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I N T R O D U C T I O N  

In this note, we consider the following autonomous ordinary Dirichlet problem: 

u" + h i (u )  = 0, 
u(0)  = u (1 )  = 0, (1) 

where  A is a pos i t ive  p a r a m e t e r  and  f : 1~ -~ ]~ is a cont inuous  funct ion.  

Under a completely novel assumption on the function ~ --* f :  f(t) dt (see Remark 1), we prove 
the existence of an open interval A C_]0, +c~[ such that  for every A E A, problem (1) has at least 
three classical solutions. 

The  same conclusion has been obtained in [1] for elliptic equations (however, the result also 
holds for ordinary equations) under different assumptions on f .  In the field of ordinary equations, 
other authors have studied multiplicity results for special cases of (1) (see, for instance, [2,3]) 
and, in any case, they established the existence of two solutions (see also [4]). 

Our approach is based on a three critical points theorem proved in [1], recalled below for the 
reader 's  convenience (Theorem 1), and on a technical lemma (Proposition 1) tha t  allow us to 
apply it. Our main result is Theorem 2. Moreover, a sample application is presented (Example 1). 

R E S U L T S  

First, we recall the three critical points theorem of [1]. 
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THEOREM 1. (See [1].) Let X be a separable and reflexive real Banach space, • : X ) R 

a continuously Ghteaux differentiable and sequentially weakly lower semicontinuous functional 
whose Ggteaux derivative admits a continuous inverse on X*,  and • : X ~ R a continuously 

Ggteaux differentiable functional whose G~teax derivative is compact. Assume that 

lim ((I)(u) + Ak~(u)) = +00, 
IMV~+o¢ 

for all A E [0, +oo[, and that there exists a continuous concave function h : [0, +cx~[ ~ R such 

that 

sup inf (¢(u)  + Agl(u) + h(A)) < inf sup(gg(u) + A~(u) + h(A)). 
)~>0 u E X  u E X  A_>O 

Then, there exist an open interval A C]0, +oo[ and a positive real number q such that, for each 
A E A, the equation 

+'(u) + A~'(u)  = 0 

has a t / eas t  three solutions in X whose norms are less than q. 

Here, and in the sequel, X is the Sobolev space W~'2([0, 1]) endowed with the norm ]lul[= 
(fo 1 [u'(t)] 2 dt) 1/2, f : R ~ R is a continuous function, and g is the function defined putting 

g(~) = f ( t )  dr, 

for every ~ E R. 
Our main result is the following theorem. 

Assume that there exist four positive constants c, d, a, s, with c < x/2d and s < 2, THEOREM 2. 
such that 

(i) 

for e v e r y t  E [-c, max{c,d}], 
(ii) 

(iii) 

f ( t )  > 0, 

g(c) 1 g(d) 
- -  < ~  - - - -  

C 2 4 d 2 ' 

< a (1 + 

for all ~ E R. 

Then, there exist an open interval A c_]0, +oo[ and a positive real number q such that, for 
each A E A, problem (1) admits at least three solutions belonging to CU([0, 1]) whose norms in 
W1'2([0, 1]) are less than q. 

The proof of Theorem 2 is based on the following technical lemma. 

PROPOSITION 1. 
such that 

Under Assumptions (i) and (ii) of Theorem 2, there exist r > 0 and u E X 

< I1 112 

and 
1 

max _g(~) < 2r f° g(u(x) ) dx 
I l<_va-5 II ll 2 
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PROOF. We put 

and 

4dx, i f x •  [ 0 , ~ [ ,  

u(x) = d, if x • , , 

4d(1- :c ) ,  i f : c •  ~,1 , 

r = 2C 2. 

Clearly u • X and ]lull 2 = 8d 2. Hence, taking into account that  c < vf2d, one has 

2~ < II.ll 2. 

Moreover, owing to Assumption (i), one has 

~o I 3/4 2 g(u(:c)) dx > / .  g(u(x)) dx = g(d). 
¢ 1/4 

Hence, one has 
f~ g(u(x)) dx > 1 g(d___.)) 

Ilull: - 18 d2 

Finally, taking into account tha t  
max__g(~) 

I~l<x/~/2 
2r 

from Assumption (ii), the conclusion is obtained. 

PROOF OF THEOREM 2. For each u • X,  we put 

• (u) = llluil2, 

g(c) 
4c 2 , 

o(u, =/0, 
J(u) = ¢(u) + A~(u). 

It is well known that  the critical points in X of the functional J are precisely the weak solutions 
of problem (1). So, our end is to apply Theorem 1 to (I) and ~. Clearly, (I) is a continuously 
G£teaux differentiable and sequentially weakly lower semicontinuous functional whose G£teaux 
derivative admits a continuous inverse on X*, and ko is a continuosly G~teaux differentiable 
functional whose Ghteax derivative is compact. 

Furthermore, thanks to (iii) and to Poincar~ inequality, one has 

lim ((I)(u) + Aff2(u)) = + o c ,  
ll~ll-~+~ 

for all A • [0, +c~[. 
Now, taking into account that  for every u • X,  one has 

1 
max lu(:c)l < ~ilull 

O < x < l  z~ 

it follows that  
sup 

ue~- ,  (]_~,r]) 
( - ~ ( u ) )  < m ~ _ _ g ( ~ ) ,  

for each r > 0. 
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So, owing to Proposition 1, there exist r > 0 and u E X such that  

sup ( - ~ ( u ) )  < r ( - k ~ ( u ) )  . 
~e¢-l(l_oo,r]) ~(u) 

Fix p such that  

sup ( - ~ ( u ) )  < p < r ( - ~ ( u ) )  
~e¢-l(l_~c,r]) ¢(u)  

and define h(A) -- Ap for every A >_ 0, from Proposition 3.1 of [5], we obtain 

sup j ~ f ( ~ ( u )  + A~(u) + h(A)) < inf sup(~(u) + A~(u) + h(A)). 
~>0 uEX A>_O 

Therefore, we can apply Theorem 1. It follows that  there exist an open interval A C_]0, +c~[ 
and a positive real number q such that,  for every A E A, the functional J = ¢ + A~ has three 
critical points that  are three weak solutions of problem (1) whose norms in W~'2([0, 1]), are less 
than q. By using classical methods, it is easy to verify that  the weak solutions belong to C2([0, 1]) 
and that  they are classical solutions; hence, the conclusion is obtained. | 

REMARK 1. The assumption of Theorem 2, 

(ii') there exist two positive constants c and d, with c < kd  (k  > 1) such that  

g(c)  .4g(d ) 
c 2 < . .  d 2 ' 

is, to the best of our knowledge, a completely novel condition to obtain multiplicity results in 
differential equations. 

We explicitly observe that  the constant A cannot be greater than 1 / k  and that  the condition 
c < k d  cannot be dropped, as example f ( u )  = 1 shows. 

At the moment, we do not know if the best constant actually is A - i /4 ,  but only that  

A ~ v ~ / 2 .  

REMARK 2. 

0) 

(J J) 

Of course, in Theorem 2 we can assume 

fo dg(~) d~ > 0; 

1 g(d) 
c 2 4 d  2 '  

for every ~ E [-c ,  c], 

insteaxi of (i) and (ii). 

REMARK 3. Assumption (iii) cannot be dropped, as example f ( u )  = e u shows. In fact, prob- 
lem (1) in this case, for every A >_ 0, has at most two solutions (see [2]) and Assumptions (i) 
and (ii) axe satisfied (choosing, for instance, c = 1 and d = 6). 

Finally, we give an application of Theorem 2. 

EXAMPLE 1. Let d be such that  (e d - 1)/d 2 > (1/4)(e - 1) (for instance, d = 6). Put  

e t,  t <_ d, 
f ( t )  

v ~  + e d - vrd, t > d, 

one has 
{ e ~ - l ,  ~ < d ,  

It is easy to verify that  with c = 1, a = e 4, and s = 3/2 assumptions of Theorem 2 are satisfied, 
so there exist an open interval A C]0, +c~[ and a positive real number q such that ,  for each )~ e A, 
problem (1), in this case, admits at least three solutions belonging to C2([0, 1]) whose norms in 
W01'2([0, 1]) are less than q. 
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