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By introducing a stress multiplier we derive a family of Burgers-like equations. We
investigate the blow-up phenomena of the equations both on the real line R and on the
circle S to get a comparison with the Degasperis–Procesi equation. On the line R, we first
establish the local well-posedness and the blow-up scenario. Then we use conservation
laws of the equations to get the estimate for the L∞-norm of the strong solutions, by which
we prove that the solutions to the equations may blow up in the form of wave breaking for
certain initial profiles. Analogous results are provided in the periodic case. Especially, we
find differences between the Burgers-like equations and the Degasperis–Procesi equation,
see Remark 4.1.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In [14], D.D. Holm and M.F. Staley studied the following 1D evolution equation that describes the balance between
convection and stretching for small viscosity in the dynamics of one-dimensional nonlinear waves in fluids:

mt + umx + buxm = νmxx, (1.1)

where u = g ∗ m denotes u(x) = ∫
R

g(x − y)m(y)dy.

Setting g(x) = e− |x|
α , m = u − α2uxx , Eq. (1.1) becomes the viscous b-family of equations. Expressed solely in terms of

velocity u(t, x), (1.1) reads as

ut + (b + 1)uux − νuxx = α2(uxxt + uuxxx + buxuxx − νuxxxx)

= α2∂x

(
uxt + uuxx − νuxxx + b − 1

2
u2

x

)

= α2∂2
x

(
ut + uux − νuxx + b − 3

2
u2

x

)
.

When α → 0, equation above reduces to

ut + (b + 1)uux − νuxx = 0,

and then recovers formally the usual Burgers equation either by rescaling dimensions or by setting b = 0. The viscous
b-family of equations may also be rearranged into the following convective form,
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(
1 − α2∂2

x

)
(ut + uux − νuxx) = −∂x

(
b

2
u2 + 3 − b

2
α2u2

x

)
. (1.2)

For purpose of comparison, the authors in [14] introduced the stress multiplier λ as a parameter. When λ �= 1, one
deforms the convective form of the b-family of Eq. (1.2) into the following family of Burgers-like equations,

(ut + uux − νuxx) = −λpx, with
(
1 − α2∂2

x

)
p = b

2
u2 + 3 − b

2
α2u2

x . (1.3)

Obviously, when λ = 0, Eq. (1.3) becomes the Burgers equation, and when λ = 1, it is the viscous b-family of equations.
The authors’ interest there was in seeking solutions of the Burgers-like equation (1.3), either on the real line and van-

ishing at spatial infinity or in a periodic domain, for various values of b, α, λ, and ν . Under these boundary conditions,
(1.3) becomes the convective form (1.2) of the viscous b-family when λ → 1, and reduces to the usual Burgers equation
when λ = 0. They were also concerned with the evolution of peakon initial data upon introducing the parameters ν and λ,
under the condition (3 − b)λ = 1. This relation between b and λ ensures that Eq. (1.3) controls the α-weighted H1-norm of
the velocity ‖u‖2

H1
α

= ∫ ∞
−∞(u2 + α2u2

x)dx, α �= 0. Obviously, the Camassa–Holm equation (b = 2, λ = 1, in (1.3)) satisfies this

condition. The Camassa–Holm equation has been thoroughly studied after it was first derived physically by Camassa and
Holm in 1993, see [1]. For more results, we refer readers to [2,4–8,10,18] and references therein.

In our paper, we study Eq. (1.3) in the case b = 3, ν = 0, α = 1, i.e.,

ut + uux = −λpx, with
(
1 − ∂2

x

)
p = 3

2
u2. (1.4)

Expressed solely in terms of velocity u(t, x), it becomes

ut − uxxt + (3λ + 1)uux = 3uxuxx + uuxxx. (1.5)

Eq. (1.4) can be viewed as an extension of the Degasperis–Procesi equation. It includes formally the Burgers equation as its
special case. As we will see later, such an extension helps us get a family of equations which have several properties in
common with the Degasperis–Procesi equation. When λ = 1 Eq. (1.4) recovers the Degasperis–Procesi equation, which has
also been thoroughly studied in recent years. For example, Yin established the local well-posedness to the equation with
initial data u0 ∈ Hs(R), s > 3

2 on the line [21] and on the circle [22] and derived the blow-up results. Lenells classified all
the traveling wave solutions in [19]. Henry [15] and Mustafa [20] proved that the smooth solutions to Degasperis–Procesi
equation have infinite propagation speed. Besides, Coclite and Karlsen [9] derived the global existence results for the entropy
weak solutions belonging to various classes.

Motivated by [11], where the authors proved that
∫

R
v(u − uxx)dx is a conserved quantity with u = 4v − ∂2

x v , we find
that

∫
R

v(u − uxx)dx is also a conserved quantity when u = (3λ + 1)v − ∂2
x v , λ > − 1

3 . On the real line, we use this conser-
vation law to establish the a priori estimate for the L∞-norm of strong solutions. Combining the a priori estimate with the
approaches used in analyzing the blow-up phenomena of the Degasperis–Procesi equation in [17], we can establish blow-up
results for Eq. (1.4). We will see that the larger λ is, the livelier steepening it produces and the shorter the lifespan of the
blow-up solution is. In the periodic case, we provide similar results. Besides, we find that there are differences in the blow-
up phenomena between (1.4) and the Degasperis–Procesi equation. We know that the solution of the Degasperis–Procesi
equation exists globally provided that y0 = u0 − u0xx is of one sign, where u0 ∈ Hs(S), s > 3

2 . However, it is not true any
more for Eq. (1.3), see Theorem 4.2.

The remainder of our paper is organized as follows. In Section 2, we establish the local well-posedness of Eq. (1.4) with
initial data u0 ∈ Hs , s > 3

2 and derive the blow-up scenario of the strong solutions. In Section 3, we obtain the a priori
estimate for the L∞-norm of the strong solutions, by which we provide two blow-up results. Section 4, the last section, is
mainly devoted to establish the analogous results of Eq. (1.4) in the periodic case.

2. Local well-posedness and blow-up scenario on the line

In this section, by applying Kato’s theory we first establish the local well-posedness of the following equation⎧⎨
⎩ ut + uux = −λ∂x

(
1 − ∂2

x

)−1
(

3

2
u2

)
, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

(2.1)

Setting G(x) := 1
2 e−|x| , x ∈ R, then (1 − ∂2

x )−1 f = G ∗ f for all f ∈ L2(R). Therefore we can rewrite Eq. (2.1) in the following
equivalent form⎧⎨

⎩ ut + uux = −λ∂xG ∗
(

3

2
u2

)
, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

(2.2)

We now give our local well-posedness result, and after that, we will present a precise blow-up scenario of the strong
solutions to Eq. (2.1).



510 W. Niu et al. / J. Math. Anal. Appl. 364 (2010) 508–521
Theorem 2.1. Let u0 ∈ Hs(R), s > 3
2 . There exists a maximum T = T (λ, u0) > 0, and a unique solution u to Eq. (2.1), which depends

continuously on initial data u0 such that

u = u(·, u0) ∈ C
([0, T ); Hs(R)

) ∩ C1([0, T ); Hs−1(R)
)
.

Moreover, T may be chosen to be independent of s in the sense that if u0 ∈ Hr(R) for some r �= s, r > 3
2 too, then for the same T ,

u ∈ C
([0, T ); Hr(R)

) ∩ C1([0, T ); Hr−1(R)
)
.

Furthermore, given u0 ∈ H∞(R) = ⋂
r�0 Hr(R), then u ∈ C([0, T ), H∞(R)).

Proof. Define the operator A(u) := u∂x . Set f (u) = −λ∂x(1 − ∂2
x )−1( 3

2 u2), Y = Hs(R), X = Hs−1(R), s > 3
2 , and Λ = (1 −

∂2
x )

1
2 . Similar to the proof of Theorem 2.2 and the proof of Theorem 2.3 in [21], we can prove Theorem 2.1 by applying

Kato’s theory, and we omit the details for brevity. �
The maximum value of T in Theorem 2.1 is called the lifespan of the solution. In general, if T < ∞ in the sense that

limt→T ‖u(·, t)‖Hs(R) = ∞, we say that the solution blows up in finite time.
Next, we recall a useful lemma.

Lemma 2.1. (See [16].) If s > 0, then∥∥[
Λs, f

]
g
∥∥

L2(R)
� C

(‖∂x f ‖L∞(R)

∥∥Λs−1 g
∥∥

L2(R)
+ ∥∥Λs f

∥∥
L2(R)

‖g‖L∞(R)

)
,

where c is a constant depending only on s.

Before providing the precise blow-up scenario of strong solutions to Eq. (2.1), we prove the following useful result.

Theorem 2.2. Let u0 ∈ Hs(R), s > 3
2 , and T be the lifespan of the corresponding solution with initial data u0 . If there exists M > 0

such that ‖ux(t, x)‖L∞(R) � M, t ∈ [0, T ), then the Hs(R)-norm of u(t, ·) does not blow up on [0, T ).

Proof. Let u be the solution to Eq. (2.1) with initial data u0 ∈ Hs(R), s > 3
2 , and let T be the lifespan of the solution u.

Applying the operator Λs to Eq. (2.2), multiplying by Λsu, and integrating over R, we have

d

dt
‖u‖2

s = −2(uux, u)s + 2
(
u, f (u)

)
s. (2.3)

Here, ‖ · ‖s and (·,·)s denote the norm and the inner product in Hs(R), and

f (u) = −λ∂x
(
1 − ∂2

x

)−1
(

3

2
u2

)
= −3λ

(
1 − ∂2

x

)−1
(uux).

Using Lemma 2.1, we have∣∣(uux, u)s
∣∣ = ∣∣(Λs(uux),Λ

su
)

0

∣∣
= ∣∣([Λs, u

]
ux,Λ

su
)

0 + (
uΛsux,Λ

su
)

0

∣∣
�

∥∥[
Λs, u

]
ux

∥∥
L2

∥∥Λsu
∥∥

L2 + 1

2

∣∣(uxΛ
su,Λsu

)
0

∣∣
�

(
C‖ux‖L∞ + 1

2
‖ux‖L∞

)
‖u‖2

s

� C‖ux‖L∞‖u‖2
s . (2.4)

Similarly,∣∣( f (u), u
)

s

∣∣ = 3|λ|∣∣(Λs(1 − ∂2
x

)−1
(uux),Λ

su
)

0

∣∣
� 3|λ|∣∣(Λs−1(uux),Λ

s−1u
)

0

∣∣
� 3|λ|∣∣([Λs−1, u

]
ux,Λ

s−1u
)

0 + (
uΛs−1ux,Λ

s−1u
)

0

∣∣
� C

(∥∥[
Λs−1, u

]
ux

∥∥
L2

∥∥Λs−1u
∥∥

L2 + 1

2

∣∣(uxΛ
s−1u,Λs−1u

)
0

∣∣)
� C‖ux‖L∞‖u‖2

s . (2.5)
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Here C may denote different positive constant from line to line. Combining (2.3) with (2.4), (2.5), we obtain

d

dt
‖u‖2

s � C M‖u‖2
s .

From Gronwall’s inequality, we have

‖u‖2
s � eC Mt‖u0‖2

s ,

and this completes the proof. �
Now we give the precise blow-up scenario for the problem (2.1).

Theorem 2.3. Assume that u0 ∈ Hs(R), s > 3
2 , λ � 1

6 , then the solution blows up in finite time if and only if the slope of the solution
becomes unbounded from below in finite time.

Proof. By Theorem 2.1 and the density argument, we only need to prove the theorem for s = 3. Let T > 0 be the lifespan
of the solution u with initial data u0 ∈ H3(R). Setting y = u − uxx , we rewrite Eq. (2.1) in the following equivalent form{

yt + uyx + 3ux y = (3 − 3λ)uux, t > 0, x ∈ R,

y(0, x) = u0(x) − u0xx(x), x ∈ R.
(2.6)

Multiplying Eq. (2.6) by y and integrating by parts, we obtain

d

dt

∫
R

y2 dx = −2
∫
R

uyyx dx − 6
∫
R

ux y2 dx + (6 − 6λ)

∫
R

uux y dx

= −5
∫
R

ux y2 dx − (3λ − 3)

∫
R

u3
x dx. (2.7)

On the other hand,

d

dt

∫
R

y2 dx = −5
∫
R

ux y2 dx + (6 − 6λ)

∫
R

ux y2 dx + (6 − 6λ)

∫
R

uxuxx y dx

= (1 − 6λ)

∫
R

ux y2 dx + (3λ − 3)

∫
R

u3
x dx + (6λ − 6)

∫
R

uxu2
xx dx. (2.8)

Assume that ux > −M , M > 0. When λ � 1, from (2.7) we have

d

dt

∫
R

y2 dx � 5M

∫
R

y2 dx + (3λ − 3)M

∫
R

u2
x dx

� 5M

∫
R

y2 dx + (3λ − 3)M

∫
R

y2 dx. (2.9)

Hence, we deduce that∥∥y(t)
∥∥2

L2 � e(3λ+2)Mt‖y0‖2
L2 . (2.10)

When 1
6 � λ < 1, using (2.8), we obtain

d

dt

∫
R

y2 dx � (6λ − 1)M

∫
R

y2 dx + (3 − 3λ)M

∫
R

u2
x dx + (6 − 6λ)M

∫
R

u2
xx dx

� (6λ − 1)M

∫
R

y2 dx + (9 − 9λ)M

∫
R

y2 dx

� (8 − 3λ)M

∫
R

y2 dx. (2.11)

Then we deduce that∥∥y(t)
∥∥2

2 � e(8−3λ)Mt‖y0‖2
2 . (2.12)
L L
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Note that ‖ux‖L∞ � ‖u‖2 � c‖y‖L2 . Combining (2.10), (2.12) with Theorem 2.2, we know that the solution will not blow
up in finite time.

The sufficiency is obvious. Thus, we complete the proof. �
Remark 2.1. Theorem 2.3 covers the corresponding result for the Degasperis–Procesi equation in [21].

3. A priori estimates and blow-up results on the line

In this section, firstly, we shall prove a conservation law for strong solutions to Eq. (2.6). Then we use this conservation
law to deduce the a priori estimate for the L∞-norm of the strong solutions. At last, we provide two blow-up results and
investigate the blow-up rate of the strong solutions.

Lemma 3.1. Assume u0 ∈ Hs(R), s > 3
2 , λ > − 1

3 , and u(t, x) is the corresponding solution to problem (2.1) given by Theorem 2.1, then
we have∫

R

yv dx =
∫
R

y0 v0 dx,

where y(t, x) = u(t, x) − uxx(t, x) and v(t, x) = ((3λ + 1) − ∂2
x )−1u. Furthermore, ‖u(t)‖2

L2 � K‖u0‖2
L2 , where K = max{(3λ + 1),

(3λ + 1)−1}.

Proof. Again, we prove the above theorem for s = 3. By Theorem 2.1 and the density argument, the theorem will
hold for s > 3

2 . Let T > 0, be the lifespan of the strong solution to Eq. (2.1) with initial data u0 ∈ H3(R), such that
u ∈ C([0, T ); H3(R)) ∩ C1([0, T ); H2(R)). By (2.6) we deduce that

d

dt

∫
R

yv dx =
∫
R

yt v dx +
∫
R

yvt dx

= 2
∫
R

yt v dx

= −2
∫
R

yxuv dx − 6
∫
R

ux yv dx + (6 − 6λ)

∫
R

uux v dx

= −2
∫
R

(yu)x v dx − 4
∫
R

ux yv dx + (6 − 6λ)

∫
R

uux v dx. (3.1)

Since y = u − uxx , (3λ + 1)v − ∂2
x v = u, we have

−2
∫
R

(yu)x v dx − 4
∫
R

ux yv dx = 2
∫
R

vxu2 dx − 2
∫
R

vxuuxx dx − 4
∫
R

vuux dx + 4
∫
R

vuxuxx dx

= 2
∫
R

vxu2 dx + 2
∫
R

(vxu)xux dx + 2
∫
R

vxu2 dx − 2
∫
R

vxu2
x dx

= 4
∫
R

vxu2 dx + 2
∫
R

vxxuux dx

= 4
∫
R

vxu2 dx −
∫
R

vxxxu2 dx

= 4
∫
R

vxu2 dx −
∫
R

[
(3λ + 1)vx − ux

]
u2 dx

= −(6 − 6λ)

∫
R

vuux dx. (3.2)

Combining (3.1) with (3.2), we get∫
yv dx =

∫
y0 v0 dx.
R R
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When λ � 0, we have

∥∥u(t)
∥∥2

L2 = ∥∥û(t)
∥∥2

L2 � (3λ + 1)

∫
R

1 + ξ2

(3λ + 1) + ξ2

∣∣û(ξ)
∣∣2

dξ

= (3λ + 1)
(

ŷ(t), v̂(t)
) = (3λ + 1)

(
y(t), v(t)

)
= (3λ + 1)(y0, v0) = (3λ + 1)( ŷ0, v̂0)

� (3λ + 1)

∫
R

1 + ξ2

3λ + 1 + ξ2

∣∣û0(ξ)
∣∣2

dξ

� (3λ + 1)‖û0‖2
L2

= (3λ + 1)‖u0‖2
L2 . (3.3)

Similarly, when − 1
3 < λ < 0, we obtain

∥∥u(t)
∥∥2

L2 = ∥∥û(t)
∥∥2

L2 �
∫
R

1 + ξ2

(3λ + 1) + ξ2

∣∣û(ξ)
∣∣2

dξ � (3λ + 1)−1‖u0‖2
L2 . (3.4)

This completes the proof of the lemma. �
Remark 3.1. When λ = 1, we have the corresponding result for the Degasperis–Procesi equation, see Lemma 3.1 in [12].

Remark 3.2. The lower bound − 1
3 for the parameter is natural. Since for λ � − 1

3 , the value 3λ + 1 belongs to the spectrum
of the operator ∂2

x .

Before we establish the blow-up results for Eq. (2.1), we recall a lemma which will be used later. Consider the following
differential equation{

qt = u(t,q), t ∈ [0, T ),

q(0, x) = x, x ∈ R.
(3.5)

One can obtain the following lemma.

Lemma 3.2. Let u0 ∈ Hs(R), s � 3 and T > 0 be the lifespan of the corresponding solution u to Eq. (2.1). Then problem (3.5) has a
unique solution q ∈ C1([0, T ) × R,R). Moreover, the map q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

( t∫
0

ux
(
s,q(s, x)

)
ds

)
> 0,

for (t, x) ∈ [0, T ) × R.

Using Lemmas 3.1, 3.2, we now estimate the L∞-norm of the strong solutions to Eq. (2.1).

Lemma 3.3. Assume u0 ∈ Hs(R), s > 3
2 , and λ > − 1

3 . Let T > 0 be the lifespan of the corresponding strong solution u to Eq. (2.1)
given by Theorem 2.1. Then we have∥∥u(t, x)

∥∥
L∞ � 3K |λ|

4

∥∥u0(x)
∥∥2

L2t + ∥∥u0(x)
∥∥

L∞ , ∀t ∈ [0, T ],
where K = max{(3λ + 1), (3λ + 1)−1}.

Proof. Again, we only need to prove the above theorem for s = 3. Let T > 0, be the lifespan of the strong solution to
Eq. (2.1) (or (2.2)) with initial data u0 ∈ H3(R). We have

−3λG ∗ (uux) = −3λ

2

∫
R

e−|x−y|uu y dy

= 3λ

4

x∫
e−|x−y|u2 dy − 3λ

4

∞∫
e−|x−y|u2 dy. (3.6)
−∞ x
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By (3.5), we obtain

d

dt
u
(
t,q(t, x)

) = ut
(
t,q(t, x)

) + ux
(
t,q(t, x)

)
qt(t, x) = (ut + uux)

(
t,q(t, x)

)
. (3.7)

Combining (3.6), (3.7) with Eq. (2.2), we have∣∣∣∣ d

dt
u
(
t,q(t, x)

)∣∣∣∣ � 3|λ|
4

∫
R

e−|x−y|u2 dy � 3|λ|
4

‖u‖2
L2 � 3K |λ|

4
‖u0‖2

L2 . (3.8)

Thus ∣∣u(
t,q(t, x)

)∣∣ �
∥∥u

(
t,q(t, x)

)∥∥
L∞ � 3K |λ|

4
‖u0‖2

L2t + ‖u0‖L∞ .

Since ux(t, y) is uniformly bounded for (t, y) ∈ [0, t] × R with t ∈ [0, T ), from Lemma 3.2 we have for every t ∈ [0, T ) a
constant c(t) > 0 such that

e−c(t) � qx(t, x) � ec(t), x ∈ R.

We then deduce that q(t, ·) is strictly increasing on R with limx→±∞ q(t, x) = ±∞ as long as t ∈ [0, T ).
Thus,

∥∥u(t, x)
∥∥

L∞ = ∥∥u
(
t,q(t, x)

)∥∥
L∞ � 3K |λ|

4
‖u0‖2

L2t + ‖u0‖L∞ . (3.9)

This completes the proof of the lemma. �
Remark 3.3. Theorems 2.2, 2.3 and Lemma 3.3 ensure that, when λ > − 1

3 , the first blow-up of a strong solution to Eq. (2.1)
must occur as wave breaking, i.e., the slope of the solution becomes unbounded in finite time whereas its amplitude remains
bounded in finite time. This is the same as the Degasperis–Procesi equation.

Now we are in the position to provide our blow-up results.

Theorem 3.1. Assume that u0 ∈ Hs(R), s > 3
2 , is odd. Then

(i) when λ > 0, u′(0) � 0, the corresponding solution to problem (2.1) blows up, and the lifespan of the solution is strictly less than
− 1

u′(0)
;

(ii) when − 1
3 < λ � 0, if u′(0) < −

√
−3λ

6λ+2 ‖u0‖L2 , the corresponding solution to problem (2.1) blows up, and the lifespan of the

solution is strictly less than 1

2
√

−3λ
6λ+2 ‖u0‖L2

ln
u′(0)−

√
−3λ

6λ+2 ‖u0‖L2

u′(0)+
√

−3λ
6λ+2 ‖u0‖L2

.

Proof. Similarly, we only prove theorem above for s = 3. Since u0 is odd, u(t, x) is odd for any t ∈ [0, T ). Hence,

u(t,0) = uxx(t,0) = 0.

From (2.2) we have

utx = −u2
x − uuxx + 3λ

2
u2 − λG ∗

(
3

2
u2

)
.

Let f (t) = ux(t,0) for t ∈ [0, T ). We obtain

f ′(t) = − f (t)2 − λG ∗
(

3

2
u2

)
(t,0).

If λ > 0, since G ∗ ( 3
2 u2) > 0, we get

f ′(t) < − f (t)2,

and then

0 >
1

f (t)
� 1

f (0)
+ t.

So, we obtain T < − 1 .
f (0)
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If λ = 0, we have

f ′(t) = − f (t)2,

and then

0 >
1

f (t)
= 1

f (0)
+ t.

Thus, we have T < − 1
f (0)

.

If − 1
3 < λ < 0, we obtain

f ′(t) = − f (t)2 − λG ∗
(

3

2
u2

)
(t,0) � − f (t)2 − λ

3

2

∥∥u(t)
∥∥2

L2 .

From (3.4), we deduce that

f ′(t) � − f (t)2 − 3λ

6λ + 2
‖u0‖2

L2

=
(√ −3λ

6λ + 2
‖u0‖L2 − f (t)

)(√ −3λ

6λ + 2
‖u0‖L2 + f (t)

)
. (3.10)

Since f (0) < −
√

−3λ
6λ+2 ‖u0‖L2 , we know f ′(0) < 0. From the continuity of f (t), we have

f (t) < −
√ −3λ

6λ + 2
‖u0‖L2 , t ∈ [0, T ). (3.11)

From (3.10), we get

f ′(t)

(

√
−3λ

6λ+2‖u0‖L2 − f (t))2
�

√
−3λ

6λ+2‖u0‖L2 + f (t)√
−3λ

6λ+2‖u0‖L2 − f (t)
.

That is

1

2
√

−3λ
6λ+2‖u0‖L2

(√
−3λ

6λ+2‖u0‖L2 + f (t)√
−3λ

6λ+2‖u0‖L2 − f (t)

)′
�

√
−3λ

6λ+2‖u0‖L2 + f (t)√
−3λ

6λ+2‖u0‖L2 − f (t)
. (3.12)

Combining (3.11) with (3.12), we obtain

0 >
f (t) +

√
−3λ

6λ+2‖u0‖L2

f (t) −
√

−3λ
6λ+2‖u0‖L2

− 1 �
f (0) +

√
−3λ

6λ+2‖u0‖L2

f (0) −
√

−3λ
6λ+2‖u0‖L2

e
2
√

−3λ
6λ+2 ‖u0‖L2 t − 1. (3.13)

Since

0 <
f (0) +

√
−3λ

6λ+2‖u0‖L2

f (0) −
√

−3λ
6λ+2‖u0‖L2

< 1,

we have

t � T = 1

2
√

−3λ
6λ+2‖u0‖L2

ln
f (0) −

√
−3λ

6λ+2‖u0‖L2

f (0) +
√

−3λ
6λ+2‖u0‖L2

,

and limt↗T f (t) = −∞. This completes the proof. �
We now present the second blow-up result.

Theorem 3.2. Let δ > 0 and u0 ∈ Hs(R), s > 3
2 . Then

(i) when λ = 0, if there exists x0 ∈ R such that u′(x0) < 0, the corresponding solution to (2.1) blows up in finite time and the lifespan
of the solution is strictly less than − 1′ ;
u (x0)
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(ii) when − 1
3 < λ < 0, if there exists x0 ∈ R such that u′(x0) < −

√
−3λ

6λ+2 ‖u0‖L2 , the corresponding solution to (2.1) blows up in finite

time and the lifespan of the solution is strictly less than 1

2
√

−3λ
6λ+2 ‖u0‖L2

ln
u′(x0)−

√
−3λ

6λ+2 ‖u0‖L2

u′(x0)+
√

−3λ
6λ+2 ‖u0‖L2

;

(iii) when λ > 0, if there exists x0 ∈ R such that

u′(x0) < −
√

6λ(1 + δ)

4

((
‖u0‖2

L∞ +
√

6λ

2
(3λ + 1) ln

(
1 + 2

δ

)
‖u0‖2

L2

) 1
2

+ ‖u0‖L∞
)

,

the corresponding solution blows up in finite time and the lifespan of the solution is strictly less than T0 =
2(‖u0‖2

L∞+
√

6λ
2 (3λ+1) ln(1+ 2

δ
)‖u0‖2

L2 )
1
2 −2‖u0‖L∞

3λ(3λ+1)‖u0‖2
L2

.

Proof. Again, we only need to prove the theorem for s = 3. As in the proof of Theorem 3.1, let T be the lifespan of the
solution corresponding to the initial data u0 ∈ H3(R). From (2.2), we obtain

utx = −u2
x − uuxx + 3λ

2
u2 − λG ∗

(
3

2
u2

)
.

As we know

dux(t,q(t, x))

dt
= uxt

(
t,q(t, x)

) + uxx
(
t,q(t, x)

)
qt(t, x) = (uxt + uuxx)

(
t,q(t, x)

)
.

When λ = 0, the proof is trivial. So we only consider the assertions (ii) and (iii).
When − 1

3 < λ < 0, we have

dux(t,q(t, x))

dt
= −u2

x

(
t,q(t, x)

) + 3λ

2
u2(t,q(t, x)

) − λG ∗
(

3

2
u2(t,q(t, x)

))

� −u2
x

(
t,q(t, x)

) − λG ∗
(

3

2
u2(t,q(t, x)

))

� −u2
x

(
t,q(t, x)

) − 3λ

2
‖u‖2

L2

� −u2
x

(
t,q(t, x)

) − 3λ

2(3λ + 1)
‖u0‖2

L2 . (3.14)

Let f (t) = ux(t,q(t, x)), then f (0) = ux(0, x0) = u′(x0). From (3.14), we have

f ′(t) � − f (t)2 − 3λ

2(3λ + 1)
‖u0‖2

L2 .

Similar to Theorem 3.1, we can prove the assertion (ii) and we omit the details for concision.
When λ > 0, we have

dux(t,q(t, x))

dt
� −u2

x

(
t,q(t, x)

) + 3λ

2
u2(t,q(t, x)

)
� −u2

x

(
t,q(t, x)

) + 3λ

2

[
3λ(3λ + 1)

4
‖u0‖2

L2t + ‖u0‖L∞
]2

. (3.15)

Our aim next is to find a T0 such that, under the assumptions of the theorem, by solving inequality

dux(t,q(t, x))

dt
� −u2

x

(
t,q(t, x)

) + 3λ

2

[
3λ(3λ + 1)

4
‖u0‖2

L2 T0 + ‖u0‖L∞
]2

,

we can get t < T0.
Let

T0 = 2(‖u0‖2
L∞ +

√
6λ
2 (3λ + 1) ln(1 + 2

δ
)‖u0‖2

L2)
1
2 − 2‖u0‖L∞

3λ(3λ + 1)‖u0‖2
L2

,

C(T0) =
√

6λ
(

3λ(3λ + 1)‖u0‖2
L2 T0 + ‖u0‖L∞

)
.

2 4
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Setting u′(t,q(t, x)) = g(t), then u′(x0) = g(0). By the assumptions of the theorem, we have

g(0) < −(1 + δ)C(T0),

and

0 <
g(0) − C(T0)

g(0) + C(T0)
= 1 − 2C(T0)

g(0) + C(T0)
� 1 + 2

δ
. (3.16)

It is not difficult to verify that

1

2C(T0)
ln

(
1 + 2

δ

)
� T0. (3.17)

Combining (3.16), (3.17), we have

1

2C(T0)
ln

g(0) − C(T0)

g(0) + C(T0)
� 1

2C(T0)
ln

(
1 + 2

δ

)
� T0. (3.18)

Thus, we deduce by (3.15) that

g′(t) � g(t)2 + C2(T0), t ∈ [0, T0] ∩ [0, T ). (3.19)

By (3.18) and the assumptions of the theorem, we obtain

g(t) < −C(T0), t ∈ [0, T0] ∩ [0, T ).

Arguments similar to those in the second part of Theorem 3.1 help us obtain

0 < T <
1

2C(T0)
ln

g(0) − C(T0)

g(0) + C(T0)
< T0,

and limt↗T g(t) = −∞. The proof is completed. �
Remark 3.4. In Theorem 3.2, for given λ > 0, when δ → +∞, the lifespan of the solution will tend to zero. This means that
the steeper the slope at some point is, the quicker the solution blows up. On the other hand, for fixed δ > 0, when λ > 0,
λ → +∞, the lifespan T tends to zero too. This is due to the fact that the lager λ is, the larger the coefficient increases in
the steepening term (3λ + 1)uux in (1.5), and the livelier steepening it produces.

Remark 3.5. Note that singularities formed in Theorems 3.1, 3.2 are in the form of wave breaking. When λ → 1, the two
theorems recover the blow-up results for the Degasperis–Procesi equation. Hence, by introducing a stress multiplier, we
obtain a family of equations which accommodate the same wave-breaking mechanism as the Degasperis–Procesi equation.

Theorem 3.3. Let λ > − 1
3 , and T < ∞ be the blow-up time of the corresponding solution to problem (2.1) with initial data u0 ∈ Hs(R),

s > 3
2 . Then we have

lim
t→T

(
inf
x∈R

{
ux(t, x)

}
(T − t)

)
= −1,

while the solution remains bounded.

The proof of this theorem is similar to that of Theorem 3.1 in [12], so we will not provide it.

Remark 3.6. Note that the blow-up rate of breaking waves to Eq. (2.1) is −1 for any λ > − 1
3 . For λ = 1, it is the corre-

sponding result for the Degasperis–Procesi equation, see Theorem 3.1 in [12]. Thus λ does not affect the blow-up rate of the
solutions.

4. Blow-up phenomena in the periodic case

In this section, we will consider the following periodic Burgers-like equation⎧⎪⎪⎨
⎪⎪⎩

ut + uux = −λ∂xG ∗
(

3

2
u2

)
, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(4.1)
u(t, x) = u(t, x + 1), t � 0, x ∈ R,
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where G(x) = cosh(x−[x]−1/2)
2 sinh(1/2)

, [x] stands for the integer part of x ∈ R, and (1 − ∂2
x )−1 f = G ∗ f for f ∈ L2(S),S = R/Z. Note

that Eq. (4.1) is equivalent to the following equation⎧⎪⎨
⎪⎩

ut + uux = −λ∂x
(
1 − ∂2

x

)−1
(

3

2
u2

)
, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x) = u(t, x + 1), t � 0, x ∈ R.

(4.2)

Setting y = u − uxx , we have⎧⎨
⎩

yt + uyx + 3ux y = (3 − 3λ)uux, t > 0, x ∈ R,

y(0, x) = u0(x) − u0xx(x), x ∈ R,

y(t, x) = y(t, x + 1), x ∈ R, t � 0.

(4.3)

We first provide the local well-posedness and the blow-up scenario of strong solutions. Then we establish the blow-up
results. Since the proof of these results is essentially similar to that we presented in the last section, we omit the details.

Lemma 4.1. Let u0 ∈ Hs(S), s > 3
2 . There exists a maximum T = T (λ, u0) > 0, and a unique solution u to Eq. (4.1), which depends

continuously on initial data u0 such that

u = u(·, u0) ∈ C
([0, T ); Hs(S)

) ∩ C1([0, T ); Hs−1(S)
)
.

Moreover, T is independent of s in the sense similar to Theorem 2.1.

The proof is similar to that of Theorem 3.1 above, or Theorem 2.1 in [22].

Lemma 4.2. Let u0 ∈ Hs(S), s > 3
2 , and T be the lifespan of the corresponding solution with initial data u0 . If there exists M > 0, such

that ‖ux(t, x)‖L∞(S) � M, t ∈ [0, T ), then the Hs(S)-norm of u(t, ·) does not blow up on [0, T ).

The proof is similar to that of Theorem 2.2.

Lemma 4.3. Assume that u0 ∈ Hs(S), s > 3
2 , λ � 1

6 , then the solution blows up if and only if the slope of the solution becomes
unbounded from below in finite time.

The proof is similar to that of Theorem 2.3.

Lemma 4.4. Assume that u0 ∈ Hs(S), s > 3
2 , λ > − 1

3 . Let T be the lifespan of the corresponding strong solution u to Eq. (2.1) guaran-
teed by Theorem 2.1. Then we have∫

S

yv dx =
∫
S

y0 v0 dx,

where y(t, x) = u(t, x) − uxx(t, x) and v(t, x) = ((3λ + 1) − ∂2
x )−1u.

Besides,∥∥u(t)
∥∥2

L2 � K‖u0‖2
L2 ,∥∥u(t, x)

∥∥
L∞ � 3cK |λ|

4
‖u0‖2

L2t + ‖u0‖L∞ , ∀t ∈ [0, T ],
where K = max{(3λ + 1), (3λ + 1)−1}, c = coth( 1

2 ) = cosh(1/2)
sinh(1/2)

.

Combining Lemmas 3.1, 3.3 in last section and Lemmas 3.1, 3.2 in [13], we can prove this lemma. In the following, for
convenience, we use c to denote coth( 1

2 ).
Our first blow-up result is as follows.

Theorem 4.1. Assume u0 ∈ Hs(S), s > 3
2 , and let δ > 0. Then

(i) when λ = 0, if there exists x0 ∈ S such that u′(x0) < 0, the corresponding solution to (4.1) blows up in finite time and the lifespan
of the solution is strictly less than − 1

u′(x0)
;

(ii) when − 1
3 < λ < 0, if there exists x0 ∈ S such that u′(x0) < −

√
−3λc
6λ+2 ‖u0‖L2 , the corresponding solution to (4.1) blows up in finite

time and the lifespan of the solution is strictly less than 1

2
√

−3λc ‖u0‖ 2

ln
u′(x0)−

√
−3λc
6λ+2 ‖u0‖L2

u′(x0)+
√

−3λc ‖u0‖ 2

;

6λ+2 L 6λ+2 L
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(iii) when λ > 0, if there exists x0 ∈ S, such that

u′(x0) < −
√

6(1 + δ)

4

((
‖u0‖2

L∞ +
√

6λ

2
c(3λ + 1) ln

(
1 + 2

δ

)
‖u0‖2

L2

) 1
2

+ ‖u0‖L∞
)

,

the corresponding solution to (4.1) blows up in finite time and the lifespan of the solution is strictly less than T0 =
2(‖u0‖2

L∞ +
√

6λ
2 c(3λ+1) ln(1+ 2

δ
)‖u0‖2

L2 )
1
2 −‖u0‖L∞

3cλ(3λ+1)‖u0‖2
L2

.

The proof is similar to that of Theorem 3.2, and we will not provide it again.
Following this theorem we have corollaries as follows.

Corollary 4.1. Assume u0 ∈ Hs(S), s > 3
2 , is even and not a constant. Then for sufficiently large n, the corresponding solution to (4.1)

with initial data v0(x) = u0(nx) blows up in finite time when λ > − 1
3 .

Corollary 4.2. Assume u0 ∈ Hs(S), s > 3
2 , is not a constant. If∣∣∣min

x∈S

u′
0(x)

∣∣∣ >

∣∣∣max
x∈S

u′
0(x)

∣∣∣,
then for sufficiently large n, the corresponding solution to (4.1) with initial data v0(x) = u0(nx) blows up in finite time when λ > − 1

3 .

The above two corollaries are similar to those for the Degasperis–Procesi equation, see [13].

Theorem 4.2. Assume u0 ∈ Hs(S), s > 3
2 . Then

(i) when − 1
3 < λ < 0, if

∫
S

u3
0x dx < −( −9λc

12λ+4 ‖u0‖2
L2 )

3/2 , the corresponding solution to (4.1) blows up in finite time;

(ii) when λ = 0, if
∫

S
u3

0x dx < 0, the corresponding solution to (4.1) blows up in finite time;

(iii) when 0 < λ < 16
9 , if u0 is not a constant and the corresponding solution to (4.1) has a zero for any t > 0, the solution to (4.1)

blows up in finite time.

Proof. As before, we prove the theorem for the case s = 3. Let u(t, x) be the strong solution with initial data u0 ∈ H3(S),
and T be its lifespan. By (4.1) we have

d

dt

∫
S

u3
x dx = 3

∫
S

u2
x utx dx = 3

∫
S

u2
x

(
−u2

x − uuxx + 3λ

2
u2 − G ∗

(
3λ

2
u2

))
dx

= −3
∫
S

u4
x dx − 3

∫
S

uu2
x uxx dx + 9λ

2

∫
S

u2
x u2 dx − 9λ

2

∫
S

u2
x G ∗ u2 dx

= −2
∫
S

u4
x dx + 9λ

2

∫
S

u2
x u2 dx − 9λ

2

∫
S

u2
x G ∗ u2 dx. (4.4)

For λ = 0, we have

d

dt

∫
S

u3
x dx = −2

∫
S

u4
x dx � −2

(∫
S

u3
x dx

) 4
3

. (4.5)

Setting g(t) = ∫
S

u3
x dx, then g(0) = ∫

S
u3

0x dx. By assumptions of the theorem, we obtain by solving (4.5) that

0 >
1

g(t)
�

(
2

3
t + 1

g(0)1/3

)3

.

Hence, we have proved the assertion (i).
When − 1

3 < λ < 0, from (4.4) we obtain

d

dt

∫
S

u3
x dx � −2

∫
S

u4
x dx − 9λc

2

∫
S

u2
x dx

∫
S

u2 dx

� 2

(∫
u3

x dx

) 4
3

− 9λc

2(3λ + 1)
‖u0‖2

L2

∫
u2

x dx. (4.6)
S S
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Setting g(t) = ∫
S

u3
x dx, − 9λc

2(3λ+1)
‖u0‖2

L2 = M , by Hölder inequality and (4.6) we deduce that

g′(t) � −2g(t)4/3 + Mg(t)2/3. (4.7)

Thus,

3
d

dt

(
g(t)1/3) � −2g(t)2/3 + M. (4.8)

By assumption of the theorem, (g(0))1/3 = (
∫

S
u3

0x dx)1/3 < −
√

M
2 . By the same arguments as we used in Theorem 3.1, we

prove the assertion (ii).
When 0 < λ < 16

9 , the proof is the same as that of Theorem 3.8 in [13] (or Theorem 4.1 in [3]). We omit the details. �
Remark 4.1. Note that assertions (i), (ii) imply that the strong solution to (4.1) with initial data u0 may blow up even
y0 = u0 − u0xx does not change sign. (We only need

∫
S

u3
0x dx to be small enough.) This is different from the Degasperis–

Procesi equation.

Remark 4.2. When 0 < λ < 16
9 , assertion (iii) is parallel to that of the Degasperis–Procesi equation, see [13].

By Theorem 4.2, we have the following corollaries.

Corollary 4.3. Assume u0 ∈ H3(S), is not a constant and
∫

S
u3

0 dx = 0. Then when 16
9 > λ > 0, the corresponding solution to (4.1)

blows up.

Corollary 4.4. Assume u0 ∈ H3(S), is not a constant and u0 is odd. Then when 16
9 > λ > 0, the corresponding solution to (4.1) blows

up.

Corollary 4.5. Assume u0 ∈ H3(S), is not a constant and
∫

S
u0 dx = 0 or

∫
S

y0 dx = 0. Then when 16
9 > λ > 0, the corresponding

solution to (4.1) blows up.

For the blow-up rate, we have the following theorem.

Theorem 4.3. Let T > 0 be the blow-up time of the corresponding solution u to problem (4.1) with initial data u0 ∈ Hs(S), s > 3
2 .

Then we have

lim
t→T

(
min
x∈S

{
ux(t, x)

}
(T − t)

)
= −1,

while the solution remains bounded.
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