
Article
CD161 Defines a Transcripti
onal and Functional
Phenotype across Distinct Human T Cell Lineages
Graphical Abstract
Highlights
CD161 expression defines specific T cell subsets, including

CD8+, CD4+, and TCRgd+

CD161-expressing lymphocytes possess a conserved tran-

scriptional signature

CD161-expressing lymphocytes display a shared innate

response to IL-12+18

CD161 can act as a costimulatory receptor
Fergusson et al., 2014, Cell Reports 9, 1075–1088
November 6, 2014 ª2014 The Authors
http://dx.doi.org/10.1016/j.celrep.2014.09.045
Authors

Joannah R. Fergusson, Kira E. Smith, ...,

Christian B. Willberg, Paul Klenerman

Correspondence
paul.klenerman@ndm.ox.ac.uk

In Brief

T lymphocytes are conventionally divided

into subsets based on expression of cor-

eceptors, cytokines, and surface mole-

cules. Using CyTOF and mRNA microar-

ray analysis, Fergusson et al. identify T

lymphocytes that express the C-type

lectin CD161 to share a transcriptional

profile and innate function across these

previously defined subsets.
Accession Numbers
GSE62099

mailto:paul.klenerman@ndm.ox.ac.uk
http://dx.doi.org/10.1016/j.celrep.2014.09.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2014.09.045&domain=pdf


Cell Reports

Article
CD161 Defines a Transcriptional
and Functional Phenotype across
Distinct Human T Cell Lineages
Joannah R. Fergusson,1 Kira E. Smith,1 Vicki M. Fleming,1,2 Neil Rajoriya,1 Evan W. Newell,3,4 Ruth Simmons,1

Emanuele Marchi,1 Sophia Björkander,5 Yu-Hoi Kang,1 Leo Swadling,1 Ayako Kurioka,1 Natasha Sahgal,6

Helen Lockstone,6 Dilair Baban,6 Gordon J. Freeman,7 Eva Sverremark-Ekström,5 Mark M. Davis,3 Miles P. Davenport,8

Vanessa Venturi,8 James E. Ussher,1,9 Christian B. Willberg,1 and Paul Klenerman1,10,*
1Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
2Department of Microbiology and Infectious Disease, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK
3Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
4Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore 138632, Singapore
5Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
6Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
7Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
8Department of Haematology, Prince of Wales Hospital, Kensington, NSW NS2 2052, Australia
9Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
10NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9TU, UK

*Correspondence: paul.klenerman@ndm.ox.ac.uk

http://dx.doi.org/10.1016/j.celrep.2014.09.045

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
SUMMARY

The C-type lectin CD161 is expressed by a large
proportion of human T lymphocytes of all lineages,
including a population known as mucosal-associated
invariant T (MAIT) cells. To understand whether dif-
ferent T cell subsets expressing CD161 have similar
properties, we examined these populations in parallel
using mass cytometry and mRNA microarray appro-
aches. The analysis identified a conserved CD161++/
MAIT cell transcriptional signature enriched in
CD161+CD8+ T cells, which can be extended to
CD161+ CD4+ and CD161+TCRgd+ T cells. Further-
more, this led to the identification of a shared
innate-like, TCR-independent response to interleukin
(IL)-12 plus IL-18 by different CD161-expressing T cell
populations. This response was independent of regu-
lation by CD161, which acted as a costimulatory
molecule in the context of T cell receptor stimulation.
Expression of CD161 hence identifies a transcrip-
tional and functional phenotype, shared across hu-
man T lymphocytes and independent of both T cell
receptor (TCR) expression and cell lineage.

INTRODUCTION

T lymphocytes form a major arm of the adaptive response, with

somatic recombination of the T cell receptor (TCR) enabling

recognition of a wide variety of antigens, coupled with the ability

to form immunological memory. Although developing from a

common thymic precursor, T lymphocytes may develop to ex-
Cell R
press a TCR composed of either gd chains or, more convention-

ally in humans, of ab. TCRab+ T cells subsequently develop to be

either CD8+ or CD4+, displaying distinct functions and restricted

by major histocompatibility complex (MHC) class I or II mole-

cules, respectively. These subsets display further subdivisions,

with differentiation of CD4+ T cells into defined helper cell sub-

sets characterized by unique cytokine production, transcription

factor expression, and surface phenotype. For example, the

more recently defined Th17 subset is characterized by secretion

of interleukin (IL)-17, the master transcription factor RORgt (An-

nunziato et al., 2007), and expression of the C-type lectin CD161

(Cosmi et al., 2008).

Expression of CD161 is not restricted to CD4+ Th17 cells,

however. Originally a marker of natural killer (NK) cells (Lanier

et al., 1994; Yokoyama and Seaman, 1993), T cell expression

of CD161 was identified two decades ago on both CD4+ and

CD8+ (Lanier et al., 1994), and later on TCRgd+ (Battistini

et al., 1997), T cells. Indeed, a quarter of both TCRab+ T cells (La-

nier et al., 1994) and TCRgd+ T cells (Battistini et al., 1997) ex-

press this C-type lectin, and thus CD161 is expressed by a large

proportion of human T cells. Within CD8+ T cells, two popula-

tions are evident, expressing either intermediate or high levels

of CD161 (CD161+ or CD161++; Takahashi et al., 2006), with

the latter shown to consist mainly of mucosal-associated

invariant T (MAIT) cells (Martin et al., 2009; Ussher et al., 2014).

MAIT cells are a family of innate-like human T cells that display

a somatically recombined yet semi-invariant TCR, composed of

the TCR a chain Va7.2-Ja33/12/20 (Reantragoon et al., 2013;

Tilloy et al., 1999) pairedwith a biasedVb repertoire (Reantragoon

et al., 2013; Walker et al., 2012). Expression of this TCR restricts

MAIT cells to the MHC class Ib antigen-presenting molecule

MR1, which presents riboflavin precursors (Corbett et al., 2014;

Kjer-Nielsen et al., 2012) produced by a variety of bacteria to
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activate MAIT cells. Whereas originally identified within the dou-

ble-negative T cell fraction (Porcelli et al., 1993), approximately

90% of MAIT cells in humans are CD8+ (either CD8aa or ab;

Walker et al., 2012), although aminor fraction of CD4+MAIT cells

also exists (Reantragoon et al., 2013). Yet, independently of cor-

eceptor expression, all MAIT cells are identified by high expres-

sion of CD161 (Dusseaux et al., 2011; Martin et al., 2009).

CD161 isahomodimericC-type lectin,which represents thesin-

glehumanorthologof the familyofNKRP1genes in rodents (Lanier

et al., 1994), and thus studyofMAITandCD161-expressingT cells

is currently restricted to the human system.MurineNKRP1 recep-

tors recognize non-MHC ligands of the C-type lectin-related (Clr)

family, encoded by genes interspersed within the NKRP1 genes

themselves (Iizuka et al., 2003; Plougastel et al., 2001). Similarly,

CD161 binds the human ortholog of Clr-b, known as lectin-like

transcript 1 (LLT1) (Aldemir et al., 2005; Rosen et al., 2005).

Whereas the outcome of CD161 ligation on NK cells is generally

accepted to be inhibitory (Aldemir et al., 2005; Lanier et al.,

1994; Rosen et al., 2005), the effect on T cells is less clear, with re-

ports of both costimulatory (Aldemir et al., 2005; Exley et al., 1998)

and inhibitory (Le Bourhis et al., 2013; Rosen et al., 2008) effects.

Both CD161++ MAIT cells and CD161+CD4+ T cells display a

type 17 phenotype (Billerbeck et al., 2010; Cosmi et al., 2008;

Dusseaux et al., 2011). This phenotype appears preprog-

rammed, with precursors of both MAIT and Th17 cells identified

within umbilical cord blood by expression of CD161 (Cosmi et al.,

2008; Walker et al., 2012). Indeed, a highly significant correlation

in gene expression in CD161++CD8+ T cells between cord blood

and adults was demonstrated, despite only aminor proportion of

CD161++CD8+ T cells expressing the MAIT cell TCR at birth

(Walker et al., 2012). Furthermore, CD161 has previously been

shown to identify T cells with the potential to produce IL-17

(Maggi et al., 2010). Therefore, we asked whether expression

of CD161 marked cells with a shared phenotypic or transcrip-

tional profile, both within and across previously defined T cell

subsets, and further whether this corresponded to a specific

shared function between these otherwise disparate cell types.

RESULTS

CD161++ CD8+ T Cells, Including Both Va7.2+ MAIT and
Va7.2� Populations, Share a Common Phenotype
MAIT cells express an invariant TCR a chain (Va7.2) together with

high levels of CD161 (Dusseaux et al., 2011) and predominantly
Figure 1. Polyclonal Va7.2�CD161++ CD8+ T Cells Are Not Activate

Stimulation by IL-12+IL-18

(A) Percentage Va7.2+ of CD161++CD8+ T cells (histogram) and percentage CD1

(n = 8). Representative flow cytometry plots shown above.

(B) Comparison of TCR Vb usage by Va7.2+ and Va7.2� CD161++ CD8+ T cells

(C) Proportional Va (38 sequences) and Vb (129 sequences) usage by Va7.2� C

(D) Percentage of IFNg expression by Va7.2+ or Va7.2�CD161++ CD8+ T cell su

of anti-MR1 (10 mg/ml) or corresponding isotype control (n = 11). **p < 0.01; one-w

(E) Percentage of IFNg expression by sorted Va7.2+ or Va7.2�CD161++CD8+ T c

by paired t test.

(F) Transcription factor expression as determined by flow cytometry. Graphs s

(CD3+CD8+ cells excluding CD161++) and Va7.2+ or Va7.2� CD161++ CD8+ T

comparison test. Representative histograms show isotype (gray), Va7.2+ (green

All data are represented as mean ± SEM. See also Figure S1.
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express the CD8 coreceptor (>90%; Walker et al., 2012).

Whereas Va7.2+ MAIT cells represent the vast majority of the

CD161++ CD8+ T cell population (<95%) in adult blood, a pop-

ulation of CD161++CD8+ T cells that are Va7.2� is also evident

(Figure 1A), comprising an average of 11.41% (±6.99%) of

CD161++CD8+ T cells in healthy adults. We first investigated

the identity of this additional CD161++CD8+ T cell population

in relation to MAIT cells. In cord blood, where CD161++CD8+

T cells are already preprogrammed to a MAIT-like, type-17

phenotype (Walker et al., 2012), this Va7.2� population

comprised the major proportion of CD161++CD8+ T cells

(84.69% ± 8.44%). After birth, Va7.2+MAIT cell expansion drives

the MAIT cell domination of the CD161++ population (Gold et al.,

2013; Leeansyah et al., 2014), and a corresponding reduction in

the proportion of Va7.2� cells was seen. This was evident as

early as 24 months, where the MAIT cell population represented

nearly 75% of the CD161++CD8+ T cell population (Figure 1A).

In addition to invariant expression of Va7.2, MAIT cells display

semi-invariant TCR b usage (Figure 1B) with predominant use of

Vb2 and Vb13.2, as previously described (Reantragoon et al.,

2013;Walker et al., 2012). In contrast, a panel of Vb antibodies re-

vealed nondiscriminate Vb usage by Va7.2� CD161++CD8+

T cells. We further investigated the TCR repertoire of this popula-

tion by TCR sequencing, performed on single cells, as described

(Wang et al., 2012). This confirmed Vb usage by Va7.2�
CD161++CD8+ T cells to be polyclonal. Furthermore, polyclonal-

ity within a chain usagewas also evident, with expression of a va-

riety of a chains both within and between donors (Figure 1C).

The semi-invariant MAIT cell TCR recognizes bacterially

derived riboflavin precursors presented by the antigen-present-

ing molecule MR1 (Corbett et al., 2014; Kjer-Nielsen et al., 2012).

MHC-tetramer-positive populations against various viral epi-

topes are rarely CD161++ (J.R.F., unpublished data). Therefore,

to establish the MR1 reactivity of Va7.2�CD161++CD8+ T cells,

we used a 5 hr coculture assay in which we have previously

described MAIT cells to be activated via the TCR to produce

interferon g (IFNg) (Ussher et al., 2014). Here, THP1s were incu-

bated with fixed Escherichia coli (E. coli) overnight and then

cultured with sort-purified Va7.2+ or Va7.2� CD161++CD8+

T cells. As expected, CD161++Va7.2+ MAIT cells produced

IFNg in response to THP1s + E. coli, and these responses

were blocked by addition of anti-MR1 (Figure 1D). Whereas in

two donors, a limited MR1-mediated response by Va7.2�
CD161++CD8+ T cells to E.coli was apparent, the majority of
d in an MR1-Dependent Manner but, like MAIT Cells, Respond to

61++ of CD8+ T cells (red point) in cord (n = 3), 24 month (n = 8), and adult blood

using a TCR Vb antibody panel.

D161++CD8+ T cells as determined by single-cell TCR sequencing (n = 3).

bsets cocultured with THP1 cells exposed to E. coli in the presence or absence

ay ANOVAwith Dunnett’s multiple comparisons test compared to E. coli alone.

ells incubated overnight with IL-12 + IL-18 at 50 ng/ml (n = 9). ns, not significant

how GeoMFI of RORgt (left) and PLZF (right) by conventional CD8+ T cells

cells (n = 5). ****p < 0.0001; **p < 0.01; one-way ANOVA with Tukey’s multiple

line), and Va7.2� (red) for each transcription factor.
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donors did not respond to bacteria. No response was observed

in sorted conventional (MHC-restricted) CD161+CD8+ T cells

(data not shown). This was reflected in 24-month-old donors

where no response was observed from Va7.2� CD161++CD8+

T cells when peripheral blood mononuclear cells (PBMCs)

were incubated for 5 hr with E. coli-loaded THP1s (Figure S1).

In addition to MR1-mediated stimulation through the TCR,

MAIT cells are also activated by a combination of IL-12+IL-18

in a TCR-independent, innate manner, a characteristic that

was shared by other CD161++CD8+ T cells (Ussher et al.,

2014). Gating of both CD161++CD8+ T cell populations in adult,

24-month-old, and cord blood donors again showed that both

Va7.2+ and Va7.2� portions were capable of IFNg production

(Figure S1). We confirmed this in sorted adult populations, where

both Va7.2+ and Va7.2� CD161++CD8+ T cells produced IFNg

in response to cytokine stimulation (Figure 1E), indicating this as

a feature of CD161++CD8+ T cells as a whole.

We next asked whether Va7.2� CD161++CD8+ T cells shared

the characteristic transcription factor expression of MAIT cells,

namely expression of RORgt, associated with the type-17 profile

of MAIT cells (Billerbeck et al., 2010; Dusseaux et al., 2011) and

promyelocytic leukemia zinc finger (PLZF), related to the innate-

like effector differentiation of MAIT and NK T (NKT) cells (Savage

et al., 2008). Expression of these transcription factors by Va7.2�
CD161++CD8+ was significantly (p < 0.01) higher than in con-

ventional CD8+ T cells but expressed on average at slightly lower

levels than MAIT cells (Figure 1F). Va7.2� CD161++CD8+ T cells

also principally displayed an effector memory (CD62L�
CD45RA�) phenotype, as seen in Va7.2+ MAIT cells (Figure S1).

Together, these results illustrate that, despite different TCR

expression and restriction, both Va7.2+ MAIT and Va7.2�
CD161++CD8+ T cells share a preprogrammed phenotype and

an innate ability to respond to cytokine stimulation and can

therefore be viewed as a common population related through

high expression of CD161.

Analysis of CD161-Expressing CD8+ T Cells by CyTOF
Next, we wanted to investigate whether expression of CD161,

and specifically different levels of expression, defined distinct

CD8+ T cell phenotypes (Figure 2A). To do this, we assayed

expression of 23 markers (see the Supplemental Experimental

Procedures) simultaneously across phorbol 12-myristate 13-ac-

etate (PMA) + ionomycin-stimulated CD8+ T cells by mass cy-

tometry (CyTOF), using principal-component analysis (PCA) to

integrate the patterns of expression into a smaller number of

summary values (Newell et al., 2012). PCA looks for directions,

or components, that cumulatively account for the variation con-

tained within the data set, with the first four components here ac-

counting for >60% of the total variation (Figure 2B). This analysis

allowed the patterns of expression of all 23 markers to be sum-

marized for each cell, which can then be viewed on a 2D or 3D

plot, thereby allowing the different CD8+ T cell populations to

be viewed in relation to one another.

When stimulated CD8+ T cells were plotted upon the first three

components, CD161++ cells occupied a distinct niche com-

pared to the other CD8+ T cell subsets (Figure 2C; Movie S1).

Similarly, when plotted in 2D on component 1, which accounts

for the most variation, and component 4, to which CD161
1078 Cell Reports 9, 1075–1088, November 6, 2014 ª2014 The Auth
contributed the most to the variation described (component

loading; Figure 2B), CD161++ cells again occupied a distinct

niche among the spectrum of CD8+ T cell phenotypes

(Figure 2D).

The progression in phenotypes of CD8+ T cells that expressed

differing levels in CD161, and the niches they occupied, could be

most clearly seen when components 1,2, and 4 were viewed

together (Movie S2). In addition to CD8+ T cells that express

high levels of CD161, a population of CD8+ T cells that express

low, or intermediate, levels of CD161 is also apparent in the cir-

culation (CD161+; Figure 2A). These cells displayed an overlap

with the phenotypic niche of CD161++ cells (Movie S1;

Figure 2D).

The Phenotypic and Transcriptional Profile
of CD161+CD8+ T Cells Overlaps with CD161++CD8+
T Cells
To explore in more depth the phenotypic overlap of CD161+ and

CD161++/MAIT CD8+ T cells, we probed genome-wide RNA

expression of these CD8+ T cell populations by microarray. Pre-

viously, we identified a set of genes differentially expressed by

CD161++CD8+ T cells compared to CD161� CD8+ T cells (Fig-

ure 3A; Billerbeck et al., 2010). This included the upregulated

expression of RORgt, CXCR6, and IL18 receptor (IL18R). Given

the dominance of MAIT cells within the CD161++CD8+ T cell

population, these markers are consequently thought to be

descriptive of the MAIT cell subset as well. Similarly, we per-

formed microarray analysis on CD161+CD8+ T cells in compar-

ison to CD161�CD8+ T cells in the same donors (Figure 3B) and

identified 544 differentially expressed genes. When compared

with the CD161++/MAIT cell transcriptional signature, 79% of

those genes significantly differentially expressed by CD161+

CD8+ T cells were shared by CD161++CD8+ T cells (Figure 3C;

Tables S1 and S2). Although the majority of shared genes were

downregulated, among the 107 shared upregulated genes

were those characteristic of MAIT cells, including CCR6,

CXCR6, ABCB1 (encoding MDR1), and IL18R (Billerbeck et al.,

2010; Dusseaux et al., 2011).

Next, we analyzed the gene expression data as a whole using

gene set enrichment analysis (GSEA) (Subramanian et al., 2005),

rather than limiting analysis to significant genes, which may miss

relevant biological differences or pathway effects. GSEA orders

the genes into a ranked list according to their differential expres-

sion between CD161+ and CD161� CD8+ T cells. The locations

of the CD161++CD8+ T-cell-associated genes, divided into up-

regulated (those upregulated within CD161++CD8+ T cells) or

downregulated (upregulated within CD161�CD8+ T cells; Fig-

ure 3A) genes, within this ranked list were then identified. We

found significant enrichment of genes upregulated in CD161++

CD8+ T cells in CD161+CD8+ T cells (normalized enrichment

score [NES] = 3.79; p < 0.001) and corresponding enrichment

of downregulated genes with those genes more associated

with a CD161� phenotype (NES = �3.12; p < 0.001; Figure 3D).

The correlation of CD161 expression with a number of

‘‘MAIT cell markers’’ identified among these shared upregulated

genes was then investigated at the protein level using flow

cytometric analysis. To prevent skewing by the differing propor-

tions of each subset, defined as CD161++, CD161+, and
ors



Figure 2. CyTOF and Principal-Component Analysis Reveals CD161++ Cells to Be Unique among CD8+ T Cells

(A) Representative flow cytometry plot of the division of CD8+ T cells into three subsets based upon expression of CD161.

(B) Data generated for PMA + ionomycin-stimulated CD8+ T cells were analyzed by principal-component analysis (PCA). The percent variation explained is

plotted for each component (bars) and cumulatively (line), and the PCA parameter loadings (weighting coefficients) for the first four components are shown.

(C) Stimulated CD8+ T cells from one representative donor are plotted on the first three components as a bulk population (black) and for the three subsets:

CD161++ (green); CD161+ (blue); and CD161� (red).

(D) Density plots of bulk-stimulated CD8+ T cells are plotted on component 1 and component 4 and are overlaid with contour density of plots of CD161++ (green),

CD161+ (blue), and CD161� (red) cells.
CD161� (Figure 2A), we gated on each individual subset and

plotted the expression levels of eachmarker, taken as geometric

meanfluorescence intensity (GeoMFI), in relation to that ofCD161

expression (Figure 3E). This revealed a highly significant correla-

tion (p < 0.0001) between the levels of CD161 expressed and the

expression of theCCR6 (r2 = 0.9143), CXCR6 (r2 = 0.9258),MDR1

(r2 = 0.9322), and IL18Ra (r2 = 0.9554). Therefore, expression of
Cell R
CD161 by CD8+ T cells correlates with a phenotypic signature

that includes a distinct set of chemokine and cytokine receptors.

Conserved Transcriptional Changes in CD161-
Expressing CD4+ and TCRgd+ T Cells
A population of CD4+ T cells expressing CD161 is also apparent

in the adult circulation and cord blood (Figure 4A). Both
eports 9, 1075–1088, November 6, 2014 ª2014 The Authors 1079
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CD161+CD4+ T cells (Cosmi et al., 2008; Maggi et al., 2010) and

CD161++ CD8+/MAIT cells (Billerbeck et al., 2010; Dusseaux

et al., 2011) have been associated with a type-17 phenotype.

Therefore, we investigated phenotypic overlap on a global scale

by performing gene-expression profiling of CD161+CD4+ T cells

by microarray. Genes significantly differentially expressed

compared to CD161�CD4+ T cells were identified and compared

to the CD161++CD8+ gene data set. CD161+CD4+ T cells shared

a third of distinguishing genes with CD161++CD8+ T cells,

including IL18RAP (Figure 4B; Tables S3 and S4). Again, GSEA

demonstrated significant enrichment (p < 0.001) of those genes

upregulated in CD161++CD8+ T cells in the CD161+CD4+ tran-

scriptional profile (NES = 2.45) and downregulated genes with

the CD161�CD4+ phenotype (NES = �3.04; Figure 4C), demon-

strating concordance of transcriptional profiles, independently of

coreceptor expression among TCRab+ T cells expressingCD161.

To investigate whether the CD161++/MAIT phenotype was also

enriched in T cells expressing a different TCR, we extended our

analysis to TCRgd+ T cells. Again, both CD161+ and CD161�
TCRgd+ T cells are evident within the adult circulation and cord

blood (Figure 4D). Gene-expression analysis was performed on

sortedCD161+ andCD161� TCRgd+ T cells and those genes sig-

nificantly differentially expressed identified (Figure 4E). Approxi-

mately a fifth of these were again shared with the CD161++

CD8+genedata set, including IL18R1andABCB1,whichencodes

MDR1 (Tables S5 and S6). As seen for CD8+ and CD4+ T cells,

GSEA revealed theCD161++CD8+ gene set to be significantly en-

riched (p<0.001) inCD161+TCRgd+Tcells, corresponding toboth

upregulated (NES=2.78) anddownregulated (NES=�2.62) genes

(Figure 4F), despite a reduced number of genes being shared.

Overall, CD161 expression can distinguish distinct popula-

tions of T cells within each T cell lineage, whether CD8+,

CD4+, or TCRgd+, with a defined CD161++/MAIT-cell-associ-

ated transcriptional signature enriched within this CD161-posi-

tive subset. Moreover, comparison of the leading edge gene

set (the core set of genes that account for this enrichment)

from each T cell population distinguished a core of 124 upregu-

lated (Table 1) and 199 downregulated (Table S7) genes

commonly enriched in all CD161-expressing T cells and which

therefore defines the CD161-associated transcriptional signa-

ture. This included upregulated expression of ABCB1 (MDR1),

RORC (RORg), ZBTB16 (PLZF), IL12RB2, and IL18R1.

ACommon Functional Correlate of CD161 Expression in
All T Cell Subsets
IL18R was one of the defining components of the leading edge

gene set associated with CD161 expression. The receptor is
Figure 3. CD161+CD8+ T Cells Share a CD161++ Transcriptional Signa

(A) Heatmap showing 3,025 significantly (p < 0.05) differentially expressed trans

clustered by one minus Pearson correlation.

(B) Heatmap showing 544 significantly differentially expressed genes between CD

one minus Pearson correlation.

(C) Pie chart shows proportion of genes differentially expressed by CD161+ that a

diagram shows breakdown of upregulated and downregulated genes unique to

(D) Gene set enrichment summary plots for vsn-normalized CD161+ versus CD

regulated (bottom) gene sets. Normalized enrichment score (NES) = 3.79, p < 0.

(E) GeoMFI of CD161 for CD161++ (green), CD161+ (blue), and CD161� (red) C

CXCR6 (r2 = 0.9258; p < 0.0001), MDR1 (r2 = 0.9322; p < 0.0001), and IL18Ra (r2 =

Cell R
composed of two subunits: IL18Ra and IL18RAP. IL18R1

(IL18Ra) was significantly upregulated in CD161+TCRgd+ (p <

0.01) and both CD161-positive populations of CD8+ (p <

0.0001) T cells and IL18RAP significantly upregulated in all

CD161-expressing T cell subsets (p < 0.0001; Figure 5A).

Expression was confirmed at the protein level by flow cytometry,

which also revealed a previously unappreciated CD161++

IL18Ra++ subset among CD4+ and TCRgd+ T cells (Figure 5B).

Gating of these three subsets (CD161++, CD161+, and CD161�)

revealed a significant correlation between CD161 expression

and IL18Ra expression (Figure 5C) among CD4+ (p < 0.0001)

and TCRgd+ (p = 0.0001) T cells, as for CD8+ T cells (Figure 3E).

We recently described that elevated expression of IL18R en-

ables CD161++CD8+/MAIT cells to be activated by IL-12+IL-18

in a TCR-independentmanner (Ussher et al., 2014). As genes en-

coding both subunits of the IL-18R and IL12RB2were contained

within the core leading edge set of CD161-associated upregu-

lated genes (Table 1), we assayed IFNg production in response

to overnight stimulation with IL-12+IL-18 in CD8+, CD4+, and

TCRgd+ T cells. IFNg production was apparent by intracellular

cytokine staining in all three T cell lineages and particularly

apparent within the CD161++ population of each (Figure 5D).

Although CD4+ MAIT cells do exist (Reantragoon et al., 2013),

IFNg responses were not restricted to Va7.2+CD4+ T cells (Fig-

ure S2). We correlated this response to IL12+IL18 with the levels

of CD161 expressed by gating on the three CD161 populations

(CD161++, CD161+, and CD161�) within each T cell lineage,

as previously (Figure 5B). As expected, there was a significant

correlation between levels of CD161 expressed by each popula-

tion and the percentage of that population expressing IFNg in

response to IL-12+IL-18 (Figure 5E), with the greatest responses

seen by the CD161++ population in each.

Together, these results demonstrate CD161-positive T lym-

phocytes to be related both in terms of gene expression and

function, including elevated expression of IL18R in the resting

state. This is linked to their shared ability to make an innate

response to cytokine stimulation by IL-12+IL-18, which is inde-

pendent of the TCR yet correlated to expression of CD161.

Regulation by CD161
Expression of CD161 by NK cells is generally accepted to nega-

tively regulate NK cell functions (Aldemir et al., 2005; Lanier et al.,

1994; Rosen et al., 2005), whereas the effect of CD161 ligation on

T cell function is less clear (Aldemir et al., 2005; Exley et al., 1998;

Le Bourhis et al., 2013; Rosen et al., 2008). To investigate the role

of CD161 in the response to IL12+IL18, we ligated CD161 by

adding biotin beads coated with anti-CD161 into the culture.
ture and Phenotypic Profile

cripts between CD161++ and CD161� CD8+ T cells in four donors. Subsets

161+ and CD161�CD8+ T cells in the same four donors. Subsets clustered by

re shared with CD161++ (79%) when compared to CD161�CD8+ T cells. Venn

or shared by each subset.

161� CD8+ T cell ranked genes and CD161++ upregulated (top) and down-

001 upregulated genes; NES = �3.12, p < 0.001 downregulated genes.

D8+ T cell subsets correlated with GeoMFI of CCR6 (r2 = 0.9143; p < 0.0001),

0.9554; p < 0.0001); n = 5. Representative flow cytometry plots shown for each.

eports 9, 1075–1088, November 6, 2014 ª2014 The Authors 1081



Figure 4. CD161+CD4+ and CD161+TCRgd+ T Cells Are Enriched for the CD161++CD8+/MAIT Transcriptional Signature

(A) Representative flow cytometry plot showing CD161+CD4+ T cells within adult and cord blood.

(B) Heatmap showing 169 significantly differentially expressed genes between CD161+ and CD161� CD4+ T cells in three donors. Subsets clustered by one

minus Pearson correlation. Pie chart shows proportion of genes differentially expressed by CD161+CD4+ that are shared with CD161++CD8+ (33%), when

compared to their CD161� counterparts. Venn diagram shows breakdown of upregulated and downregulated genes unique to or shared by each subset.

(legend continued on next page)
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Table 1. Core Transcriptional Signature of CD161-Associated

Upregulated Genes

ABCA2 CTNNA1 IGFBP4 MYO1F SESN1

ABCB1 CTSH IL12RB2 NADK SIPA1L2

ACTN4 CXCR6 IL15 NBEAL2 SLAMF1

ADCY9 CXXC5 IL18R1 NETO2 SLC1A5

ADRB2 CYB561 IL18RAP NPC1 SLC2A8

AGPAT4 CYFIP1 IL23R PBX4 SLC7A5

ALCAM DENND3 IRAK2 PERP SLCO3A1

ARNTL DUSP5 JSRP1 PHACTR2 SMAD3

AUTS2 EIF2C4 KIAA1539 PHLDA1 SMAD7

B4GALT1 ELOVL4 KIF5C PIK3AP1 SNAI3

CACNA2D2 ELOVL6 KLRB1 PLCB1 SYNE2

CACNA2D4 ERN1 KLRG1 PLEKHG3 SYTL2

CAMTA1 FAM43A LAG3 PLXNC1 THBS1

CAPN12 FAS LATS2 PODXL TLE1

CCR2 FOSL2 LONRF3 PRDM1 TNF

CD58 GALM LTB4R PRDM8 TNFRSF18

CD72 GBP5 LTK PRF1 TNFSF14

CERK GFPT2 MAFF PTGDS TPM2

CFH GPR65 MAP3K5 PTPRM VCL

CLCF1 GPR68 MAP3K8 RAB11FIP1 VLDLR

CLIC5 GTF3C1 MATK RASD1 WNT1

COL5A1 GZMA ME1 RHBDF2 YPEL1

COL5A3 GZMK METRNL RORA ZBTB16

COLQ IFI44 MICALCL RORC ZDHHC14

CREB3L2 IFNGR1 MYO1D RPPH1

Leading-edge analysis was performed on the enriched CD161++CD8+

T cell upregulated gene set in all T cell subsets. The leading-edge gene

set was compared from each T cell population and a core set of 124

genes identified and listed in alphabetical order. Those referred to in

the text are underlined.
Ligation of CD161, either by its ligand LLT1 or anti-CD161, in-

duces transient downregulation inCD161 expression (Figure S3).

Therefore, this analysis could only be reliably performed onMAIT

cells, which can be tracked independently through expression of

Va7.2. Ligation of CD161 had no effect on MAIT cell expression

of IL18R (Figure 6A) or IFNg production in response to IL-12+IL-

18 (Figure 6B). Previously, CD161 has been shown to regulate re-

sponses only in the context of TCR stimulation (Aldemir et al.,

2005; Exley et al., 1998); therefore, we examined the effect of

CD161 ligation in addition to stimulation through the TCR. Liga-

tion of CD161 induced a significant increase in IFNg (p < 0.01)

and tumor necrosis factor alpha (TNF-a) (p < 0.05) production
(C) Gene set enrichment summary plots for vsn-normalized CD161+ versus CD

downregulated (right) genes. NES = 2.45, p < 0.001 upregulated genes; NES = �
(D) Representative flow cytometry plot showing CD161+TCRgd+ T cells within a

(E) Heatmap showing 828 significantly differentially expressed genes between C

minus Pearson correlation. Pie chart shows proportion of genes differentially exp

compared to their CD161� counterparts. Venn diagram shows breakdown of up

(F) Gene set enrichment summary plots for vsn-normalized CD161+ versus CD1

downregulated (right) genes. NES = 2.78, p < 0.001 upregulated genes; NES = �

Cell R
when MAIT cells were stimulated with anti-CD3 and anti-CD28

compared to cells stimulated with anti-CD3 and anti-CD28 alone

(Figures 6C and 6D). This suggests, along with published data

(Aldemir et al., 2005; Exley et al., 1998) and other data using sol-

uble anti-CD161 (data not shown), that CD161 can act as a cos-

timulatory receptor to increase the response to TCR stimulation.

DISCUSSION

Conventionally, T lymphocyte subsets have been identified and

divided based upon the expression of sets of proteins, including

cell surface markers, cytokines, and nuclear transcription fac-

tors. The C-type lectin CD161 is expressed by a large proportion

of cells within each of these previously defined subsets, in-

cluding MAIT, CD4+ and CD8+, and both TCRab+ and TCRgd+

T cells. Despite the diverse phenotypes and functions of these

individual T cell subsets, associated with their recognition of

distinct antigens on specific antigen-presenting molecules, we

have demonstrated these cell lineages to be related by a shared

transcriptional signature and innate-like function and marked by

expression of CD161.

Among those T cells expressing the highest levels of CD161 is

the population of innate-like, unconventional T cells known as

MAIT cells. This population is distinct in terms of TCR expression

(Tilloy et al., 1999), antibacterial function (Le Bourhis et al., 2010),

and type-17-related transcriptional andphenotypic profile (Biller-

beck et al., 2010). This study represents a phenotypic description

of CD161++CD8+MAIT cells bymultiparametricmass cytometry

(CyTOF). Despite inclusion of only ‘‘conventional’’ T cell markers

within the 23-parameter panel, rather than the unique markers

characteristic ofMAIT cells, PCA emphasized the distinctiveness

of this population, which segregates within a discrete niche in

the spectrum of CD8+ T cell phenotypes. It would be of interest

to identify the location of the Va7.2� CD161++CD8+ T cell pop-

ulation in relation to Va7.2+ MAIT cells within the spectrum of

CD8+ T cell phenotypes, which was precluded here by the

absence of an isotope-tagged Va7.2 antibody.

Although the Va7.2�CD161++CD8+ T cell population is highly

heterogeneous in terms of both TCR a and b chain expression,

both Va7.2+ and Va7.2� CD161++ subsets expressed a mem-

ory phenotype and elevated levels of the polarizing transcription

factors RORgt and PLZF. The central role of PLZF in directing the

innate-like functions of NKT and MAIT cells (Savage et al., 2008)

and other innate lymphocytes (Constantinides et al., 2014)

has recently been revealed. The shared expression by Va7.2�
CD161++CD8+ T cells, early in development (Walker et al.,

2012), suggests that these cells may also display innate charac-

teristics. We investigated whether diverse Va7.2� cells repre-

sented a population analogous to type II NKT cells (Godfrey
161� CD4+-T-cell-ranked genes and CD161++CD8+ upregulated (left) and

3.04, p < 0.001 downregulated genes.

dult and cord blood.

D161+ and CD161� TCRgd+ T cells in four donors. Subsets clustered by one

ressed by CD161+TCRgd+ that are shared with CD161++CD8+ (21%), when

regulated and downregulated genes unique to or shared by each subset.

61� TCRgd+-T-cell-ranked genes and CD161++CD8+ upregulated (left) and

2.62, p < 0.001 downregulated genes.
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Figure 5. CD161-Positive T Cell Subsets Express Elevated Levels of IL18Ra and Respond to Stimulation by IL-12+IL-18

(A) Relative expression levels of IL18R subunits by CD161-positive and CD161-negative sorted T cells and statistical significance from mRNA expression an-

alyses after normalization and correction formultiple testing. **p < 0.01; ****p < 0.0001. Floating bars showminimum andmaximum values, with a line at themean.

(B) Representative flow cytometry plots for IL18Ra expression in each T cell lineage, revealing CD161++, CD161+, and CD161� subsets in each (gated).

(C) GeoMFI of CD161 for CD161++ (green), CD161+ (blue), and CD161� (red) subsets in CD4+ and TCRgd+ T cells correlated with GeoMFI of IL18Ra. CD4 r2 =

0.8463, p < 0.0001; TCRgd r2 = 0.6890, p < 0.0001 (n = 5).

(D) PBMCs were stimulated overnight with 50 ng/ml IL-12+IL-18. Representative flow cytometry plots for IFNg expression by gated CD8+, CD4+, and TCRgd+

CD3+ live lymphocytes.

(E) GeoMFI of CD161 for CD161++ (green), CD161+ (blue), and CD161� (red) subsets in CD8+, CD4+, and TCRgd+ T cells correlated with percentage of each

subset expressing IFNg in response to overnight stimulation with IL-12+IL-18. CD8 r2 = 0.8853, p < 0.0001; CD4 r2 = 0.9378, p < 0.0001; TCRgd r2 = 0.8494, p <

0.0001 (n = 5).

See also Figure S2.
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Figure 6. CD161 Regulates TCR-Depen-

dent, but Not TCR-Independent, Responses

(A) GeoMFI of IL18Ra on Va7.2+CD8+CD3+ cells

incubated for 18 hr with biotin beads coated with

either IgG2a isotype or anti-CD161. ns, not sig-

nificant by paired t test (n = 9).

(B) Percentage of Va7.2+CD8+CD3+ cells ex-

pressing IFNg when cultured with 50 ng/ml IL-

12+IL-18 for 18 hr in the presence of biotin beads

coated with either IgG2a isotype or anti-CD161.

ns, not significant by paired t test (n = 9).

(C and D) Percentage of Va7.2+CD8+CD3+ cells

expressing IFNg (C) or TNF-a (D) when cultured

overnight with TCR-stimulating biotin beads,

coated either with anti-CD3 or anti-CD3 + anti-

CD28, in combination with IgG2a isotype (open

circles) or anti-CD161 (filled circles). *p < 0.05 and

**p < 0.01 by repeated-measures one-way ANOVA

(n = 8).

Data are represented as mean ± SEM. See also

Figure S3.
et al., 2004), which recognize identical ligands to invariant NKT

cells, an additional innate-like lymphocyte subset, despite

diverse TCR expression (Gadola et al., 2002). It appears that

Va7.2� CD161++CD8+ T cells are not MR1 responsive in the

majority of donors; however, this does not rule out the possibility

that this populationmay be reactive to other nonclassical ligands

and warrants further investigation. Nonetheless, like Va7.2+

MAIT cells, Va7.2� CD161++CD8+ T cells are specifically acti-

vated by stimulation by IL-12+IL18, as shown here and else-

where (Ussher et al., 2014), representing a shared innate-like

feature of both populations of CD161++CD8+ T cells.

As MAIT cells displayed a phenotypic and functional relation-

ship to Va7.2� CD161++CD8+ T cells, we utilized mRNA micro-

array analysis to examine the relationship of MAIT cells to other

CD161-expressing T cell subsets. Previously, whole transcrip-

tome analysis by microarray has revealed that memory T and

B cells display a transcriptional signature that is shared with he-

matopoietic stem cells (Luckey et al., 2006), and transcripts that

distinguish T and B cells are also expressed among other

lymphocyte cell types (Painter et al., 2011). This indicates that

expression patterns and their consequent phenotypes may be

shared across previously defined divisions and may further be

suggestive of shared functional characteristics. In a similar

way, analysis of mRNA microarray data for CD161-positive

T cells, including TCRgd+, CD4+, and both populations of

CD8+ T cells, revealed a CD161-associated transcriptional

signature enriched in all T lymphocytes expressing CD161 and

led to the identification of a shared functional attribute.

The core transcriptional profile of CD161-expressing T cells

included genes for subunits of both the IL-12 and IL-18 recep-

tors, with high IL18Ra expression conserved across CD161-

positive T cells of all lineages. Expression of this receptor was

related to the ability of these cells to respond to IL-18 in combi-

nation with IL-12, inducing the innate TCR-independent produc-

tion of IFNg. Although this has previously been described for

CD161++ CD8+ T cells, including MAIT cells (Ussher et al.,

2014) and confirmed here for Va7.2�CD161++, this has not

been described for other T cell subsets, with CD161++ subsets
Cell R
in all lineages, identified among CD4+ and TCRgd+ T cells, dis-

playing the highest response levels. This establishes CD161 as

a marker of cells with an enhanced ‘‘innate’’ ability to respond

to this stimulus. Furthermore, this TCR-independent pathway

suggests a means by which these populations may be activated

in the inflammatory conditions in which they have been impli-

cated (Annibali et al., 2011; Billerbeck et al., 2010; Kang et al.,

2012; Kleinschek et al., 2009; Poggi et al., 1999).

The significance of CD161 expression by T cells has not yet

been fully determined. However, CD161 has previously been

applied as a marker of IL-17-expressing T cells (Maggi et al.,

2010), particularly Th17 cells (Cosmi et al., 2008), and may be

involved in the induction of this phenotype (Bai et al., 2014).

Whereas CD161 was shown here to mark cells with an innate-

like ability to respond to cytokine stimulation, ligation of CD161

had no effect on this response. Instead, CD161 was demon-

strated to function as a costimulatory receptor in the context of

TCR stimulation. This effect may differ from those shown by

others (Le Bourhis et al., 2013; Rosen et al., 2008) due to differ-

ences in the presentation of anti-CD161 or in the clones used

(see Figure S3D).

MAIT cells have previously been described to be hyporespon-

sive to stimulation through the TCR (Turtle et al., 2011), a feature

recently suggested to characterize all innate-like lymphocytes

(Wencker et al., 2014). This was related to low expression levels

of genes for multiple proteins that positively regulate TCR

signaling, including the genes ITK and MAL (Turtle et al., 2011).

Interestingly, these genes were also contained within the set of

core downregulated genes we identified here, being shared be-

tween all CD161-expressing T cells (Table S7). If similarly TCR

hyporesponsive, then by acting as a costimulatory receptor,

CD161 may help to overcome the reduced reactivity of the

TCR in these innate-like T cells (Wencker et al., 2014). Induction

of TCR hyporesponsiveness during development of innate-like

T cells has also been associated with the ability to respond to

cytokine stimulation and interestingly enabled identification by

Wencker et al. (2014) of an innate-like murine TCRgd+ T cell sub-

set that also responded selectively to IL-12 and IL-18.
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In contrast to the current paradigms of T cell subdivision, this

study identifies a phenotype and function that is shared across

T cell lineages and marked by expression of CD161. Here, we

describe CD161 to identify cells with a shared transcriptional

profile, including high expression of IL18R, and capable of mak-

ing innate-type responses to cytokine stimulation. Therefore,

expression of CD161 marks human T cells with a distinct pheno-

type that is independent of lineage and identifies a family of

related lymphocytes with innate characteristics that includes

MAIT cells.

EXPERIMENTAL PROCEDURES

Cells

PBMCs were obtained from adults (whole blood leukocyte cones; NHS Blood

and Transplant), 24 month olds (prospective birth cohort; Saghafian-Hedeng-

ren et al., 2010), and umbilical cord blood samples (Stem Cell Services, NHS

Blood and Transplant) after appropriate ethical review. These were rested

overnight or stored in liquid nitrogen until required.

THP-1 cells (ECACC) were incubated with paraformaldehyde-fixed E. coli

(DH5a; Invitrogen) at 25 bacteria per cell overnight. PMBCs (24-month donors)

or sort-purified CD8+ T cells (adults; sorted on a MoFlo; Beckman Coulter

Genomics) were then added for a 5 hr coculture. Anti-MR1 (clone 26.5, kindly

provided by T.H. Hansen) or IgG2a isotype control (BD Biosciences) was

added at 10 mg/ml. For IL-12 + IL-18 stimulations, IL-12 (Miltenyi Biotec) and

IL-18 (R&D Systems) were added at 50 ng/ml overnight. In all cases, brefeldin

A (eBioscience) was added for the final 4 hr of incubation.

TCR Sequencing

T cell receptor sequencing of single cells was performed aspreviously described

(Wang et al., 2012). In brief, Va7.2+ and Va7.2� CD161++CD8+ T cells were

sorted (MoFlo; BeckmanCoulter) as single cells intowells of a 96-well plate con-

taining 2.5 ml of iScript cDNA Synthesis reaction mixture (Bio-Rad) with 0.1%

Triton X-100. TCR transcripts for each cell were amplified by multiplex nested

PCR using one unit of Platinum Taq DNA polymerase High Fidelity, 103 PCR

buffer, 2 mMmagnesium sulfate and 0.2 mM deoxynucleotide triphosphate (In-

vitrogen), 2.5 pmol of each external TRAV and TRBV primer and 10 pmol of each

external TRAC and TRBC in the first round, or the same concentration of either

internal TRAV and TRAC or internal TRBV and TRBC primers in the second

round (primers as detailed in Wang et al., 2012). The PCR conditions were

95�C for 2 min, followed by 35 cycles of 95�C for 20 s, 52�C for 20 s, 72�C for

45 s, followed by one cycle of 72�C for 7 min. PCR products were purified

and sequenced with the corresponding TRAC or TRBC primer.

Microarrays

Cell sorting, RNA extraction, and microarray analysis of CD161 subsets within

CD8+ T cells was performed as previously described (Billerbeck et al., 2010).

CD4+ T cells were isolated from three donors by magnetic bead enrichment

(EasySep; STEMCELL Technologies) and CD161 subsets selected by staining

anti-CD161-phycoerythrin (PE); Beckman Coulter) followed by purification

with anti-PE MicroBeads (Miltenyi Biotec). Purity, as determined by flow

cytometry, was >95% for all samples. Total RNA was extracted using an

RNeasy Mini Kit (QIAGEN) and quality measured using the ND 1000 Spectro-

photometer (Saveen Werner). cRNA was amplified and purified using Illumina

TotalPrep RNA amplification kit (Ambion) and hybridized to the Illumina Hu-

manWG-6 v3.0 Expression BeadChip (Illumina).

For gene-expression profiling of TCRgd+ T cell subsets, T cells were en-

riched from PBMCs from four donors as per the manufacturer’s instructions

(EasySep T cell enrichment kit; STEMCELL Technologies). CD3+TCRgd+

CD161+ or CD161�were sorted using a FACSAria (BD Biosciences). Cell pel-

lets were snap frozen and sent to Miltenyi Biotec Genomic Services (Bergisch

Gladbach) for RNA extraction and hybridization to Agilent Whole Human

Genome Oligo Microarray.

Microarray features were normalized using variance-stabilizing normaliza-

tion (vsn) (Huber et al., 2002) using R (http://cran.r-project.org/) and Bio-
1086 Cell Reports 9, 1075–1088, November 6, 2014 ª2014 The Auth
conductor (http://bioconductor.org) packages. Gene lists of interest were

generated from those genes >2-fold up/downregulated and with a p < 0.05

for comparison using the Venn diagram module of GenePattern (Gould

et al., 2006). Heatmaps were generated using GENE-E (http://www.

broadinstitute.org/cancer/software/GENE-E/index.html). Gene set enrich-

ment analysis was performed using GSEA version 2.0.14 (Subramanian

et al., 2005).

CyTOF

PBMCs were stimulated for 3 hr with 150 ng/ml PMA + 1 mM ionomycin in

RPMI plus brefeldin A and monensin (eBioscience), 2.5 mg/ml anti-CD107a,

1.25 mg/ml anti-CD107b (BD Bioscience), and 10 mM TAPI-2 (VWR Interna-

tional). Following stimulation, cells were resuspended in cytometry buffer

(PBS + 0.05% sodium azide + 2 mM EDTA + 2% fetal calf serum) and stained

with isotope-tagged antibodies before being acquired on the CyTOF. For the

detailed protocol, see Newell et al. (2012) and the Supplemental Experimental

Procedures.

Statistical Analysis

Statistical analysis was performed using Prism version 6 software (GraphPad).

Data are represented as mean ± SEM. ****p < 0.0001; ***p < 0.001; **p < 0.01;

*p < 0.05; and ns, not significant, as stated in figure legends.
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