find the full automorphism group and the signature for the normalizer of a surface
group for X. These results coupled with the results of [22] can then be used to find a defining
affine model for X.
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The study of such surfaces and other related surfaces is already extensive in the literature,
see for example [2–4,7–10,12–15,19–21,23]. The first family of cyclic p-gonal surfaces to be
classified in this sense were the hyperelliptic surfaces (when p = 2). The groups and signatures
for this family were first presented in [4] and the full automorphism groups were found in [7]. It is
natural to try to generalize the results of the classification of hyperelliptic surfaces. However, the
main contributing factor to this classification was the fact that a hyperelliptic surface is always
normal 2-gonal and for p > 2 this is no longer true. Though a complete classification of cyclic
p-gonal surfaces is not possible using the methods developed for the hyperelliptic classification,
the methods can be generalized to find all normal p-gonal overgroups (groups with a normal
cyclic p-gonal subgroup) and corresponding group signatures for a general p, see for example
[16] or [22]. Then, as with the hyperelliptic case, the results of [6] can be used to determine
which of these groups are full automorphism groups of a normal p-gonal surface (see Section 4
for details). With these results in consideration, the remaining problem is to find all non-normal
p-gonal overgroups which act as full automorphism groups on p-gonal surfaces.

In [1], Accola showed that if X is a genus g p-gonal surface and g > (p − 1)2, then X

is normal p-gonal, so in order to classify non-normal p-gonal surfaces, we only need to con-
sider surfaces of genus g � (p − 1)2. This result motivates a study of p-gonal surfaces of genus
g � (p − 1)2 for small values of p to provide insight into the general problem. Results regard-
ing trigonal surfaces (p = 3) can be found in [2,3,10,23] and results for a closely related family
of surfaces in [8]. Similar methods could be used to study p-gonal surfaces for other small
values of p. Another way to gain insight into this problem is to study families of non-normal
p-gonal surfaces with additional restrictions, see for example [14,15,21]. In these collective
works, a number of different non-normal p-gonal surfaces were found including certain unique
surfaces (like Klein’s genus 3 surface) and infinite families of surfaces (like the pth Fermat curve
for each prime p > 3). With the insight provided by these results, we shall finish this classifica-
tion by showing that there are no additional non-normal p-gonal surfaces to those which already
appear in the literature.

Our approach to the problem is first to classify certain families of p-gonal surfaces and
then show that each non-normal p-gonal surface must lie in one of these families. We start in
Section 2 by developing a number of preliminary results regarding automorphism groups of com-
pact Riemann surfaces, uniformization and Fuchsian groups—discrete subgroups of PSL(2,R).
Following this, in Section 3, we shall prove the main result needed for this classification. In Sec-
tions 4, 5 and 6, we shall present classification results for three different special classes of cyclic
p-gonal surfaces—normal p-gonal surfaces, p-gonal surfaces for primes 2, 3, 5 and 7 (primes
we shall henceforth refer to as small primes) and p-gonal surfaces which admit a group of au-
tomorphisms divisible by p2. Using the results for these special families and the main result of
Section 3, we shall complete the classification in Section 7. We finish in Section 8 with a brief
summary of our results.

2. Preliminary results

A compact Riemann surface X of genus g � 2 can be realized as a quotient of the upper half
plane H/Λ where Λ is a torsion free Fuchsian group called a surface group for X. Under such a
realization, a group G acts as a group of automorphisms on X if and only if G = Γ/Λ for some
Fuchsian group Γ containing Λ as a normal subgroup of index |G|. We call Γ the Fuchsian
group corresponding to G usually denoting it by ΓG, and if Λ has been fixed, we call G the
automorphism group corresponding to Γ . If G is a group of automorphisms of X with surface
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Fig. 1. Holomorphic quotient maps and surface identifications.

group Λ and Γ is the Fuchsian group corresponding to G, we identify the orbit spaces H/Γ and
X/G and the quotient map πG :X → X/G is branched over the same points as πΓ : H → H/Γ

with the same ramification indices as illustrated in Fig. 1.
We define the signature of a Fuchsian group Γ to be the tuple (gΓ ;m1,m2, . . . ,mr) where

the quotient space H/Γ has genus gΓ and the quotient map πΓ branches over r points with ram-
ification indices mi for 1 � i � r . We call gΓ the orbit genus of Γ and the numbers m1, . . . ,mr

the periods of Γ . The signature of Γ provides information regarding a presentation for Γ (see
for example [5, Theorem 3.2]):

Theorem 2.1. If Γ is a Fuchsian group with signature (gΓ ;m1, . . . ,mr) then there exist group
elements α1, β1, . . . , αgΓ ,βgΓ , ζ1, . . . , ζr ∈ PSL(2,R) such that

(1) Γ = 〈α1, β1, . . . , αgΓ ,βgΓ , ζ1, . . . , ζr 〉,
(2) defining relations for Γ are

ζ
m1
1 , ζ

m2
2 , . . . , ζmr

r ,

gΓ∏
i=1

[αi,βi]
r∏

j=1

ζj ,

(3) each elliptic element (the elements of finite order) lies in a unique conjugate of 〈ζi〉 for
suitable i.

We call a set of elements of Γ satisfying Theorem 2.1 canonical generators for Γ . Notice that
if Γ is a surface group for a surface of genus gΓ , since it is torsion free, it must have signature
(gΓ ;−).

Theorem 2.1 implies that if Γ1 � Γ , then any elliptic element of Γ1 must be conjugate to an
elliptic element of Γ . This motivates the following definition.

Definition 2.2. Suppose Γ1 � Γ are Fuchsian groups, η ∈ Γ1 is an elliptic element and η is
Γ -conjugate to a power of ζ , some elliptic element of Γ . Then we say η is induced by ζ .

In fact, by Theorem 2.1, any elliptic generator of Γ1 in a set of canonical generators for Γ1
must be conjugate to a power of a unique elliptic generator of Γ in a set of canonical genera-
tors of Γ (though other generators of Γ1 could be conjugate to that same generator of Γ , see
Theorem 2.4 and Remark 2.5).

We fix some notation. Henceforth, let X denote a cyclic p-gonal surface of genus g, Λ a sur-
face group for X, Cp a p-gonal group for X and Γp the Fuchsian group corresponding to Cp .
Also, let A denote the full automorphism group of X, ΓA its corresponding Fuchsian group,
N the normalizer of Cp in A, ΓN its corresponding Fuchsian group and K = N/Cp = ΓN/Γp .
After appropriate identifications, we have the tower of groups and epimorphisms illustrated in
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Fig. 2. Groups and quotients.
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Fig. 3. Holomorphic maps and quotient spaces.

Fig. 2 and corresponding to this, the tower of surfaces and holomorphic maps between them
illustrated in Fig. 3.

Remark 2.3. We observe that the kernel Λ of the quotient map ρΓA
:ΓA → A is torsion free and

we usually refer to such a map as a surface kernel epimorphism. As suggested above, if a group
G acts on a surface X, then there exists a surface kernel epimorphism ρ :ΓG → G. Conversely,
if there exists a surface kernel epimorphism from a Fuchsian group Γ onto G, then there exists
a surface X on which G acts—namely the surface X = H/Ker (ρ). Note that a necessary and
sufficient condition for an epimorphism ρ :Γ → G to be a surface kernel epimorphism is that
the elliptic generators of Γ preserve their orders under ρ.

Our observations imply that the signatures of the groups Γp , ΓN and ΓA must be closely
related and exactly how can be determined through examination of the ramification data of the
maps between the quotient surfaces. For example, since the map πCp :X → X/Cp is a Galois
cover of the Riemann sphere of degree p, at any point it will either be totally ramified of or-
der p, or unramified. It follows that Γp has signature (0;p, . . . ,p︸ ︷︷ ︸) for some integer R > 2 and
R times
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consequently both ΓA and ΓN must have elliptic elements divisible by p. We postpone a major
discussion of the geometric method of signature determination until the later relevant sections
(see Proposition 4.1). However, since the signatures of Γp , ΓN and ΓA provide a presentation for
these groups, information about the signature of each of these groups and how they relate can be
derived through purely group theoretic methods. We summarize below (for details, see [17]).

Theorem 2.4. Let Γ have signature (gΓ ;m1, . . . ,mr). Then Γ contains a subgroup Γ1 of finite
index with signature (gΓ1;n1,1, n1,2, . . . , n1,θ1 , . . . , nr,θr ) if and only if

(1) there exists a finite permutation group G transitive on [Γ : Γ1] points and an epimorphism
Φ :Γ → G such that the permutation Φ(ζj ) has precisely θj cycles of length less then mj ,
the lengths of these cycles being

mj/nj,1, . . . ,mj/nj,θj

where ζj is the j th canonical elliptic generator of Γ ,

(2) [Γ : Γ1] =
(

2gΓ1 − 2 +
r∑

j=1

θj∑
i=1

(
1 − 1

nj,i

))/(
2gΓ − 2 +

r∑
j=1

(
1 − 1

mi

))
.

Remark 2.5. In Singerman’s original proof of this result, the map Φ is induced by the action of Γ

on the left cosets of Γ1. He explicitly showed that if ζ is a canonical generator of Γ of order m,
then the number of canonical generators of Γ1 induced by ζ equals the number of cycles of Φ(ζ)

of lengths less than m. Moreover, the orders of these elliptic generators are given by ni where
the m/ni run over the lengths of each of the cycles of Φ(ζ) less than m.

Of particular importance is the role of the normalizer ΓN of Γp in ΓA. Therefore, we observe
that in the special case when Γ1 is normal in Γ , we have the following result (see for example
Lemma 3.6 of [5]).

Corollary 2.6. Let Γ be a Fuchsian group with signature (gΓ ;m1, . . . ,mr) and Γ1 � Γ a nor-
mal subgroup of finite index such that ζjΓ1 has order uj in the quotient group Γ/Γ1 where ζj is
the j th canonical elliptic generator of Γ . Then the orbit genus gΓ1 of Γ1 is given by

gΓ1 − 1 = [Γ : Γ1](gΓ − 1) + [Γ : Γ1]
2

r∑
j=1

(
1 − 1

uj

)
,

and the periods of Γ1 are nj,i = mi

ui
, 1 � i � [Γ :Γ1]

uj
, 1 � j � r , where nj,i = 1 are deleted.

3. Fuchsian groups and signatures

One of the crucial steps in the classification of non-normal p-gonal surfaces is determina-
tion of the possible signatures for ΓA. In order to do this, we shall first show how the elliptic
generators of ΓA and ΓN are related. For this, we need the following useful result.

Lemma 3.1. Suppose ζ ∈ ΓA induces an elliptic element of Γp . Then it induces an elliptic ele-
ment of ΓN of the same order.
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Proof. If ζ induces μ ∈ Γp , then, μ = γ ζ sγ −1 for some γ ∈ ΓA and s ∈ N. Under the epi-
morphism ρ :ΓA → A, we have ρ(μ) = ρ(γ )ρ(ζ )sρ(γ )−1, so it follows that 〈ρ(γ )ρ(ζ ) ×
ρ(γ −1)〉 � N (since Cp is generated by ρ(μ)). Therefore, we must have ρ(γ ζγ −1) ∈ N , so
γ ζγ −1 ∈ ΓN . In particular, γ ζγ −1 is induced by ζ and is clearly of the same order. �

Observe that Proposition 3.1 implies that if ζ ∈ ΓA is a canonical elliptic generator of ΓA,
then it must induce a canonical elliptic generator of ΓN of the same order. With this in mind, we
are now ready to prove the key result in this classification. The idea dates back to Singerman’s
original proof of Theorem 2.4 though restricts to the special case when X is a cyclic p-gonal
surface.

Theorem 3.2. Suppose ζ ∈ ΓA is a canonical generator of ΓA which induces a canonical gen-
erator of Γp and η ∈ ΓN is a canonical generator of ΓN induced by ζ of the same order. Then
the number of canonical generators of Γp induced by ζ is equal to the number of canonical
generators of Γp induced by η.

Proof. If ΓA = ΓN (so X is normal p-gonal), then the result holds trivially, so assume X is not
normal p-gonal. In order to determine the number of canonical generators of Γp induced by ζ ,
we need to consider the map Φ :ΓA → S[ΓA:Γp] induced by the action of ΓA on the cosets of Γp

(see Remark 2.5). The kernel of this map will be the intersection of the conjugates of Γp , so
will coincide with Λ. In particular, the image of Φ will be isomorphic to A and the action of ΓA

on the cosets of Γp by left multiplication will be the same as that of A on the cosets of Cp .
Therefore, by identifying A with the image of ΓA under Φ , we consider how Φ(ζ) ∈ A permutes
the left cosets of Cp .

Since ζ induces an element of Γp , it must have order kp for some integer k and hence so will
the element Φ(ζ). Using Theorem 2.4 and Remark 2.5, it follows that the number of canonical
generators of Γp induced by ζ will be equal to the number of cycles of length k in the image
Φ(ζ). This means we need to determine the cycle structure of Φ(ζ), and we shall do this by
explicitly examining the action of Φ(ζ) on the cosets of Cp .

First we shall show that without loss of generality, we may assume Φ(ζ)k ∈ Cp . By assump-
tion, ζ induces a canonical generator of Γp , so there exist γ ∈ ΓA and an integer l relatively prime
to p such that γ ζ lkγ −1 is a canonical generator for Γp . It follows that Φ(γ ζ lkγ −1) ∈ Cp , and in
fact Φ(γ ζ kγ −1) ∈ Cp because l is relatively prime to p. Since A is a permutation group, cycle
structure is preserved under conjugation, so the cycle structure of Φ(ζ) will be the same as that
of Φ(γ )Φ(ζ )Φ(γ −1). As we are only interested in the cycle structure of Φ(ζ), it suffices to de-
termine the cycle structure of Φ(γ )Φ(ζ )Φ(γ −1), and by the above, we know Φ(γ ζγ −1)k ∈ Cp ,
thus we may assume Φ(ζ)k ∈ Cp .

In order to determine the cycle structure of Φ(ζ), we first consider the action on the coset Cp .
The action of Φ(ζ) on Cp gives a cycle of the form

Cp → Φ(ζ)Cp → Φ(ζ)2Cp → ·· · .

To determine the length of this cycle, we need to find the smallest integer t such that
Φ(ζ)tCp = Cp . However, Φ(ζ)tCp = Cp only when Φ(ζ)t ∈ Cp , so it follows that t is a multi-
ple of k. Thus, the action of Φ(ζ) on Cp produces the following cycle which has length k.



A. Wootton / Journal of Algebra 312 (2007) 377–396 383
Cp

Φ(ζ )
Φ(ζ )Cp

Φ(ζ ) · · · Φ(ζ )
Φ(ζ )k−1Cp

Φ(ζ )

By a similar argument, if n ∈ N , then the cycle

nCp → Φ(ζ)nCp → Φ(ζ)2nCp → ·· ·
also has length k. To see this, observe that Φ(ζ)tnCp = nCp if and only if n−1Φ(ζ)tn ∈ Cp .
Since n ∈ N , this occurs if and only if Φ(ζ)t ∈ Cp , so t must be a multiple of k. Therefore, the
action of Φ(ζ) on nCp for n ∈ N produces the following cycle which has length k.

nCp

Φ(ζ )
Φ(ζ )nCp

Φ(ζ ) · · · Φ(ζ )
Φ(ζ )k−1nCp

Φ(ζ )

Since there are |N |/p cosets of Cp with coset representatives in N , and each cycle is of
length k, the image of Φ(ζ) will contain at least |N |/kp cycles of length k. Consequently, there
will be at least |N |/kp canonical generators of Γp induced by ζ .

Now consider a coset hCp where h /∈ N . Considering the action of Φ(ζ) on hCp , we get

hCp → Φ(ζ)hCp → Φ(ζ)2hCp → ·· · .
We need to determine the length of this cycle or equivalently, the smallest value of t such that
Φ(ζ)t ∈ hCph−1. Since Φ(ζ)k ∈ Cp and Cp ∩hCph−1 = {e} (we are assuming h /∈ N ), Φ(ζ)t ∈
h−1Cph implies Φ(ζ)t = e. The smallest value of t for which this happens is kp. Thus, the action
of Φ(ζ) on hCp produces a cycle which has length kp. In particular, each coset hCp for h /∈ N

lies in a cycle of length kp and consequently no additional canonical generators of Γp are induced
by ζ . Thus there are a total of |N |/kp canonical generators of Γp induced by ζ ∈ ΓA.

If ζ induces η ∈ ΓN , to determine the number of canonical generators of Γp induced by η, we
apply an identical argument and get |N |/kp. Hence ζ and η induce the same number of canonical
generators of Γp . �

The following useful result is immediate.

Corollary 3.3. The number of canonical generators of ΓN inducing canonical generators of
Γp is equal to the number of canonical generators of ΓA inducing canonical generators of Γp .
Moreover, they share the same orders.

To summarize, we have shown that if we know the signature of ΓN , then the signature of ΓA

is very closely related. This means to classify p-gonal surfaces, if we can determine all possible
signatures for ΓN , we can use this fact with other results regarding Fuchsian groups to determine
the possible signatures for ΓA and consequently the restrictions imposed on possible quotient
groups. An interesting consequence to Theorem 3.2 is the following.

Corollary 3.4. If A �= Cp , then N > Cp .
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4. The classification of normal p-gonal surfaces

For the next three sections, we combine prior results with new techniques to explain how
to classify three different families of cyclic p-gonal surfaces. In this section, we consider the
family of normal cyclic p-gonal surfaces (so in this case A = N ). In order to do this, first we
shall explain how to determine all normal p-gonal overgroups (recall that a subgroup H � A

is a normal p-gonal overgroup if it contains a p-gonal subgroup which is normal). Though all
such groups are known, see for example [16] or [22], we summarize how they were found as
the methods are key to the classification of non-normal p-gonal overgroups. Following this, we
explain how to determine whether or not a given normal p-gonal overgroup is indeed the full
automorphism group of a normal p-gonal surface and hence how to classify normal p-gonal
surfaces.

Suppose that H � A is a normal p-gonal overgroup. Then H will contain a cyclic p subgroup
Cp which is normal and such that the quotient space X/Cp has genus 0. Since the group K̃ =
H/Cp � K = N/Cp acts on the quotient space X/Cp , it follows that K̃ is a finite group of
automorphisms of the Riemann sphere. All such groups are well known and we tabulate them in
Table 1. The branching data is a vector whose length is the number of critical values of the map
π

K̃
:Σ → Σ/K̃ and whose entries are the number of fibers over each critical value where Σ

denotes the Riemann sphere. It follows that any normal p-gonal overgroup must satisfy the short
exact sequence in Fig. 4 where K̃ is a finite group of automorphisms of the Riemann sphere.

Complete solutions to this short exact sequence for p � 3 can be found in [16], or [22, Ap-
pendix B], and for p = 2, in [4]. If ΓH denotes the Fuchsian group corresponding to H , we can
use the following more general result to determine the possible signatures for ΓH .

Proposition 4.1. Suppose Γ1 is a Fuchsian group with signature (0;p, . . . ,p) where p is a prime
and Γ is a Fuchsian group containing Γ1 as a normal subgroup and let K̃ denote the quotient
group. Then K̃ is an automorphism group of the Riemann sphere and the signatures for Γ1 and
Γ are related as follows.

(1) If K̃ �= Cn and (d1, d2, d3) is the branching data of the quotient map π
K̃

: H/Γ1 → H/Γ ,
the signature of Γ is (0;a1d1, a2d2, a3d3,p, . . . ,p︸ ︷︷ ︸

l times

) where a1, a2, and a3 are either 1 or p

Table 1
Groups of automorphisms of the Riemann
sphere and branching data

Group Branching data

Cn (n,n)

Dn (2,2, n)

A4 (2,3,3)

S4 (2,3,4)

A5 (2,3,5)

1 → Cp → H → K̃ → 1

Fig. 4. Short exact sequence for normal p-gonal overgroups.
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depending upon whether any branch points of πΓ1 coincide with ramification points of π
K̃

.
For such a group Γ , the signature of Γ1 is (0;p, . . . ,p︸ ︷︷ ︸

r times

) where

r = l|K̃| + (a1 − 1)|K̃|
(p − 1)d1

+ (a2 − 1)|K̃|
(p − 1)d2

+ (a3 − 1)|K̃|
(p − 1)d3

.

In particular, if ζ1, . . . , ζl+3 are a set of canonical generators for Γ , then ζi induces
(ai − 1)|K̃|/((p − 1)di) generators of Γ1 for 1 � i � 3 and |K̃| generators of Γ1 for all
other ζi .

(2) If K̃ = Cn, the signature of Γ is (0;a1n,a2n,p, . . . ,p︸ ︷︷ ︸
l times

) where a1 and a2 are either 1 or p

depending upon whether any branch points of πΓ1 coincide with ramification points of π
K̃

.
For such a group Γ , the signature of Γ1 is (0;p, . . . ,p︸ ︷︷ ︸

r times

) where

r = ln + (a1 − 1)

(p − 1)
+ (a2 − 1)

(p − 1)
.

In particular, if ζ1, . . . , ζl+2 are a set of canonical generators for Γ , then ζi induces
(ai − 1)/(p − 1) generators of Γ1 for 1 � i � 2 and n generators of Γ1 for all other ζi .

Proof. This is a slightly generalized version of Proposition 3 in [21]. �
In order to determine all normal p-gonal overgroups, we proceed as follows. Start with a

possible group H which satisfies the short exact sequence in Fig. 4 (so it is a candidate for
a normal p-gonal overgroup). Next we use Proposition 4.1 to find all possible signatures for
Fuchsian groups for which there may exist a surface kernel epimorphism ρ :ΓH → H with
Ker (ρ) � Γp � ΓH . Then we either show that such a map ρ exists by explicit construction
or show that no such map can exist (see Remark 2.3). Since for a fixed p the number of groups
and signatures is completely determined, this is fairly straightforward (see [22] for an overview).
We can now use these results to classify normal p-gonal surfaces.

If H is a normal p-gonal overgroup for some p-gonal surface given by the surface kernel
epimorphism ρ :ΓH → H , we associate the triple (H,ΓH ,ρ) called a generating triple for H .
In order to classify normal p-gonal surfaces, for each generating triple (H,ΓH ,ρ) we need
to determine whether there exists a p-gonal surface X = H/Ker (ρ) for some fixed Fuchsian
group ΓH with full automorphism group H , or whether H is always contained in some larger
automorphism group G. To this end, the following definition will be useful.

Definition 4.2. A Fuchsian group Γ1 is finitely maximal if there does not exist a Fuchsian
group Γ with Γ1 � Γ and [Γ : Γ1] < ∞.

The signatures of all Fuchsian groups which are not finitely maximal were determined by
Singerman in [18]. Since they are the only ones relevant to this classification, we tabulate those
with orbit genus 0 in Table 2. For our purposes, if (H,ΓH ,ρ) is a generating triple for a normal
p-gonal overgroup, unless the signature of ΓH appears in Singerman’s list, then there will always
exist a finitely maximal Fuchsian group with that signature, and so Ker (ρ) cannot be normal and
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Table 2
Singerman’s list for genus 0 groups, [18]

Case Signature Γ1 Signature Γ [Γ : Γ1]
N4 (0; t, t, t, t), t � 3 (0;2,2,2, t) 4
N5 (0; s, s, t, t), s + t � 5 (0;2,2, s, t) 2
N6 (0; t, t, t), t � 4 (0;3,3, t) 3
N7 (0; t, t, t), t � 4 (0;2,3,2t) 6
N8 (0; t, t, s), t � 3, t + s � 7 (0;2, t,2s) 2
T 1 (0;7,7,7) (0;2,3,7) 24
T 2 (0;2,7,7) (0;2,3,7) 9
T 3 (0;3,3,7) (0;2,3,7) 8
T 4 (0;4,8,8) (0;2,3,8) 12
T 5 (0;3,8,8) (0;2,3,8) 10
T 6 (0;9,9,9) (0;2,3,9) 12
T 7 (0;4,4,5) (0;2,4,5) 6
T 8 (0; t,4t,4t), t � 2 (0;2,3,4t) 6
T 9 (0; t,2t,2t), t � 3 (0;2,4,2t) 4
T 10 (0;3, t,3t), t � 3 (0;2,3,3t) 4
T 11 (0;2, t,2t), t � 4 (0;2,3,2t) 3

of finite index in any overgroup of ΓH . In particular, unless the signature of ΓH appears in
Singerman’s list, then there will always exist a normal p-gonal surface with full automorphism
group H . If the signature of ΓH does appear in Singerman’s list, then for each possible overgroup
Γ of ΓH and for each epimorphism ρ :ΓH → H , we need to determine whether or not Ker(ρ)

is normal in Γ . If there exists an epimorphism ρ such that Ker(ρ) is not normal in Γ for each
possible Γ , then there exists a normal p-gonal surface with full automorphism group H and
corresponding Fuchsian group Γ . Else, no such surface exists.

The general problem of whether or not the kernel of a surface kernel epimorphism
ρΓ1 :Γ1 → G onto a finite group G is normal in Γ where the signatures of Γ and Γ1 appear
in Singerman’s list was considered in [6]. The results from [6] can be used explicitly to deter-
mine the existence or non-existence of normal p-gonal surfaces with given ramification behavior
and full automorphism group (for the hyperelliptic case, see [8]). Due to the lengthy calculations
required and because it is not really relevant to our main result, we omit details and complete
results and instead illustrate the method of determination of maximal automorphism groups of
normal p-gonal surfaces with a very explicit example.

Example 4.3. Suppose that ΓH has signature (0; t, t, t, t) for some t � 3 and ι1, . . . , ι4 are canon-
ical generators for ΓH . Using Proposition 4.1, we must have t = p. Also, since p �= 2, the only
possible quotient groups are Cp (in which case ΓH = Γp) and Cp × Cp (in which case, using
Proposition 4.1 just two elliptic generators of ΓH induce elliptic generators of Γp). We consider
the case when the quotient group is Cp , so ΓH = Γp . Let ΓL denote the Fuchsian overgroup of
Γp with signature (0;2,2,2,p) and ΓJ an overgroup with signature (0;2,2,p,p).

If H = 〈x〉 and p = 3, then any epimorphism ρ :Γp → Cp is of the form ρ(ι1) = x, ρ(ι2) = x,
ρ(ι3) = x2, ρ(ι4) = x2 up to a permutation of the generators ι1, . . . , ι4 and an automorphism
of H . In particular, using Theorem 5.1 of [6], Ker(ρ) will also be normal in both ΓL and ΓJ .
Observe however that Γp is also normal in ΓL and ΓJ , so X = H/Ker(ρ) is normal 3-gonal.
Invoking Theorem 5.1 of [6], the full automorphism group of X is ΓL/Ker(ρ) = D6. In particu-
lar, there is no normal 3-gonal surface X with full automorphism group C3 whose corresponding
Fuchsian group has signature (0;3,3,3,3).
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If H = Cp = 〈x〉 and p �= 3, then define an epimorphism ρ :Γp → Cp as ρ(ι1) = x,
ρ(ι2) = x, ρ(ι3) = x, ρ(ι4) = x−3. Clearly there is no automorphism of Cp satisfying The-
orem 5.1 of [6] for this epimorphism and hence Ker(ρ) is not normal in any of the possible
overgroups of Γp with the two signatures given in Singerman’s list. In particular, there is a nor-
mal p-gonal surface X with full automorphism group Cp and whose corresponding Fuchsian
group has signature (0;p,p,p,p) for p �= 3.

Since in principle we know how to classify normal p-gonal surfaces, we shall henceforth
assume that X is a non-normal p-gonal surface.

5. The classification for small primes

The next case we consider is when p is a small prime (that is p ∈ {2,3,5,7}). The key step to
the classification of such surfaces is due the following which is a consequence of the main result
in [1].

Theorem 5.1. If X is a cyclic p-gonal surface and g > (p − 1)2, then X is normal p-gonal.

Since for each small prime p we have (p − 1)2 � 36, all possible cases for non-normal p-
gonal surfaces will appear in Breuer’s lists, see [5], which contain all automorphism groups that
act on surfaces of genus up to 48 and the corresponding group signature data. Therefore, to
classify all such surfaces, we just need to proceed through Breuer’s lists and pick out groups and
signatures satisfying the necessary conditions. We summarize.

Theorem 5.2. Suppose p is a small prime. Then the full automorphism group and the signature
of its corresponding Fuchsian group is one of those tabulated in Table 3 (where CD denotes the
central diagonal subgroup of C4 × SL(2,3) of order 2).

Proof. By Theorem 5.1, a 2-gonal surface will always be normal 2-gonal. In particular, no non-
normal 2-gonal surface exists. For p ∈ {3,5,7}, we know that if g > (p − 1)2, then X is normal
p-gonal. For the cases when g � (p − 1)2, we can proceed through Breuer’s lists to determine

Table 3
Non-normal p-gonal overgroups for small primes

Prime Signature of ΓA Genus Automorphism group

3 (0;2,3,8) 2 GL(2,3)

3 (0;2,3,12) 3 (C4 × SL(2,3))/(CD)

3 (0,2,2,2,3) 4 (C3 × C3) � V4
3 (0;2,4,6) 4 (C3 × C3) � D4

5 (0;2,4,5) 4 S5
5 (0;2,3,10) 6 (C5 × C5) � S3
5 (0;2,2,2,5) 16 (C5 × C5) � V4
5 (0;2,4,10) 16 (C5 × C5) � D4

7 (0;2,3,7) 3 PSL(2,7)

7 (0;2,3,14) 15 (C7 × C7) � S3
7 (0;2,2,2,7) 36 (C7 × C7) � V4
7 (0;2,4,14) 36 (C7 × C7) � D4



388 A. Wootton / Journal of Algebra 312 (2007) 377–396
the non-normal p-gonal surfaces. However, rather than considering the complete lists (there are
1495 possible groups and signature types for g = 36 alone), we can refine these lists to eliminate
groups and signature types not satisfying the necessary criteria.

First, we observe that the orbit genus of ΓA must be 0 and there must be periods divisible
by p. Second, since we are searching for automorphism groups of non-normal p-gonal surfaces,
|N | > p by Corollary 3.4. This means if p2 | |A|, then |A| � 2p2 (since Cp will be normal in a
group of order p2 but not normal in A since we are assuming X is a non-normal p-gonal surface).
If p2 � |A|, then Cp is a Sylow p-subgroup of A. Since we are assuming A is a non-normal p-
gonal overgroup, Cp cannot be unique, so using the Sylow Theorems, there must be at least p+1
subgroups of order p. Therefore, because N > Cp , it follows that |A| � 2(p + 1)p, so in both
cases we have |A| � 2p2. Finally, the groups Γp and ΓA must satisfy (2) of Theorem 2.4. Using
these conditions, we reduce the list of possibilities to a much smaller list, and the remaining
groups and signatures can be considered on a case-to-case basis. �

With the results we have so far proved, we shall henceforth assume that X is a non-normal
p-gonal surface and p � 11.

6. The classification of non-normal p-gonal overgroups of order divisible by p2

The last preliminary case we shall examine is when A is a non-normal p-gonal overgroup and
p2 | |A| for p � 11 (though most results hold for all primes). Our method will be to show that
most of these surfaces are non-normal Belyı̆ p-gonal surfaces (defined below) and such surfaces
were classified in [21]. The remaining cases can then be considered on a case-to-case basis.

Definition 6.1. A non-normal Belyı̆ p-gonal surface X is a non-normal p-gonal surface admitting
a normal p-gonal overgroup H such that the map πH :X → X/H is branched over exactly three
points.

We shall make explicit use of the following which is one of the main results of [13]. In
particular, this result implies that X is normal p-gonal if and only if there exists a unique p-
gonal group of X in A.

Theorem 6.2. If X is a cyclic p-gonal surface and A is the full automorphism group of X, then
all p-gonal groups are conjugate in A.

The main result of this section is the classification given in Theorem 6.8. Since the proof is
fairly technical and heavily computational, we break it down into a series of Lemmas.

Lemma 6.3. Suppose G is an automorphism group of a compact Riemann surface X of genus g

and |G| � 13(g −1). Then the signature of the corresponding Fuchsian group ΓG is one of those
tabulated in Table 4.

Proof. See for example Lemma 3.2 of [20]. �
We shall first describe the Sylow subgroups of A and their corresponding Fuchsian groups.

Let S denote a Sylow subgroup of A which contains a cyclic p-gonal subgroup and let ΓS denote
its corresponding Fuchsian group.
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Table 4
Signatures for large automorphism groups

Signature Additional conditions

(0;3,3, n) 4 � n � 5
(0;2,6,6)

(0;2,5,5)

(0;2,4, n) 5 � n � 10
(0;2,3, n) 7 � n � 78

Lemma 6.4. S has order p2. Moreover, if S is cyclic, then ΓS has signature (0;p,p2,p2), and
if S is elementary abelian, then S has signature (0;p,p,p) or (0;p,p,p,p).

Proof. Suppose S has order pn where n � 3. Since we are assuming X is a non-normal p-gonal
surface, we have g � (p − 1)2, so for p � 13,

|S| = pn � p3 > p(g − 1) � 13(g − 1)

and for p = 11, we have g � 100 giving

|S| = 11n � 113 > 13(100 − 1) � 13(g − 1).

In particular, the signature for the Fuchsian group ΓS corresponding to S must appear in Table 4.
However, because |S| = pn, each period of ΓS must be divisible by p and for p � 11, no such
signature exists in Table 4. Hence the Sylow-subgroups of A have order p2.

To determine the signature for ΓS we can use Proposition 4.1. Since S has order p2, S is
either cyclic or elementary abelian. In either case, the quotient group S/Cp = ΓS/Γp is cyclic
of order p, so Proposition 4.1 implies ΓS has signature (0;a1p,a2p,p, . . . ,p︸ ︷︷ ︸

l times

) for some l where

a1 = 1 or p and similarly with a2. We consider the two different possibilities for S.
If S is cyclic, in order for there to exist a surface kernel epimorphism from ΓS to S, there must

be at least two elliptic elements of order p2, so ΓS must have signature (0;p2,p2,p, . . . ,p︸ ︷︷ ︸
l times

).

Using Corollary 2.6, the genus of X is g = lp(p−1)/2. Since X is non-normal p-gonal, we must
have g � (p − 1)2, so the only possibility is l = 1. Thus ΓS must have signature (0;p,p2,p2).

If S is elementary abelian, all non-identity elements will have order p, so ΓS must have
signature (0;p,p,p, . . . ,p︸ ︷︷ ︸

l times

). Again using Corollary 2.6, the genus of X is g = (lp/2−1)(p−1),

so if X is non-normal p-gonal, the only possibilities are l = 1 and l = 2. Thus ΓS must have
signature (0;p,p,p) or (0;p,p,p,p). �

For two of the three cases in Lemma 6.4, the group ΓS is a triangle group and so any cor-
responding surface X will be a non-normal Belyı̆ p-gonal surface. Therefore, the only case
we need to consider in detail is the case where S is elementary abelian and ΓS has signature
(0;p,p,p,p), so for the rest of this section we shall assume this is the case. Under these as-
sumptions, we have the following.

Lemma 6.5. S is the unique Sylow subgroup of A.
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Proof. By the Sylow theorems and because p2 divides |A|, if S is not normal in A, then |A| �
p2(p + 1) > 13(g − 1) for p � 11. In particular, the signature of ΓA must appear in Table 4.
Since we are assuming p � 11 and because ΓA must have periods divisible by p, ΓA must
have signature (0;2,3, k) with k � 78. This immediately implies p < 78. For the remaining
possibilities for p, we know ΓA must contain a subgroup with signature (0;p,p,p,p), so we
can use Theorem 2.4 to loop through all the possibilities for the signatures of ΓA which contain
such a group. The result is five different possible signatures for ΓA: (0;2,3,33) with |A| = 1452,
(0;2,3,39) with |A| = 2028, (0;2,3,51) with |A| = 3468, (0;2,3,57) with |A| = 4332 and
(0;2,3,69) with |A| = 6348. However, in all cases, using GAP [11], for all possibilities for A,
the Sylow p-subgroup is normal. �

Let ρ :ΓS → S denote the restriction of ρΓA
to ΓS . In general, if C is any cyclic subgroup of

S of order p, then we can calculate the orbit genus of the Fuchsian group ΓC corresponding to
C by considering the map ρC ◦ ρ :ΓS → S/C and using Corollary 2.6 (where ρC is the quotient
map from S to S/C). Specifically, after simplification, the orbit genus gC of ΓC is given by the
formula

gC =
(

j

2
− 1

)
(p − 1)

where j is the number of canonical generators of ΓS with non-trivial image in the quotient group
S/C under the map ρC ◦ ρ. If C is cyclic p-gonal, then the Fuchsian group ΓC must have orbit
genus 0 and so j = 2. This means that just two of the elliptic generators have non-trivial image
under ρC ◦ ρ. Equivalently, and more importantly, this means two of the elliptic generators will
have trivial image under ρC ◦ ρ, and so it follows that exactly two of the elliptic generators lie
in C under the epimorphism ρ. We can use these observations to describe the group A and the
epimorphism ρ in much more detail.

Lemma 6.6. A has just two cyclic p-gonal subgroups and [ΓA : ΓN ] = 2. Moreover, if Cp = 〈x〉
and C′

p = 〈y〉 denote the two cyclic p-gonal subgroups of S and ι1, ι2, ι3 and ι4 denote canonical
generators for ΓS then up to an automorphism in Aut (S) and a permutation of the ιi , we have
ρ(ι1) = x, ρ(ι2) = x−1, ρ(ι3) = y and ρ(ι4) = y−1.

Proof. Since we are assuming X is non-normal p-gonal, and since S is the unique Sylow sub-
group, Theorem 6.2 implies that S must contain more than one cyclic p-gonal subgroup. As
usual, let Cp denote a cyclic p-gonal subgroup and let C′

p denote some other cyclic p-gonal
subgroup of S. Our previous observations imply the image of exactly two of the canonical gen-
erators will lie in Cp and the image of the other two in C′

p . This means that if C is any other
cyclic subgroup of S of order p, then all four generators ι1, . . . , ι4 will have non-trivial image
under ρC ◦ ρ and so the orbit genus of ΓC will be gC = (p − 1) �= 0. In particular, C is not a
cyclic p-gonal subgroup. The fact that [ΓA : ΓN ] = 2 follows directly from this result together
with Theorem 6.2 and the fact that any A-conjugate of a p-gonal group is also p-gonal (since the
corresponding Fuchsian groups will be conjugate in PSL (2,R) and signature is invariant under
conjugation in PSL (2,R)).

To finish, we need to show that ρ has the indicated form. Up to a permutation of ι1,
ι2, ι3 and ι4, since two lie in Cp and two lie in C′

p , we may assume ρ(ι1), ρ(ι2) ∈ Cp

and ρ(ι3), ρ(ι4) ∈ C′
p . If follows that ρ(ι1) = ρ(ι2)

−1 and ρ(ι3) = ρ(ι4)
−1 since the prod-
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uct ρ(ι1)ρ(ι2)ρ(ι3)ρ(ι4) must be the identity. Then after composition with the automorphism
φ ∈ Aut (S) defined by φ(ρ(ι1)) = x and φ(ρ(ι3)) = y, we get the desired epimorphism. �

With such an explicit description for the epimorphism ρ, we can apply results from [6] to
determine larger groups in which Λ is normal and consequently larger groups of automorphisms
of X.

Lemma 6.7. The group Λ is normal in ΓL with signature (0;2,2,2,p) and the quotient group
ΓL/Λ ∼= V4 � S = L is a non-normal p-gonal overgroup for both p-gonal subgroups of S.
Moreover, if L is not the full automorphism group of X, then X is a non-normal Belyı̆ p-gonal
surface.

Proof. Using Lemma 6.6, the epimorphism ρ satisfies the conditions of N4 in [6], so the kernel
Ker (ρ) = Λ is normal in ΓL with signature (0;2,2,2,p) and with quotient group L = V4 � S.
We need to show that neither of the cyclic p-gonal subgroups are normal.

Suppose C is a normal subgroup of L of order p and let ΓC be the corresponding Fuchsian
group. Then the quotient ΓL/ΓC has order 4p and if C is a cyclic p-gonal group, then ΓL/ΓC

must be isomorphic to a group of automorphisms of the Riemann sphere. In particular, since
p � 11 and L contains no elements of order 4 (so neither does the quotient group), the only pos-
sibility is D2p . Let ρΓC

:ΓL → ΓL/ΓC
∼= D2p denote the quotient map and ψ1, . . . ,ψ4 canonical

generators where ψ4 has order p. Observe that ψ4 must have non-trivial image under ρΓC
since

D2p cannot be generated by three or less elements of order 2 whose product is the identity. Using
Corollary 2.6, it follows that ΓC has no periods equal to p and orbit genus strictly greater than 0,
so C cannot be cyclic p-gonal since ΓC would have to have signature (0;p, . . . ,p).

Next we need to show that if L �= A then X is a non-normal Belyı̆ p-gonal surface which is
equivalent to showing that the group ΓN is a triangle group. First we observe that since Γp is
normal in ΓS , we must have ΓS � ΓN . Referring to Singerman’s list, if ΓN is not a triangle group,
it is either a Fuchsian group with signature (0;2,2,2,p) or a Fuchsian group with signature
(0;2,2,p,p), so it suffices to show that ΓN cannot have either of these signatures.

To show ΓN cannot have signature (0;2,2,2,p), we imitate the proof above. To show that
ΓN cannot have signature (0;2,2,p,p), we observe if A �= L, then [ΓA : ΓS] > 4, so since
[ΓA : ΓN ] = 2 we must have [ΓN : ΓS] > 2. However, if ΓJ has signature (0;2,2,p,p), then
[ΓJ : ΓS] = 2, so it follows that ΓN cannot have signature (0;2,2,p,p). �

Since ΓL is a finitely maximal Fuchsian group, it follows that there exists a surface (in fact
an infinite family of surfaces) which is non-normal p-gonal with full automorphism group L

and corresponding Fuchsian group ΓL. Any surface with A �= L is a non-normal Belyı̆ p-gonal
surface, so was classified in [21]. Therefore, combining all our results, we have the following.

Theorem 6.8. Suppose X is cyclic p-gonal for p � 11, p2 | |A| but X is not normal p-gonal.
Then the genus of X, the group A and the signature of the Fuchsian group corresponding to A

is one of those given in Table 5.

Table 5
Automorphism groups and signatures

Case Signature Automorphism group Genus

1 (0;2,3,2p) (Cp × Cp) � S3
(p−1)(p−2)

2
2 (0;2,2,2,p) (Cp × Cp) � V4 (p − 1)2

3 (0;2,4,2p) (Cp × Cp) � D4 (p − 1)2
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7. Computations for general p

We are now ready to finish the classification of non-normal p-gonal surfaces. Due to our
previous results, we may henceforth assume that X is a non-normal p-gonal surface, p � 11 and
p2 does not divide |A|. Before we proceed with the classification, we make some observations
regarding the signatures of ΓA and ΓN and the order of A. Recall that the group K was defined
to be the group N/Cp and its branching data is given in Table 1.

Lemma 7.1. There exist integers n1, . . . , nν1, o1/p, . . . , oτ /p relatively prime to p such that
(n1, . . . , nν1, o1/p, . . . , oτ /p) is the branching data of K where ν1 +τ � 3. Moreover, there exist
an integer l and integers m1, . . . ,mν2 with ν2 � ν1 and the property that each integer n1, . . . , nν1

must divide at least one of the integers m1, . . . ,mν2 such that

(1) the signature of ΓN is (0;n1, . . . , nν1, o1, . . . , oτ ,p, . . . ,p︸ ︷︷ ︸
l times

),

(2) the signature of ΓA is (0;m1, . . . ,mν2, o1, . . . , oτ ,p, . . . ,p︸ ︷︷ ︸
l times

).

Proof. First, since p2 � |A|, it follows that p � |K|. In particular, all entries of the branching
data of K will be relatively prime to p and any elliptic elements of ΓN of order divisible by p

must induce elliptic generators of Γp . Using Proposition 4.1, it follows that ΓN will have signa-
ture (0;n1, . . . , nν1, o1, . . . , oτ ,p, . . . ,p︸ ︷︷ ︸

l times

) where (n1, . . . , nν1, o1/p, . . . , oτ /p) is the branching

data of the map πK (note that ν1 + τ = 2 if K = Cn and ν1 + τ = 3 else), and the integers
n1, . . . , nν1, o1/p, . . . , oτ /p are all relatively prime to p.

To determine the signature of ΓA, we first observe that the number of periods of ΓA is at most
equal to the number of periods of ΓN , so applying Corollary 3.3 it follows that ΓA has signature
(0;m1, . . . ,mν2, o1, . . . , oτ ,p, . . . ,p︸ ︷︷ ︸

l times

) where ν2 � ν1 and each period n1, . . . , nν1 has to divide

at least one of the periods m1, . . . ,mν2 . �
Next observe that since p2 � |A| and X is non-normal p-gonal, using the Sylow theorems it

follows that |A| = bp(ap + 1) where bp = |N |, a � 1 and (b,p) = 1. In fact we can use our
observations to impose further restrictions on a and b.

Lemma 7.2. If |A| = bp(ap + 1), then ab � 13.

Proof. Since X is non-normal p-gonal, g � (p − 1)2, so

|A| = bp(ap + 1) > ba(g − 1).

If ab � 13, then |A| > 13(g − 1) and ΓA must have one of the signatures in Table 4. Since
p � 11, we only need consider signatures of type (0;2,3, k) where 11 � k � 78 and k is divisible
by some prime p > 7. Note that if ΓA has signature (0;2,3, k), then only one of its elliptic
generators will induce an elliptic generator of Γp , so using the notation of Lemma 7.1, we have
ν2 = 2. It follows that in the signature for ΓN , we have ν1 = 2 or ν1 = 3. If ν1 = 2, then ΓN

is a triangle group, so the pair (ΓA,ΓN) must appear in Singerman’s list. However, through
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observation for p � 11, no such pair appears. Therefore, we only need consider the case when
ν1 = 3.

Again applying Lemma 7.1, if ν1 = 3, then we must have k = p and ΓN has signature
(0;n1, n2, n3,p) where (n1, n2, n3) is the branching data for K and each of the ni must di-
vide 2 or 3. The only signatures satisfying these criteria are (0;2,3,3,p) where K = A4 for all
primes 11 � p � 78, and (0;2,2,2,p) where K = V4, for all primes 11 � p � 78. However, the
signatures of ΓA and ΓN must also satisfy (2) of Theorem 2.4 and through explicit calculation it
can be shown that none of these signatures do for each possible p. Hence there are no possible
pairs for ΓA and ΓN if ab > 13, so ab � 13. �

Using Lemma 7.1, the number of periods of ΓA is at most equal to the number of periods
of ΓN . However, if they have the same number of periods, then the signatures of ΓA and ΓN must
appear in Singerman’s list. Referring to the list, this can only happen if both are triangle groups
or both have orbit genus zero and 4 periods. If they are both triangle groups, the corresponding
surface X is a non-normal Belyı̆ p-gonal surface and all such surfaces were classified in [21].
For the non-triangle case in Singerman’s list, we have the following.

Lemma 7.3. There are no possible choices of ΓA and ΓN where both have four periods.

Proof. We only need to consider the two different signature pairs which appear in Singerman’s
list. For the first case, when ΓN has signature (0; t, t, t, t), Proposition 4.1 implies t = p and N

is either Cp or Cp × Cp . However, we cannot have N = Cp by Corollary 3.3, and N = Cp × Cp

is not possible since we are assuming p2 does not divide |A|.
For the second case, when ΓN has signature (0; s, s, t, t), with s �= t , Proposition 4.1 implies

either t = p or s = p, so we assume t = p. Using the list of possible groups in [22], either
N = Csp or N = Cp �Cs . If A = ΓA/Λ, where ΓA has signature (0;2,2, s,p), then [A : N ] = 2
and in particular, N � A. However, for both choices of N , Cp is unique, so will also be normal
in A. This contradicts that A is a non-normal p-gonal overgroup. �

For all other possible pairs of signatures for ΓA and ΓN , the number of periods of ΓN is
strictly greater than the number of those of ΓA. Since ab � 13, we must have b = |K| � 13, so
the only possibilities for K are Cn with n � 13, Dn for n � 6 and A4. Using Proposition 4.1, for
each of these groups we can find the possible signatures of ΓN and then using Lemma 7.1, we
can determine the possible signatures for ΓA. We list all possibilities for the signatures in Table 6
where cases 1–2 are with K = Cn, cases 3–6 are with K = Dn and cases 7–10 are with K = A4.

Next observe that if the signatures of ΓN and ΓA are as given in Lemma 7.1, since |A| =
bp(ap + 1), it follows that [ΓA : ΓN ] = ap + 1, so (2) of Theorem 2.4 implies

(ap + 1)

(
−2 + l

(
1 − 1

p

)
+

ν1∑
i=1

(
1 − 1

ni

)
+

τ∑
i=1

(
1 − 1

oi

))

= −2 + l

(
1 − 1

p

)
+

ν2∑(
1 − 1

mi

)
+

τ∑(
1 − 1

oi

)
.

i=1 i=1
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Table 6
Signature pairs not in Singerman’s list

Case Signature of ΓN Possible signatures for ΓA p

1 (0;n,n,p, . . . ,p︸ ︷︷ ︸
l times

) (0;m,p, . . . ,p︸ ︷︷ ︸
l times

) −2m+nalm+nm+n
na(−m−1+lm)

2 (0;n,np,p, . . . ,p︸ ︷︷ ︸
l times

) (0;np,p, . . . ,p︸ ︷︷ ︸
l times

) −1+a+aln+n
an(−1+l)

3A (0;2,2, n,p, . . . ,p︸ ︷︷ ︸
l times

) (0;m1,m2,p, . . . ,p︸ ︷︷ ︸
l times

)
−m2m1+nalm1m2+nm1+nm2

an(−m1−m2+lm1m2)

3B (0;m,p, . . . ,p︸ ︷︷ ︸
l times

) −m+nalm+nm+n
na(−m−1+lm)

4A (0;2,2, np,p, . . . ,p︸ ︷︷ ︸
l times

) (0;m,np,p, . . . ,p︸ ︷︷ ︸
l times

) am+almn+n
an(−1+lm)

4B (0;np,p, . . . ,p︸ ︷︷ ︸
l times

) a+aln+n
an(−1+l)

5 (0;2p,2, n,p, . . . ,p︸ ︷︷ ︸
l times

) (0;m,2p,p, . . . ,p︸ ︷︷ ︸
l times

) nm−2m+nam+2nalm+2n
2na(−1+lm)

6 (0;2p,2, np,p, . . . ,p︸ ︷︷ ︸
l times

) (0;2p,np,p, . . . ,p︸ ︷︷ ︸
l times

) n+2a+an+2aln
2aln

7A (0;2,3,3,p, . . . ,p︸ ︷︷ ︸
l times

) (0;m1,m2,p, . . . ,p︸ ︷︷ ︸
l times

)
−m1m2+6lm1m2+6m1+6m2

6(−m1−m2+lm1m2)

7B (0;m,p, . . . ,p︸ ︷︷ ︸
l times

) 5m+6lm+6
6(−m−1+ln)

8 (0;2,3,3p,p, . . . ,p︸ ︷︷ ︸
l times

) (0;m,3p,p, . . . ,p︸ ︷︷ ︸
l times

) m+2ln+2
2(−1+ln)

9 (0;2p,3,3,p, . . . ,p︸ ︷︷ ︸
l times

) (0;m,2p,p, . . . ,p︸ ︷︷ ︸
l times

) 5m+6lm+6
6(−1+lm)

10 (0;2p,3p,3,p, . . . ,p︸ ︷︷ ︸
l times

) (0;2p,3p,p, . . . ,p︸ ︷︷ ︸
l times

) 3+2l
2l

Solving this equation for p, we get

p = al + ∑ν2
i=1(1 − 1

mi
) − ∑ν1

i=1(1 − 1
ni

)

−2 + l + ∑ν1
i=1(1 − 1

ni
) + ∑τ

i=1(1 − 1
oi

)
.

In particular, we can consider p as a function of a,n1, . . . , nν1,m1, . . . ,mν2, o1, . . . , oτ and for
each of the possible cases in Table 6, we tabulate the formula for p.

With these results, we are now ready to finish the classification of non-normal p-gonal sur-
faces.

Theorem 7.4. There are no additional p-gonal surfaces to those already found.

Proof. Assume that p � 11, X is a non-normal p-gonal surface, p2 does not divide |A|, and the
number of elliptic generators of ΓA is strictly less than those of ΓN . Then the signatures for ΓA
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and ΓN must appear in Table 6. Thus to finish the problem, we just need to analyze the different
signature pairs given in Table 6. All possible cases follow a similar argument, so we describe one
case in detail and omit calculations for the remaining cases.

We consider case 1 where K = Cn, so b = n. Since ab � 13, we only have a small number
of possibilities for b and a. Specifically, for a fixed a with 1 � a � 13, we have 2 � b � 13/a.
Since the arguments for all choices of a and b are similar, we illustrate with the case when a = 3
and b = n = 4. For this case, we get

p(l,m) = (m + 6lm + 2)

6(−m − 1 + lm)
.

Differentiating with respect to l, we get

∂p

∂l
= − m(7m + 8)

6(−m − 1 + lm)2
< 0,

so p is a decreasing function with respect to l. Likewise,

∂p

∂m
= − (−1 + 8l)

6(−m − 1 + lm)2
< 0,

so p is a decreasing function with respect to m. Therefore, the largest value of p will occur when
l and m are least, so when l = 2 and m = 4 (since n | m). Evaluating, we get p � 3, so this
reduces to the small prime case considered in Theorem 5.2.

In general, for all other cases in Table 6, we first impose any necessary conditions given on
the variables in the expression for p. Once all conditions have been imposed, we evaluate each
case individually regarding p as a function of the remaining variables. In all cases, it can be
shown that p is a decreasing function in a sufficient number of variables to obtain an upper
bound for p. Specifically, for all cases we get p � 9, so all cases reduce to the small prime case
already considered in Theorem 5.2. Thus no non-normal p-gonal overgroups exist in addition to
those we have already determined. �
8. Summary of results

Since the classification of non-normal p-gonal surfaces arose from the close examination of
a number of different families, we summarize our results.

Table 7
Non-normal signatures and groups

Prime Signature of ΓA Signature of ΓN g A

3 (0;2,3,8) (0;2,2,2,3) 2 GL(2,3)

3 (0;2,3,12) (0;3,4,12) 3 SL(2,3)/CD
5 (0;2,4,5) (0;4,4,5) 4 S5
7 (0;2,3,7) (0;3,3,7) 3 PSL(2,7)

p � 5 (0;2,3,2p) (0;2,p,2p)
(p−1)(p−2)

2 (Cp × Cp) � S3
p � 3 (0;2,2,2,p) (0;2,2,p,p) (p − 1)2 (Cp × Cp) � V4
p � 3 (0;2,4,2p) (0;2,2p,2p) (p − 1)2 (Cp × Cp) � D4
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Theorem 8.1. Suppose X is a non-normal p-gonal surface. Then the signatures of ΓA and ΓN ,
the full automorphism group of X, the genus of X and where appropriate the different possibili-
ties for p is one of those given in Table 7.
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