Volume 277, number 1,2, 250-252

FEBS 09287

December 1990

Conservation of *engrailed*-like homeobox sequences during vertebrate evolution

Peter W.H. Holland and Nicola A. Williams

Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK

Received 1 November 1990

The Drosophila melanogaster developmental gene engrailed (en) is a member of a distinct subfamily of homeobox genes with a wide phylogenetic distribution. Here we report the use of reduced stringency polymerase chain reaction (PCR) to amplify and clone 8 genes related to en from 5 vertebrate species, including representatives of the most ancient vertebrate lineages. Nucleotide and deduced amino acid sequence comparisons between mouse, toad, zebrafish, lamprey and hagfish genes reveal extensive evolutionary conservation, and suggests that 2 en-like genes have been retained in most vertebrate lineages.

Engrailed; Homeobox; PCR; Molecular evolution; Vertebrate development

1. INTRODUCTION

The mouse and human genomes each contain two homeobox genes, En-I and En-2, closely related to the D. melanogaster segmentation gene engrailed (en). These genes, which presumably arose by gene duplication, have diverged from each other, and from D. melanogaster en, in both sequence and regulation [1-6].

Here we report the results of a comparative approach to investigate the pattern of sequence divergence during the evolution of the vertebrate *en*-like gene. The polymerase chain reaction (PCR) was used to amplify and clone *en*-like homeobox genes from 5 vertebrate species, chosen to include representatives of all 3 extant lineages resultant from the deepest vertebrate radiations. Analysis of multiple recombinant clones from each species allowed insight into homeobox gene family evolution, and sequence conservation, during vertebrate radiation.

2.MATERIALS AND METHODS

Total DNA was purified from each species (mouse, *Mus musculus* strain CBA; clawed toad, *Xenopus laevis*; zebrafish, *Brachydanio rerio*; lamprey, *Lampetra planeri*; hagfish, *Myxine glutinosa*) by standard methods [7,8], and dialysed versus 10 mM Tris-HCl, 1 mM ED-TA (pH 8) prior to use in amplification reactions.

Using published sequences of *D. melanogaster* and mouse *en*-like genes, two conserved regions were identified: one within and one flanking the homeodomain. Two alternative positive strand oligonucleotide primers and two negative strand primers were designed to complement the encoding DNA sequences, and synthesized on a Milligen Biosearch 7500 DNA synthesizer. Primers A and C utilized

Correspondence address: P.W.H. Holland, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK inosine to allow base pairing at variable sites; primers B and D included mixed nucleotide redundancies. The primers were: (primer A, positive strand) 5[] GAIAAGCGICCICGCACIGCCTTCAC 3[]; (primer B, positive strand) 5[] GAVAAGCGGC-CGCGCACRGCCTTC 3[]; (primer C, negative strand) 5[] TGGTTGTACAGICCCTGIGCCATGAG 3[]; and (primer D, negative strand) 5[] TGGTTGTACAGNCCCTGNGCCATGAG 3[], where N = A,C,G or T; R = A or G; V = A,C or G; I = inosine.

DNA amplification reactions were performed using a Techne PHC-2 programmable dri-block under conditions recommended by the suppliers of the Taq DNA polymerase (Perkin-Elmer Ltd and Promega Biotec). Following DNA amplification and electrophoresis, the major products were purified and cloned into plasmid vectors [9-11]. Following transformation, multiple recombinant clones from each species were selected via blue/white screening and/or restriction enzyme digestion, before sequencing using T7 DNA polymerase and 7-deaza dGTP sequencing mixes (Pharmacia LKB). Sequences were analyzed using CLUSTAL [12], NIP 1.0 [13] and PHYLIP 3.2 (provided by Dr J. Felsenstein, Seattle, WA).

3. RESULTS AND DISCUSSION

The PCR-based strategy employed in this study was designed to enable amplification of genes related to the *D. melanogaster* segmentation gene *engrailed*. A major product of 233 base pairs was amplified from each of the 5 divergent vertebrates analysed (mouse, toad, zebrafish, lamprey, hagfish); as predicted if the primers had amplified DNA from an uninterrupted gene (or genes) containing an *en*-like homeobox.

Following purification, modification, cloning and transformation of the major amplified product from each of these species, multiple recombinant clones were sequenced, and 8 *en*-like genes identified (two each from zebrafish, hagfish, and toad; one each from lamprey and mouse). Six of these represent novel homeobox genes, whilst two classes of recombinant correspond to the previously reported genes mouse

FEBS LETTERS

	1																				61
D. melanogaster e	a c	AGC	GAG	CAG	TTG	GCC	CGC	CTC	AAG	CGG	GAG	TTC	AAC	GAG	AAT	CGC	TAT	CTG	ACC	GAG	CGG
Mouse <u>En-1</u>	G	GCC	GAG	CAG	CTG	CAG	AGA	CTC	AAG	GCG	GAG	TTC	CAG	GCA	AAC	CGC	TAT	ATC	ACG	GAG	CAG
Mouse <u>En-2</u>	Т	GCŤ	GAG	CAG	CTC	CAG	AGG	CTC	AAG	GCT	GAG	TTT	CAG	ACC	AAC	AGG	TAC	CTG	ACA	GAG	CAG
<u>X. laevis En-la</u>	т	GCT	GAG	CAG	CTC	CAG	AGA	CTG	AAG	GCT	GAG	TTC	CAA	GCC	AAC	CGC	TAC	ATC	ACA	GAG	CAG
X. laevis En-1b	т	GCT	GAG	CAG	CTC	CAG	AGA	CTG	AAG	GCT	GAG	TTC	CAG	GCC	AAT	CGC	TAC	ATC	ACA	GAG	CAG
Zebrafish <u>En-1</u>	A	GCG	GAG	CAA	CTA	CAG	AGA	CTC	AAG	AAT	GAA	TTC	CAG	AAT	AAT	CGT	TAC	CTG	ACG	GAG	CAA
Zebrafish <u>En-2</u>	G	GCG	GAG	CAG	CTT	CAG	AGA	CTC	AAG	GCC	GAG	TTC	CAG	ACC	AAC	CGC	TAC	CTG	ACC	GAG	CAG
Lamprey <u>En</u>	G	GGC	GAG	CAG	CTG	TGC	CGC	TTG	CGC	GCC	GAG	TTC	CAG	GCG	ŤCG	CGC	TAC	CTC	ACG	GAG	GAG
Hagfish <u>En-A</u>	G	GCC	GAT	CAG	CTG	GCG	CGC	CTC	CGG	GCG	GAG	TTC	CAG	GCG	AAC	CGC	TAC	CTG	ACC	GAG	GAA
Hagfish <u>En-B</u>	A	GTC	GAG	CAA	CTT	CAG	CGG	CTC	AAG	TCC	GAG	TTT	GGG	GCA	AGC	CGG	TAC	CTA	ACA	GAG	GCA
	62																				124
D. melanogaster e	n AGA	CGC	CAG	CAG	CTG	AGC	AGC	GAG	TTG	GGC	CTG	AAC	GAG	GCG	CAG	ATC	AAG	ATC	TGG	TTC	CAG
Mouse <u>En-1</u>	CGG	CGA	CAG	ACC	CTC	GCC	CAG	GAG	CTC	AGC	CTG	AAT	GAG	TCC	CAG	ATC	AAG	ATC	TGG	TTC	CAA
Mouse <u>En-2</u>	CGG	CGC	CAG	AGT	CTG	GCA	CAG	GAG	CTC	AGC	CTG	AAC	GAG	TCT	CAG	ATC	AAG	ATT	TGG	TTC	CAG
<u>X. laevis En-la</u>	AGG	AGA	CAG	AGC	TTG	GCC	CAA	GAG	CTG	AGC	CTC	AAT	GAA	тсс	CAA	ATA	AAG	ATC	ŤGG	TTC	CAG
<u>X. laevis En-1b</u>	AGG	AGA	CAG	ACC	TTG	GCC	CAA	GAG	CTG	AGT	CTC	AAT	GAA	TCC	CAA	ATA	AAG	ATC	TGG	TTC	CAG
Zebrafish <u>En-1</u>	AGG	AGA	CAA	GCG	TTG	GCC	CAG	GAA	стс	GGC	CTG	AAC	GAG	TCT	CAA	ATC	AAA	ATC	TGG	TTŤ	CAA
Zebrafish <u>En-2</u>	CGG	CGG	CAA	AGC	CTG	GCG	CAG	GAA	CTG	GGC	CTC	AAC	GAA	TCT	CAG	ATC	AAA	ATC	TGG	TTC	CAA
Lamprey <u>En</u>	CGG	CGC	ACG	GCG	CTG	GCG	CGC	GAG	CTG	CGG	CTG	AAC	GAG	GCG	CAG	ATC	AAG	ATC	TGG	TTC	CAG
Hagfish <u>En-A</u>	CGA	CGT	CAG	AAC	CTC	GCC	CGT	GAG	CTA	AGC	TTG	AAC	GAG	GCG	CAA	ATC	AAG	ATT	TGG	TTC	CAG
Hagfish <u>En-B</u>	AGG	CGA	CAA	GCG	CTC	GCC	CAG	GAA	CTG	CGA	CTC	AAC	GAG	GCT	CAG	ATC	AAG	ATC	TGG	TTC	CAG
	125																		181		
<u>D. melanogaster e</u>	n AAC	AAG	CGG	GCC	AAG	ATC	AAG	AAG	TCG	ACG	GGC	ŤCC	AAA	AAT	CCG	CTG	GCA	CTG	CAG		
Mouse <u>En-1</u>	AAC	AAG	CGT	GCC	AAG	ATC	AAG	AAA	GCC	ACA	GGC	ATC	AAG	AAC	GGC	CTG	GCG	CTG	CAC		
Mouse <u>En-2</u>	AAC	AAG	CGG	GCC	AAA	ATC	AAG	AAA	GCC	ACG	GGC	AAC	AAG	AAC	ACT	ŤŤG	GCG	GTG	CAC		
<u>X. laevis En-la</u>	AAC	AAA	AGG	GCC	AAG	ATC	AAA	AAG	GCT	TCG	GGG	ATG	AAG	AAT	GGC	CTG	GCT	CTC	CAT		
<u>X. laevis En-1b</u>	AAC	AAA	AGG	GCC	AAG	ATC	AAA	AAG	GCA	TCA	GGC	ATG	AAG	AAT	GGC	CTA	GCT	CTA	CAT		
Zebrafish <u>En-1</u>	AAC	AAA	AGG	GCA	AAG	ATC	AAA	ААА	GCA	ACG	GGG	AAC	ÂAA	AAC	ACA	CTT	GCC	GTG	CAC		
Zebrafish <u>En-2</u>	AAC	AAG	CGG	GCC	aaa	ATC	AAA	AAG	GCC	AGC	GGC	GTC	AAG	AAC	GGT	CTG	GCA	ATA	CAC		
Lamprey <u>En</u>	AAC	AAG	CGC	GCC	AAG	ATC	AAG	AAG	GCG	AGC	GGC	GTG	AAG	AAC	GCC	CTC	GCA	CTC	TAC		
Hagfish <u>En-A</u>	AAC	AAA	CGC	GCC	AAG	ATC	AAG	AAA	GCG	AGC	GGC	GTT	AAG	AAC	ACC	TTG	GCC	TTG	TAC		
Hagfish <u>En-B</u>	AAC	AAG	CGC	GCC	AAG	TTG	AAG	AAG	GCA	AAC	GGG	TTG	CGG	AAC	CCA	CTG	GCG	TTG	CAC		

Β.

	1	10	20	30	40	50	60
<u>Drosophila</u> En	SEOLAR	LKREFNENE	YLTERRROO	LSSELGLNEA	OIKIWFONKE	AKIKKSTOSK	NPLALQ
Mouse En-1	AQ-	AQA	-1QT	-AQSS	3	I-	-GH
Mouse En-2	AQ-	AQT	QS	-AQSS	3	AN-	~ T VH
<u>X. laevis</u> En-la	AQ-	AQA	-IQS	-AQSS	3	AS-M-	-GH
X. laevis En-1b	AQ-	AQA	-1QТ	-AQSS		AS-M-	-G H
Zebrafish En-1	AQ-	NQN	QA	-AQS	3	AN-	- T VH
Zebrafish En-2	AQ-	AQT	gs	-AQS	;	AS-V-	-GIH
Lamprey En	GC-	-RAQAS-	ETA	-ARR		AS-V-	-AY
Hagfish En-A	AD	-RAQA	EN	-ARS		AS-V-	- T V
Hagfish En-B	VQ-	SGAS-	A	-AQV		LAN-LR	н

Fig. 1. (A) Consensus nucleotide sequences (internal to the primers) from 8 vertebrate *en*-like genes cloned by PCR, aligned with *D. melanogaster en* and mouse *En-1*. (B) Deduced amino acid sequences from (A). Dashes indicate identity with *En*; homeodomain residues are underlined; putative DNA sequence recognition helix.

En-2 [3] and zebrafish En-2 [14]. To ensure exact sequence determination, multiple independent clones from each gene were sequenced. Fig. 1 shows the consensus nucleotide and deduced amino acid sequences from the 8 en-like genes cloned in this study, aligned with D. melanogaster en and mouse En-1.

Over the 60 amino acid region analysed, 38 residues are conserved between all vertebrate *en*-like genes cloned. The C-terminal portion of the homeodomain is most highly conserved, including a stretch of 12 invariant residues. This extent of conservation, however, is less than in another subfamily of homeobox genes, the *msh*-related genes [10]. We propose that the two X. *laevis* genes we have cloned are both homologues of En-1, since both share higher sequence identity with mouse En-1 than with mouse En-2, and since the two X. *laevis* genes are almost identical (9 nucleotides and one amino acid differ over the amplified region). The two genes isolated may represent two En-1 loci resultant from the recent tetraploidization of the X. *laevis* genome [15]; we therefore designate these genes En-1aand En-1b. The sequence of one zebrafish gene isolated in this study is almost identical to that of a gene previously reported [14] and designated zebrafish En-2. Although our consensus sequence differs from this gene by two nucleotide differences, we believe the clones derive from the same gene and follow the previous terminology. We suggest the second zebrafish *en*-like gene is the homologue of En-1.

Further insight into vertebrate en-related gene evolution can be gained by comparing the sequences obtained from the two jawless vertebrates examined, lamprey and hagfish. Two hagfish genes were isolated, both of which are clearly members of the en-like homeobox gene subfamily. The genes cannot easily be interpreted as orthologues of En-1 and En-2; hence, to avoid this implicit assumption, we designate them hagfish En-Aand En-B.

In contrast to hagfish, we identified only a single *en*like gene from the genome of a lamprey, despite extensive sequence determination (23 independent clones derived using primers A and D, and 8 clones using primers B and D, were all found to derive from the same gene). The lamprey *En* sequence shows some unusual amino acid differences from the gnathostome genes, several of which it shares with hagfish *En-A*.

In conclusion, these data reveal that homeodomain sequences encoded by *en*-like genes have been highly conserved during vertebrate radiation, particularly during the radiation of the jawed vertebrates. The isolation of two distinct *en*-like genes from zebrafish parallels the situation in mammals, indicating that duplication of an ancestral *en*-like homeobox gene was an ancient event in vertebrate evolution. However, the more divergent hagfish *en*-like genes may have arisen by an independent gene duplication: a suggestion supported by the isolation of only one lamprey *en*-like gene.

Acknowledgements: We thank Jon Bartlett for technical assistance, John McVey for primer synthesis and advice, Matthew Parkin for help during preliminary experiments, Jonathan Slack (Oxford, UK) for tadpoles, Brigitte Baker (Bath, UK) for lampreys, and Jarl-Ove Stromberg (Kristenberg, Sweden) for hagfish. This work was funded by SERC, the E.P. Abraham Cephalosporin Fund and the Queens College, Oxford.

REFERENCES

- Fjose, A., McGinnis, W.J. and Gehring, W.J. (1985) Nature 313, 284-289.
- [2] Poole, S.J., Kauver, L.M., Drees, B. and Kornberg, T. (1985) Cell 40, 37-43.
- [3] Joyner, A.L. and Martin, G.R. (1987) Genes Dev. 1, 29-38.
- [4] Davidson, D., Graham, E., Sime, C. and Hill, R. (1988) Development 104, 305-316.
- [5] Davis, C.A. and Joyner, A.L. (1988) Genes Dev. 2, 1736-1744.
- [6] Logan, C., Willard, H.F., Rommens, J.M. and Joyner, A.L. (1989) Genomics 4, 206-209.
- [7] Hogan, B., Constantini, F. and Lacy, E. (1986) Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratories, New York.
- [8] Holland, P.W.H. and Hogan, B.L.M. (1986) Nature 321, 251-253.
- [9] Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York.
- [10] Holland, P.W.H. (1990) Gene (in press).
- [11] Lanfear, J. and Holland, P.W.H. (1990) J. Molec. Evol. (in press).
- [12] Higgins, D.G. and Sharp, P.M. (1988) Gene 73, 237-244.
- [13] Staden, R. (1986) Nucleic Acid Res. 14, 217-231.
- [14] Fjose, A., Eiken, H.G., Njolstad, P.R., Molven, A. and Hordvit, J. (1988) FEBS Lett. 231, 355-360.
- [15] Fritz, A.F., Cho, K.W.Y., Wright, C.V.E., Jegalian, B.G. and DeRobertis, E.M. (1989) Dev. Biol. 131, 584-588.