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We consider Yukawa couplings in a θ-exact approach to noncommutative gauge field theory and show
that both Dirac and singlet Majorana neutrino mass terms can be consistently accommodated. This shows
that in fact the whole neutrino-mass extended standard model on noncommutative spacetime can be
formulated in the new nonperturbative (in θ ) approach which eliminates the previous restriction of
Seiberg–Witten map based theories to low-energy phenomena. Spacetime noncommutativity induced
couplings between neutrinos and photons as well as Z-bosons appear quite naturally in the model.
We derive relevant Feynman rules for the type I seesaw mechanism.
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1. Introduction

Noncommutative (NC) particle phenomenology [1,2] has been
developed over the past decade as a theoretical tool to aid in
the search for experimental signals of spacetime noncommutativity
which is expected to arise quite likely in any reasonable quan-
tum theory of gravity [3]. Among the various models and ideas
that were considered, the covariant enveloping algebra approach
based on Seiberg–Witten (SW) maps [4–9] is uniquely singled out
as being capable of providing a minimal extension (deformation)
of virtually any gauge field theory model. At the tree (classical
but noncommutative) level it features only the fields, gauge group,
representations and charges that also appear in the correspond-
ing commutative model. No additional fields need to be introduced
and there are no undesirable constraints on the choice of charges
and gauge groups, nor are there problems with covariance (see the
next section for additional discussion). In the limit of infinite non-
commutativity scale the models reduce to their commutative coun-
terparts without any additional fields or interactions. The resulting
models include the standard model on noncommutative spacetime
(NCSM) [10], which was studied in [11–14]. The models are very
useful as effective field theories for particle phenomenology [1,2,
15–23]. The quantum properties of different models were exten-
sively discussed in [24–35].

For a long time the enveloping algebra formalism was limited
to low energies with respect to the noncommutativity scale be-
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cause the underlying SW maps were only known order by order in
the noncommutativity parameter θ . Quite recently it was realized
that a θ -exact approach is feasible with an expansion in the cou-
pling constant(s) [35]. We have studied UV/IR mixing [35,36] and
neutrino–photon interactions [37–40] in this new approach. A pri-
ori there are no obvious obstacles to apply the new approach also
to the whole standard model on noncommutative spacetime, but
the details are non-trivial in the Yukawa sector and are one of the
objectives of the present Letter. Even more pertinent is the gener-
alization of the NCSM to models that include neutrino masses. The
popular seesaw mechanism [41,42] requires mass terms of Dirac as
well as Majorana type, so their consistency in a noncommutative
setting should be studied. Furthermore, star–commutator couplings
of (sterile) neutrinos to gauge bosons are quite natural in non-
commutative theories [37–39,43], but are absent in the NCSM. All
these points turn out to be quite nontrivial in practice. The authors
of [43] have addressed some of these issues and have run into ob-
stacles in case of Dirac type mass terms, thus apparently ruling
out the possibility of a seesaw mechanism. In the present Letter
we would like to show that the difficulty encountered in the prior
work can be overcome by an adjustment of the noncommutative
gauge transformation rules for the Higgs and lepton fields that ap-
pear in the Yukawa terms. We show by explicit construction that
it is possible to construct Yukawa couplings for both Dirac and
singlet Majorana mass terms, thus allowing seesaw mechanisms
of type I and III. It is also possible to introduce Yukawa coupling
terms for left handed doublets needed for a seesaw mechanism of
type II. A more sophisticated constructions similar to the noncom-
mutative GUTs models [44–46] could be introduced remedy this
issue.
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2. Consistent constructions of noncommutative U(1) fields with
arbitrary representations

It is well known that the choice of gauge group appears to be
severely restricted in a noncommutative setting [4]: The star com-
mutator of two Lie algebra valued gauge fields will involve the
anti-commutator as well as the commutator of the Lie algebra gen-
erators. The algebra still closes for Hermitian matrices, but it is for
instance not possible to impose the trace to be zero. This observa-
tion can be interpreted in two ways:

1. The choice of gauge group is restricted to U(N) in the funda-
mental, anti-fundamental or adjoint representation; or

2. the gauge fields are valued in the enveloping algebra of a Lie
algebra and then any (unitary) representation is possible.

The first interpretation applies also to the U(1) case and imposes
severe restrictions on the allowed charges; it has been studied
carefully and has led to “theorems” [47,48]. The second interpre-
tation avoids the restrictions on the gauge group and choice of
representation, but needs to address the potential problem of too
many degrees of freedom, since all coefficient functions of the
monomials in the generators could a priori be physical fields. The
solution to this problem is that the coefficient fields are not all
independent. They are rather functions of the correct number of
ordinary gauge fields via Seiberg–Witten maps and their general-
izations. The situation is reminiscent of the construction of super-
fields and supersymmetric actions in terms of ordinary fields in
supersymmetry. This method, referred as Seiberg–Witten map or
enveloping algebra approach avoids both the gauge group and the
U(1) charge issues. It was shown mathematically rigorously that
any U(1) gauge theory on an arbitrary Poisson manifold can be
deformation-quantized to a noncommutative gauge theory via the
enveloping algebra approach [49] and later extended to the non-
Abelian gauge groups [50,51].

Nevertheless, the charge quantization issue has remained as
a concern among the physics community and led to some mislead-
ing extension of the “no-go” theorem for interpretation (1) [52].
Therefore, we shall present an explicit field theory example of
an SW-map based noncommutative model action with one gauge
field and three (differently) charged complex scalar fields. The im-
portant step that has been missed in the aforementioned work is
the use of reducible representations, as we shall see.

The underlying ordinary fields of the model are one U(1) gauge
field aμ(x), three massless complex scalar fields φi(x), i = 1,2,3,
with U(1) charges qi , i = 1,2,3. The coupling constant e will be
absorbed in the fields as usual for notational ease and hence will
eventually appear only in front of the gauge kinetic term. The ac-
tion is then given as usual

L =
3∑

i=1

Dμφ∗
i Dμφi − 1

4e2
fμν f μν, (1)

where Dμφi = ∂μφi − iqiaμφi and fμν = ∂μaν −∂νaμ . Gauge trans-
formation: δφi = iλ(x)qiφi , i = 1,2,3, δaμ = ∂μλ. All this can be
rewritten in a more compact notation, introducing a unitary re-
ducible representation as follows:

Φ =
⎛
⎝ φ1

φ2
φ3

⎞
⎠ , Q =

⎛
⎝ q1

q2
q3

⎞
⎠ . (2)

Than Aμ = aμ(x)Q , Λ = λ(x)Q , and Q is the generator of the
Lie algebra of U(1) in a unitary reducible representation of that
group. Gauge transformations now take the form δΦ = iΛ · Φ ,
δAμ = ∂μΛ. The latter is equivalent to the old transformation rule
δaμ = ∂μλ and there is still only one gauge field. With the co-
variant derivative DμΦ = ∂μΦ − i Aμ · Φ and gauge field strength
Fμν = ∂μ Aν − ∂ν Aμ the action takes the form

L = DμΦ† · DμΦ − 1

4g2
tr Fμν · F μν, (3)

where g := e
√

q2
1 + q2

2 + q2
3. In terms of the fields, this is still the

same Abelian action as (1), even though it resembles a Yang–Mills
type action with its matrices. The action has been written as for
a non-abelian gauge theory: It is a U(1) Yang–Mills theory. Note
that we could also have chosen an irreducible representation in
the gauge kinetic term. This would have lead to a simple re-scaling
of the coupling constant.

Prepared as above the theory can now easily be promoted to
a consistent noncommutative, Seiberg–Witten map based theory:
Let Φ̂[Φ, Aμ], Âμ[Aμ], Λ̂[Λ, Aμ] be the SW map expanded fields
(consider for example the well-known non-abelian maps for the
Moyal–Weyl case [4]). Under an ordinary gauge transformation δ

of the underlying fields φi(x), i = 1,2,3, and aμ the SW expanded
fields transform like it is expected for noncommutative fields:

δΦ̂ = iΛ̂ 
 Φ̂, δ Âμ = ∂μΛ̂ + i[Λ̂ 
, Âμ]. (4)

(Here and in the following 
 is meant to include matrix multipli-
cation.) The gauge invariant NC action is

L̂ = D̂μΦ̂† 
 D̂μΦ̂ − 1

4g2
tr F̂μν 
 F̂ μν, (5)

with covariant derivative D̂μΦ̂ = ∂μΦ̂ − i Âμ 
 Φ̂ and field strength
F̂μν = ∂μ Âν − ∂ν Âμ − i[ Âμ


, Âν ]. The noncommutative gauge field
takes the form of a diagonal 3 × 3 matrix whose entries are fields
that are expressed via SW map in terms of the single ordinary
gauge field that we have started with. In the commutative limit
the noncommutative action reduces to the commutative one (3).
In [10] an appropriate reducible representation has been used to
construct a consistent noncommutative version of the standard
model of particle physics with charges and number of particles as
in the ordinary standard model.

In the noncommutative case the order of fields matters, so
there are in fact more choices than the one given in (4). In gen-
eral all fields carry left and right charges that combines into the
total commutative charge. Gauge invariance requires that the re-
spective charges of neighboring fields must match with opposite
signs. In the notation of (2) and (4), we have:

δΦ̂ = iΛ̂(L) 
 Φ̂ − iΦ̂ 
 Λ̂(R). (6)

Using the associativity of the star product one can easily verify the
formal consistency relation

[δ
Λ̂
, δ

Σ̂
]Φ̂ = [

iΛ̂(L) 
, iΣ̂(L)
]

 Φ̂ − Φ̂ 


[
iΛ̂(R) 
, iΣ̂(R)

]
. (7)

Therefore the noncommutative gauge transformations Λ̂(L/R) can
be constructed from the classical fields and parameters A(L/R)

μ =
aμ(x)Q (L/R) and Λ(L/R) = λ(x)Q (L/R) with Q (L/R) = diag(q(L/R)

1 ,

q(L/R)

2 ,q(L/R)

3 ) and qi = q(L)
i − q(R)

i by the so-called hybrid SW

maps [10,53]. The hybrid covariant derivative is given by D̂μΦ̂ =
∂μΦ̂ − i Â(L)

μ 
 Φ̂ + iΦ̂ 
 Â(R)
μ . Thanks to (7) the left and right NC

gauge fields Â(L/R)
μ are constructed from A(L/R)

μ only, respectively.
Following (5) the gauge field action could be written as

Lgauge = − 1
2

tr
(

F̂ (L)
μν 
 F̂ μν(L) + F̂ (R)

μν 
 F̂ μν(R)
)
, (8)
4g
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with g := e
√

tr Q (L)2 + tr Q (R)2. In the next section we shall em-
ploy this construction on deformed Yukawa couplings.

Retrospectively, in [52] it is attempted to directly form ten-
sor products of noncommutative gauge fields. This fails and is in
fact also known to be impossible in noncommutative geometry as
long as there is no additional underlying mathematical structure.
The proof of this failure is correct, even though it is not really
new. The SW-map based models do however have an additional
underlying mathematical structure: They can be understood as the
deformation quantization of ordinary fiber bundles over a Poisson
manifold. With this additional structure, tensor products are possi-
ble and survive the quantization procedure [49].

3. Noncommutative Yukawa coupling and hybrid Seiberg–Witten
map

When fields with different commutative U(1) charges are mul-
tiplied into a single term, for example in the Yukawa terms, a star
product deformation would prevent the charge summation and
thus spoil the gauge invariance. The hybrid SW map is introduced
to recover gauge invariance. In this section we illustrate how it
works in an Abelian noncommutative U
(1) gauge theory. Extend-
ing to non-Abelian theory is straightforward.

Following the ideas in NC GUTs Yukawa coupling construc-
tion [45] the most general NC Yukawa term in an Abelian non-
commutative U
(1) gauge theory can be written as a linear com-
bination of three different terms

Y = c1Ψ̄ 
 Ψ ′ 
 H + c2Ψ̄ 
 H 
 Ψ ′ + c3 H 
 Ψ̄ 
 Ψ ′, (9)

with identical commutative limit but noncommutative ordering
ambiguities. The general hybrid infinitesimal noncommutative
gauge transformations of H , Ψ and Ψ ′ are1

δΛH = i
(
ρH

� (Λ)
[
qH(L)

]

 H − H 
 ρH

r (Λ)
[
qH(R)

])
,

δΛΨ̄ = i
(
ρ�(Λ)

[
q(L)

]

 Ψ̄ − Ψ̄ 
 ρr(Λ)

[
q(R)

])
,

δΛΨ ′ = i
(
ρ ′

�(Λ)
[
q′ (L)

]

 Ψ ′ − Ψ ′ 
 ρ ′

r(Λ)
[
q′ (R)

])
. (10)

To derive gauge invariance constraints on gauge transformations
we compute the infinitesimal gauge transformation of the second
Yukawa term Ψ̄ 
 H 
 Ψ ′ as an example:

δΛ

(
Ψ̄ 
 H 
 Ψ ′)

= iρ�(Λ) 
 Ψ̄ 
 H 
 Ψ ′ − iΨ̄ 
 H 
 Ψ ′ 
 ρ ′
r(Λ)

− iΨ̄ 
 ρr(Λ) 
 H 
 Ψ ′ + iΨ̄ 
 H 
 ρ ′
�(Λ) 
 Ψ ′

+ iΨ̄ 

(
ρH

� (Λ) 
 H − H 
 ρH
r (Λ)

)

 Ψ ′. (11)

We see that gauge invariance of the action integral requires

ρH
� (Λ) = ρr(Λ), ρH

r (Λ) = ρ ′
�(Λ), ρ�(Λ) = ρ ′

r(Λ). (12)

In this case ρr(Λ) and ρ ′
�(Λ) are absorbed by the Higgs gauge

transformation, while ρ�(Λ) and ρ ′
r(Λ) cancel due to the trace

property of the action integral. In other words the (left and right)
transformations (and thus charges) in contact must cancel each
other. This constraint holds in the non-Abelian cases as well.
One can also easily check the compatibility with the commutative
charge condition.

1 Since the auxiliary gauge field and parameter Aμ and Λ are not needed ex-
plicitly in practice, from this section on we use capital letters for noncommutative
fields while small letters for commutative. Subindexes are introduced �/r for left
and right transformations/fields. The corresponding charge is listed in a box bracket
following the transformation/field when necessary.
Finally we would like to address that different (hybrid) SW
maps have to be used to make the other two terms gauge invari-
ant. Therefore it is better to express (9) in terms of different SW
map deformations Ξ s

Y = c1Ξ1[ψ̃] 
 Ξ ′
1

[
ψ ′] 
 Ξ H

1 [h] + c2Ξ2[ψ̄] 
 Ξ H
2 [h] 
 Ξ ′

2

[
ψ ′]

+ c3Ξ
H
3 [h] 
 Ξ3[ψ̃] 
 Ξ ′

3

[
ψ ′], (13)

similar to the NC GUTs model Yukawa terms [45]. In the rest of the
Letter, however, we will restrict us to THE second type term only.

4. Hyper gauge field coupling to the right handed sterile neutrino

A particular feature of noncommutative gauge theories is the
emergence of new and unusual interactions. These include self-
couplings of photons and couplings between gauge bosons and
neutral particles (even in the Abelian case). One may picture these
new interactions as arising from a back-reaction of the noncom-
mutative spacetime structure on the gauge fields that themselves
directly affect this very structure. The enveloping algebra formal-
ism is particularly well-suited to capture these phenomena. It is
also the only known approach to noncommutative gauge theory
that works for arbitrary charges, gauge groups and representations.
It can also handle the phenomenon of distinct ‘left’ and ‘right’
charges in NC gauge theory with the help of hybrid SW maps that
are essential for the construction of covariant Yukawa terms. In the
paragraphs below we show how to use hybrid Seiberg–Witten con-
structing an extension of the minimal noncommutative standard
model [10] which allows the hypercharge gauge field to couple to
the right handed sterile neutrinos.

The sterile right handed neutrino νR by definition does not
couple directly to any gauge field (in a commutative spacetime
setting). On noncommutative spacetime, however, star commuta-
tor couplings of νR and U
(1)Y hyper gauge fields are possible as
we have already discussed. In this section we shall look at a sce-
nario of this type within the standard model framework that was
also considered in [43].

In the commutative setting, the right handed neutrino can have
the following coupling with a doublet Higgs field (hd)c to generate
a Dirac type mass term,

(ν̄L, l̄L)
(
hd)c

νR + hermitian conjugation. (14)

Since the left handed leptons carry −1/2 hypercharge while the
Higgs carries 1/2, the charges cancel and the right handed neu-
trino remains with no hypercharge. A generalization of the above
term to the noncommutative setting may be done as

(N̄L, L̄L) 

(

Hd)c

NR + hermitian conjugation. (15)

The (Hd)c is understood as a composite operator which in the
commutative limit becomes (hd)c . It transforms under the for-
mal noncommutative SU
(2)L ⊗ U
(1)Y gauge transformation with
U
(1)Y charge −1/2, i.e. δΛ
(Hd)c = iΛ
[− 1

2 ] 
 (H)c and maintain
the gauge invariance of the whole term.2

Now consider that the right handed neutrino may undergo
a 
-commutator type transformation

δΛ

Y
NR = i

[
Λ


Y [κ] 
, NR
]
. (16)

This transformation is still consistent with a gauge invariant
right handed neutrino in the commutative limit, but it breaks the

2 We use Λ
 for full formal SU
(2)L ⊗ U
(1)Y transformation and Λ

Y for U
(1)Y

transformation when the formal SU
(2)L part trivializes.
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noncommutative gauge invariance of the term (15). To remedy this
problem we employ the idea of hybrid Seiberg–Witten map in Sec-
tion 3 to modify the gauge transformation rule of the left handed
lepton doublet and the Higgs (H)c :

δΛ


(
NL

L

)
= i

[
Λ


[
κ − 1

2

]



(
NL

LL

)
−

(
NL

LL

)

 Λ


Y [κ]
]
,

δΛ


(
Hd)c = i

[
Λ


[
κ − 1

2

]


(

Hd)c − (
Hd)c


 Λ

Y [κ]

]
. (17)

Now that we have modified the gauge transformation for the left
handed lepton doublet, this will also affect the Yukawa term for
charged lepton mass (ν̄L, ēL)
 H 
eR . We thus propose to also mod-
ify the gauge transformation of H and eR :

δΛ
 Hd = i

[
Λ


[
κ − 1

2

]

 Hd − Hd 
 Λ


Y [κ − 1]
]
,

δΛ
LR = i
[
Λ


Y [κ − 1] 
LR −LR 
 Λ

Y [κ]]. (18)

The only issue left open, is to check that such transformations
can be consistently implemented with appropriate Seiberg–Witten
maps. Given that this is the case one can then study modifica-
tions to the interactions. An obvious difficulty in all this is that Hd

and (Hd)c look quite different formally. The gauge transformations
fix the coupling between the gauge and the matter fields. The sin-
glet particles couple with the noncommutative hypercharge U
(1)Y

gauge field B0
μ via a star commutator

DμNR = ∂μNR − i
[

B0
μ[κ] 
, NR

]
. (19)

The left handed doublet then has a hybrid coupling to U
(1)Y .
To define such transformations and couplings one must intro-
duce two different noncommutative Seiberg–Witten map deforma-
tions for the left and right U
(1)Y representations with different
charges [53]. They are set up as follows:

DμΨL = ∂μΨL − iBL
μ� 
 ΨL + iΨL 
 BL

μr, (20)

δΛ
 BL
μ�(r) = ∂μρL

�(r)

(
Λ


) − i
[
ρL

�(r)

(
Λ


)

, BL

μ�(r)

]
. (21)

Gauge invariance and the standard model gauge couplings fix the
lowest order of the Seiberg–Witten expansion of the fields:

BL
μ� := gLba

μT a +
(
κ − 1

2

)
gY b0

μ +O
(
b2), (22)

ρL
�

(
Λ


)[
κ − 1

2

]
:= λa

L T a +
(
κ − 1

2

)
λY +O(b)λ, (23)

BL
μr := κ gY b0

μ +O
(
b2), (24)

ρL
r

(
Λ


)[κ] := κλY +O(b)λ. (25)

The coupling between the left handed doublet and the SU(2)L

gauge field bμ is kept the same as in the minimal NCSM.
Finally, the right handed lepton is “hybridized”,

DμLR = ∂μLR − iB R
μ� 
LR + iLR 
 B R

μr, (26)

δΛ
 B R
μ�(r) = ∂μρR

�(r)

(
Λ


) − i
[
ρR

�(r)

(
Λ


)

, B R

μ�(r)

]
, (27)

B R
μ� := (κ − 1)gY b0

μ +O
(
b2), (28)

ρR
�

(
Λ


)[κ − 1] := (κ − 1)λY +O(b)λ, (29)

B R
μr := κ gY b0

μ +O
(
b2), (30)

ρR
r

(
Λ


)[κ] := κλY +O(b)λ. (31)

So far, we have worked out how the gauge transformations and
gauge couplings should be modified to ensure gauge invariance of
the neutrino Dirac-type mass term. Eventually, this procedure re-
quires modifications to all lepton (and corresponding Higgs) gauge
transformations. A convention of the minimal NCSM model [10]
is that the fermion gauge transformations are fixed in the whole
noncommutative action. Here the modifications discussed so far
actually fix the lepton gauge transformation. Further terms should
be compatible with this if one wants to keep the convention from
the NCSM. The seesaw mechanism, however, requires Majorana
mass terms in addition to the Dirac ones and their compatibility
with the new gauge transformations has to be checked. This we
will discuss in the next section.

In summary, we have now seen the basic structure of an exten-
sion of the minimal noncommutative standard model in which the
neutrino has a Dirac-type mass term and couples to hyper pho-
tons via a star commutator. We have sketched the lowest order
interaction to see how commutator type terms are added to the
minimal NCSM type interaction terms. The full lowest order inter-
action will also include other corrections from the Seiberg–Witten
map, which we will discuss in the next section. In the next section
we will also see that the construction outlined so far is already
sufficient for tree level on shell processes like Z → ν̄ν , since the
Seiberg–Witten map correction turns out to be proportional to the
free Dirac equation.

5. Majorana mass terms for neutrinos

5.1. Seesaw mechanism

Today we know that neutrinos are endowed with small masses,
as required by contemporary neutrino oscillations data [54]. In or-
der to account for the observed light neutrino masses with a min-
imal particle content (namely the SM one), one is to invoke Wein-
berg’s [55] dimension five effective operator

Ld=5 ∼ y
LH LH

Λ
, (32)

with the interpretation that as long as the intrinsic energy scale
involved in the physical process stays less than the scale Λ, a full
understanding of the UV completion of the theory is not necessary.
The non-renormalizable operator (32) entails �L = 2 violation of
the lepton number (more precisely, a violation of B-L which is free
of anomalies and thus conserved at the quantum level), thus pro-
ducing Majorana masses for the known neutrinos. Depending on
the size of the Yukawa couplings, the cutoff Λ may vary from
around 1013 GeV (with y ≈ 1) down to virtually any smaller value
for Yukawas protected by symmetries (y � 1).

It has been known for quite some time [56] that by using only
renormalizable interactions, there are only three tree-level realiza-
tions of the operator (32). They correspond to different UV com-
pletions of the SM, indicating various types of new physics, which
is to show up at scales around above Λ. If only one type of new
particle state is introduced above Λ, one speaks of a particular
seesaw model. After integrating out such new states (below Λ),
one recovers the non-renormalizable interaction of the type (32).
Accordingly, adding a right-handed neutrino singlet goes under the
name of type I seesaw [57–60], while the addition of a new triplet
of bosons with hypercharge Y = 1 is referred to as type II see-
saw [61–63]. Finally, the addition of a weakly interacting fermionic
triplet with hypercharge Y = 0 results in type III seesaw [64].
Such representations are normally present in GUTs. For instance,
the GUT group SO(10) in its spinor representation contains all 16
fermions needed (including the right handed neutrino) in a sin-
gle representation. As it also contains B-L, we can understand why
the mass of the right handed neutrino is much less than the Planck
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scale. The same symmetry, if properly broken, provides a naturally
stable dark matter candidate in the MSSM.

The seesaw mechanism is thus a potential candidate to generate
very small masses for the observable neutrinos. Let us briefly re-
call how this works: In this frame work N right handed neutrinos
are introduced accompany the three known left handed neutrinos.
Through gauge invariant bare mass terms and/or gauge invariant
coupling with Higgs bosons, these N + 3 neutrinos acquire both
Dirac and Majorana mass terms, which unified into a single mass
matrix

−Lmass = 1

2

[
( f̄ L, F̄ L)M

(
f R

F R

)
+ ( f̄ R , F̄ R)M†

(
f L

F L

)]
, (33)

after transforming the two component Weyl spinors into four com-
ponent Majorana spinors using the charge conjugation operation
(νL, νR) → ( f , F ) := ((νL,−iσ2ν

∗
L ), (iσ2ν

∗
R , νR)).

The matrices M and M† can be diagonalized using a single uni-
tary matrix U

U T MU = U †M†U∗ = miδi j, (34)

which yields the neutrino mass eigenstates νm

(
ν i

mR

) =
(

νmR

νMR

)
= U

(
f R

F R

)
,

(
ν i

mL

) =
(

νmL

νML

)
= U∗

(
f L

F L

)
, (35)

with i = {1, . . . , N + 3}.
Since this mass generation mechanism uses Dirac as well as

Majorana mass terms for the neutrino, one has to make sure that
both types of mass terms are consistent with gauge invariance.
In the noncommutative case this is a non-trivial issue. Since the
gauge coupling in the standard model is expressed in terms of
Weyl spinors, we shall formulate the Majorana terms in terms of
Weyl spinors too.

5.2. Majorana mass terms for right and left handed neutrinos

When extending the commutative standard model, SU(2)L ×
U(1)Y gauge invariance requires different types of Majorana mass
term for left and right handed neutrinos. The right handed neu-
trino, which is completely decoupled from all gauge fields, can be
accommodated either in a bare mass term

−iMψ T
R σ2ψR + iMψ

†
Rσ2ψ

∗
R , (36)

or in a Yukawa term with a singlet Higgs

−iyψ T
R hsσ2ψR + iy†ψ

†
Rhs†

σ2ψ
∗
R . (37)

The left handed lepton doublet, on the other hand, are charged
fields with nontrivial gauge transformations. A charged triplet
Higgs field � = (�0,�−,�−−) is needed in order to keep gauge
invariance. The corresponding Majorana term is then given by

iψ†
L

(
1√
2
(
τ · �) · τ2

)(
σ2ψ

∗
L

)
−iψ T

L

(
1√
2
τ2 · (�† · 
τ ))

(σ2ψL). (38)

Here (
τ ·�) ≡ τ1 �1 + τ2 �2 + τ3 �3. Let us furthermore recall that
due to the reality of the Majorana spinors, ψ T appears with ψ

and ψ† appears with ψ∗ in the individual terms. The su(2) genera-
tor τ2 is thus needed to transform the fundamental representation
of SU(2) to its complex conjugate to ensure gauge invariance.
5.3. Gauge invariance of the deformed Majorana mass terms

Lifting the terms to noncommutative spacetime we have for the
right handed singlet

−iMΨ T
R 
 σ2ΨR + iM†Ψ

†
R 
 σ2Ψ

∗
R , (39)

or, respectively,

−iyΨ T
R 
 Hs 
 σ2ΨR + iy†Ψ

†
R 
 Hs†


 σ2Ψ
∗
R , (40)

and for left handed doublet

iΨ †
L 


(
1√
2
(
τ · �) · τ2

)

 σ2Ψ

∗
L ,

−iΨ T
L 


(
1√
2
τ2 · (�† · 
τ ))


 (σ2ΨL). (41)

Here we notice that the Majorana mass term always involves the
field ΨL(R) and its transpose Ψ T

L(R) . Under the U
(1)Y transforma-
tion, these two transforms in the same way. The simplest lift to
noncommutative spacetime for the right handed neutrino singlet
is to keep it decoupled. Then there is obviously no problem with
gauge invariance. Next comes our transformation (16), in this case
we have

δΛ

Y

(
Ψ T

R 
 σ2ΨR
)

= i
{[

Λ

Y [κ] 
, Ψ T

R

]

 σ2ΨR + Ψ T

R 

[
Λ


Y [κ] 
, σ2ΨR
]}

= i
{
Λ


Y [κ] 
 Ψ T
R 
 σ2ΨR − Ψ T

R 
 Λ

Y [κ] 
 σ2ΨR

+ Ψ T
R 
 Λ


Y [κ] 
 σ2ΨR − Ψ T
R 
 σ2ΨR 
 Λ


Y [κ]}
= i

[
Λ


Y [κ] 
 Ψ T
R 
 σ2ΨR − Ψ T

R 
 σ2ΨR 
 Λ

Y [κ]]

= i
[
Λ


Y [κ] 
, Ψ T
R 
 σ2ΨR

]
. (42)

The star commutator eventually drops out because of the trace
property of the action integral, thus we conclude that the right
handed bare mass term is safe under the modified gauge transfor-
mation (16). Now if we use a singlet Higgs Hs to generate mass
for the right handed neutrino, we can simply set

δΛ

Y

Hs = i
[
Λ


Y [κ] 
, Hs], (43)

and then follow the general discussion given above.

5.3.1. Left handed lepton doublet problem
Next we consider the left handed lepton doublet problem. Here

we see that gauge invariance is lost even before we turn on
the modified transformation rule (17), for example for a simpli-
fied U
(1) only case

δΛ

Y

(
ρΨ

(
Ψ ∗

L

)T



(
i√
2
τ · ρ�(�) · τ2

)

 σ2ρΨ

(
ψ∗

L

))

= 1√
2

[
ρΨ

(
Ψ ∗

L

)T

 Λ


Y

[
−1

2

]


(
τ · ρ�(�) · τ2

)

 σ2

· ρΨ

(
ψ∗

L

) + ρΨ

(
Ψ ∗

L

)T

 δΛ


Y

(
τ · ρ�(�) · τ2
)

 σ2ρΨ

(
ψ∗

L

)
+ ρΨ

(
Ψ ∗

L

)T


(
τ · ρ�(�) · τ2

)

 σ2ρΨ

(
ψ∗

L

)

 Λ


Y

[
−1

2

]]
.

(44)

The third term in the computation cannot be simply absorbed
in the Higgs gauge transformation since it is a right instead of
a left transformation. Since this right transformation comes from
the assumption that the fermion Seiberg–Witten map should be
the same in all terms in the action, i.e.
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δΛρΨ

(
Ψ ∗

L

) := (δΛΨL)
∗, (45)

δΛρΨ

((
Ψ ∗

L

)T ) := (
δΛρΨ

(
Ψ ∗

L

))T = (
(δΛΨL)

∗)T
, (46)

one possible solution is to loosen this constraint and fix the left
handed doublet transformation here to be

δΛρΨ

(
Ψ ∗

L

) := Λ∗ 
 Ψ ∗ = τ2Λτ2 
 Ψ ∗, (47)

while keeping

δΛρΨ T

((
Ψ ∗

L

)T ) := (
(δΛΨL)

∗)T
. (48)

Such practice would then be similar to the NC GUTs model Yukawa
term construction [45] in the sense that varying deformations
with same commutative limits were used to keep each deformed
(Yukawa) term gauge invariant.

5.3.2. Triplet fermion and seesaw mechanism type III
For completeness we briefly discuss the Yukawa terms in the

seesaw mechanism of type III. There, instead of a right handed
singlet, a set of triplet right handed fermions

σR =
( 1√

2
σ 0

R σ+
R

σ−
R − 1√

2
σ 0

R

)
, (49)

is introduced. These particles carry hypercharge zero, having bare
Majorana mass terms and a Yukawa coupling with the left handed
doublet and the normal Higgs at the same time:

Y = tr Mσ σ̄Rσ c
R + tr Mσ σ̄ c

RσR

+ yσ ψ̄LσR
(
hd)c + yσ

(
hd)c†

σ̄RψLq, (50)

with

σ̄R =
( 1√

2
σ̄ 0

R σ̄+
R

σ̄−
R − 1√

2
σ̄ 0

R

)
,

σ c
R = −i

( 1√
2
σ2σ

0
R

∗
σ2σ

+
R

∗

σ2σ
−
R

∗ − 1√
2
σ2σ

0
R

∗

)
, (51)

and σ̄ c
R = (σ̄R)c . Now to keep the transformation of ΨL unchanged

in the deformed terms

Y
 = tr Mσ Σ̄RΣc
R + tr Mσ Σ̄c

RΣR

+ yσ Ψ̄L 
 ΣR 

(

Hd
Σ

)c + yσ

(
Hd

Σ

)c†

 Σ̄R 
 ΨL, (52)

one can introduce the following transformation rules for ΣR

and (Hd
Σ)c

δΛ

Y
ΣR = δΛ


Y
Σ̄R = i

[
Λ


[
κ − 1

2

]

, ΣR

]
,

δΛ

Y

(
Hd

Σ

)c = i

[
Λ


[
κ − 1

2

]


(

Hd
Σ

)c − (
Hd

Σ

)c

 Λ


Y [κ]
]
. (53)

Since the transformation rule for ΣR is adjoint, the gauge invari-
ance of the bare Majorana term is ensured.

6. Expansions, actions, and Feynman rules

In the previous section we have derived deformed Yukawa
terms for a neutrino extended NCSM model. Here we will write
down the corresponding θ -exact Seiberg–Witten map expressions
and corresponding Feynman rules for several relevant vertices.
For simplicity we include only seesaw type I terms up to first order
in the coupling constant.
6.1. Seiberg–Witten map

It is not difficult to obtain θ -exact Seiberg–Witten maps, includ-
ing those for hybrid transforming particles up to the first nontrivial
order in the coupling constant,

ΨL = ψL − θ i j

2

(
gLbi − gY

2
b0

i

)
• ∂ jψL

− θ i jκ gY b0
i 
2 ∂ jψL +O

(
a2)ψL, (54)

LR = lR − θ i j

2

(−gY b0
i

) • ∂ jlR

− θ i jκ gY b0
i 
2 ∂ jlR +O

(
a2)lR , (55)

Hd = hd − θ i j

2

(
gLbi + gY

2
b0

i

)
• ∂ jh

d

− θ i j(κ − 1)gY b0
i 
2 ∂ jh

d +O
(
a2)hd, (56)

(
Hd)c = (

hd)c − θ i j

2

(
gLbi − gY

2
b0

i

)
• ∂ j

(
hd)c

− θ i jκ gY b0
i 
2 ∂ j

(
hd)c +O

(
a2)(hd)c

, (57)

NR = νR − θ i jκ gY b0
i 
2 ∂ jνR +O

(
a2)νR , (58)

Hs = hs − θ i jκ gY b0
i 
2 ∂ jh

s +O
(
a2)hs. (59)

(For fields/operators with gauge transformations of hybrid type,
the first order in θ expansion contains a term which is second
order in the gauge field. Thus an expansion in gauge fields or cou-
pling constant does not share the same tensor/spinor structure.)
We use the usual conventions b0

μ := − sin ϑW zμ + cosϑW aμ for
the unbroken commutative hypercharge U(1)Y field, bμ = αμT α =

1√
2
(w+

μT + + w−
μT −) + (cosϑW zμ + sin ϑW aμ)T 3 for the unbroken

SU(2)L fields. The left handed SU(2)L doublet is ΨL := (LL,NL),
the right handed lepton field is LR , and the right handed neutrino
is NR . Their commutative counterparts are ψL = (lL, νL), lR and
νR , respectively. We use the symbol ψ for all commutative leptons
and neutrinos. Greek upper indices which run from one to three,
e.g. in να

R , denote the flavor when needed, for example when writ-
ing the neutrino mass matrix.

The generalized products • [9] and 
2 [65] are defined as

f • g = ·
(

e
i
2 θ i j∂i⊗∂ j − 1
i
2 θ i j∂i ⊗ ∂ j

)
( f ⊗ g), (60)

f 
2 g = ·
(

e
i
2 θ i j∂i⊗∂ j − e− i

2 θ i j∂i⊗∂ j

2i( 1
2 θ i j∂i ⊗ ∂ j)

)
( f ⊗ g). (61)

6.2. NCSM action

A generalized noncommutative standard model with seesaw
mechanism, consists of the following parts before symmetry break-
ing

ŜNCSM = Ŝgauge + Ŝquark + Ŝ lepton

+ ŜHiggs + ŜDir./mass + ŜMaj./mass. (62)

In this section we present all Dirac/Majorana mass generating
terms within (62) explicitly. Since the first two terms remain un-
changed with respect to the minimal NCSM [10], we skip the dis-
cussion of them and start with the lepton sector:
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Ŝ lepton = i

∫
Ψ̄L//̂DLΨL + Ψ̄R /̂D RΨR

= i

∫
Ψ̄Lγ

μ
(
∂μΨL − iBL

μ� 
 ΨL + iΨL 
 BL
μr

)
+ L̄Rγ μ

(
∂μLR − iB R

μ� 
LR + iLR 
 B R
μr

)
+ N̄Rγ μ

(
∂μNR − i

[
B0

μ[k] 
, NR
])

. (63)

The Higgs sector consists of two parts: The doublet Higgs de-
formed from the standard model one, and the singlet Higgs for
right handed neutrino Majorana mass term, so

ŜHiggs = Ŝdoublet + Ŝsinglet. (64)

The singlet part is

Ŝsinglet =
∫ (

DμHs)∗(
DμHs) − μ2

s

(
Hs)2 + λs

4

(
Hs)4

. (65)

The covariant derivative is of the adjoint type

DμHs = ∂μHs − i
[

B0
μ[k] 
, Hs]. (66)

The doublet part receives corrections since an additional commuta-
tor interaction can be added into the covariant derivative, the out-
come is

Ŝdoublet =
∫ (

DμHd)†(
DμHd)

− μ2
d

(
Hd†

Hd) + λd

4

(
Hd†

Hd)2
. (67)

The Dirac and Majorana Yukawa terms are

− ŜDir./mass =
∫

yαβΨ̄ α
L 
 Hd 
Lβ

R

+ y′
αβΨ̄ α

L 

(

Hd)c

N β

R

+ yβαL̄β
R 
 Hd†


 Ψ α
L

+ y′ ∗
βαN̄

β
R 


(
Hd)c†


 Ψ α
L , (68)

− ŜMaj./mass = − i

2

∫
ys
αβNαT

R 

(

Hs)c

 σ2N β

R

− ys∗
βαN

β†
R 


(
Hs)c†


 σ2Nα
R

∗
. (69)

The neutrino mass matrix is

M =
(

0 mD

(mD)T mM

)
, (70)

with mD
αβ = y′

αβud and mM
αβ = ys

αβus . Here us(d) denotes the vac-
uum expectation value of the Higgs singlet and doublet fields:
us(d) = 〈Hs(d)〉 in unitary gauge.

6.3. Feynman rules

Expanding the NCSM action (62)–(69), up to the leading or-
der in the coupling constant (but keeping all orders in θ ) then
transfer the flavor eigenstates {νL, νR} first to corresponding Ma-
jorana states { f , F } and then to mass eigenstates and get following
neutrino–photon and neutrino–Z boson interaction terms,

Sγ νν̄ = κe

2

∫
(ν̄m, ν̄M)γ μ

[
aμ


,

(
νm

νM

)]

+
(

i(ν̄m, ν̄M)
←−
/∂ + (ν̄m, ν̄M)

(
m

M

))

·
(

θ i jai 
2 ∂ j

(
νm

ν

))
− (

θ i jai 
2 ∂ j(ν̄m, ν̄M)
)

M

·
(

i/∂

(
νm

νM

)
−

(
m

M

)(
νm

νM

))
, (71)

S Z ν̄ν = −2 tanϑW Sγ νν̄

+ e

sin 2ϑW

∫ {
3∑

m,n=1

[(
ν̄l′

mU∗
l′n

)
/z

1 − γ 5

2

(
Ulnν

l
m

)

+ i

2
θ i j

((
ν̄l′

mU∗
l′n

)
γ μ∂i zμ • 1 − γ 5

2
∂ j

(
Ulnν

l
m

)

+ (
∂μ

(
ν̄l′

mU∗
l′n

))
γ μ 1 − γ 5

2

(
zi • (

∂ j
(
Ulnν

l
m

)))
− ((

∂i
(
ν̄l′

mU∗
l′n

)) • z j
)
γ μ 1 − γ 5

2

(
∂μ

(
Ulnν

l
m

)))]

+
3∑

n=1

N+3∑
n′=4

[
mD

nn′
θ i j

2

((
∂i

(
ν̄l′

mU∗
l′n

)) • z j
)

· 1 + γ 5

2

(
U∗

ln′νl
m

) + mD∗
m′m

θ i j

2

(
ν̄l′

mUl′m′
)

· 1 − γ 5

2

(
zi • (

∂ j
(
Ulmνl

m

)))]}
, (72)

where U is the mixing matrices defined in Eqs. (34) and (35). In-
dices l, l′ run from 1 to N + 3 and denote the N + 3 neutrino mass
eigenstates. The final outcome are the photon–neutrino Feynman
rule in momentum space:

Γγνl ν̄l′ = −κe

2
F
2(q,kl)δll′

[
(qθkl)γ

μ + (/kl − ml)q̃
μ − k̃μ

l /q
]
,

(73)

with F
2 (q,k) := 2 sin qθk
2 /qθk.

The Z -neutrino Feynman rule is slightly more complicated:

ΓZνl ν̄l′ = i
e

sin 2ϑW

{[
γ μ + i

2
F•(q,kl)

·
3∑

n=1

U∗
l′nUln

(
(qθkl)γ

μ + q̃μ/kl − k̃μ
l /q

)]1 − γ 5

2

+
3∑

n=1

N+3∑
n′=4

(
k̃μ

l Ul′n
(
mD

n(n′−3)

)∗
Uln′

1 − γ 5

2

+ (q̃ − k̃l)
μU∗

l′nmD
n(n′−3)U∗

ln′
1 + γ 5

2

)}

+ κe

2
tanϑW

{
F
2(q,kl)δll′

[
(qθkl)γ

μ

+ (/kl − ml)q̃
μ − k̃μ

l /q
]}

, (74)

where F•(q,k) := 2i(e−i qθk
2 − 1)/qθk.

Here we can see that the photon–neutrino Feynman rule (73)
resembles (up to a normalization factor of 1/2) the previous neu-
trino mass extended U
(1) model [37–39]. The Z vertex has a po-
larized term due to the deformed standard model SU(2)L ⊗ U(1)Y

part, and a κ-proportional contribution from the extend U
(1)Y -
neutrino coupling.

7. Discussion and conclusion

In this Letter we have examined and explicitly verified the
compatibility of various neutrino mass terms and the noncom-
mutative neutrino–gauge boson coupling within the framework of
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a non-perturbative (θ -exact) covariant approach to noncommuta-
tive gauge theory. Our construction shows that in our model Dirac
as well as singlet Majorana mass terms can be made compati-
ble with a commutator type coupling between the right handed
neutrino and the hypercharge field in the minimal noncommu-
tative standard model if we extend it by assigning appropriate
hybrid gauge transformations and hybrid Seiberg–Witten maps to
all corresponding lepton and Higgs fields. So, in our model, both
left and right handed neutrinos couple to the photon field via 
-
commutators, in contrast to some other constructions, see [43].
Our results correct a previous controversial claim by [43], and fur-
thermore show that the whole noncommutative standard model
can be formulated in the new θ -exact approach.

The photon–neutrino Feynman rule (73) resembles the neutrino
mass extended Uem


 (1) model [37–39]. The Z vertex (74) in part
comprises a structure due to the SU(2)L part of the SM gauge
group (as one would expect), and in part an additional structure
identical up to the coupling constant to the photon–neutrino Feyn-
man rule (73).

In an example which includes both type I seesaw mechanism
and star commutator type photon–neutrino interaction we derive
the lowest order θ -exact photon–neutrino and Z -boson–neutrino
interaction vertices in the mass basis of neutrinos which is ap-
plicable to problems at various energy scales. One of our goals is
that this construction will facilitate studies of various neutrino re-
lated beyond standard model scenarios in noncommutative particle
physics models.

Our construction features several beyond the standard model
properties like neutrino oscillation, lepton flavor violation, forbid-
den decays involving neutrinos, and neutrino deep inelastic scat-
tering.
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