Theorem B of Hall–Higman Revisited

WOLFGANG KNAPP AND PETER SCHMID

Mathematisches Institut der Universität Tübingen,
D-7400 Tübingen 1, Auf der Morgenstelle 10, Germany

Communicated by W. Feit
Received January 30, 1981

Applying Green’s theory of vertices and sources, Thompson [5] described an elegant approach to the celebrated Theorem B of Hall and Higman [2]. We extend and complete here Thompson’s work from the point of block theory. Our discussion will show, at least, that the crucial quantity appearing in Theorem B is nothing but the defect of some block involved.¹

THEOREM B. Let G be a finite p-solvable group with a cyclic Sylow p-subgroup \(P = \langle x \rangle \) of order \(p^n \) and with \(O_p(G) = 1 \). Suppose G has a block B of defect \(a \), say, containing a faithful \(kG \)-module V over some field \(k \) of characteristic \(p \). Then the degree of the minimal polynomial of \(x \) on \(V \) either is \(d = p^n \) or \(d = p^{n-a}(p^a - 1) \). The latter happens only if the following holds:

(a) In case \(p = 2 \) the integer \(q = 2^n - 1 \) is a Mersenne prime, and the commutator group \([O_2(G), x^{2^n-1}] \) is a nonabelian special \(q \)-group (which is normal in G).

(b) If \(p \) is odd, either \(B \) is of defect \(a = 1 \) or \(p = 3 \) and \(a = 2 \). Moreover, \(p \) is a Fermat prime and \([O_p(G), x^{p^n-1}] \) is a nonabelian special 2-group of order larger than \((p^a - 1)^2 \).

Of course, this applies to the original situation of Theorem B: Suppose that \(G_0 \) is \(p \)-solvable with \(O_p(G_0) = 1 \) and that \(V_0 \) is a faithful \(kG_0 \)-module. Let \(x \) be an element in \(G_0 \) of order \(p^n \) and let \(d_0 \) be the degree of the minimal polynomial of \(x \) acting on \(V_0 \). Assume \(d_0 \neq p^n \). Set \(H = O_p(G_0) \) and \(G = \langle x \rangle H \). There exists an indecomposable summand \(V \) of the restriction \((V_0)_G \) with \(H/C_H(V) \) being not centralized by \(x^{p^n-1} \). Then \(O_p(G/C_H(V)) = 1 \) and \(V \) is a faithful module for \(G/C_H(V) \). If \(a \) denotes the defect of the block of \(G \) containing \(V \), then \(p^{n-a}(p^a - 1) \) is the degree of the minimal polynomial of \(x \) on \(V \) and so \(d_0 \geq p^{n-a}(p^a - 1) \).

¹ This has been recognized also by W. Feit.

0021-8693/81/120376–10$02.00/0
Copyright © 1981 by Academic Press, Inc.
All rights of reproduction in any form reserved.
Actually there may be various such summands of \((V_\alpha)_{\alpha}\) belonging to blocks with distinct defects \(a_i\), notably when \(p = 2\). Then \([H, x^{p^a - 1}]\) is a direct product of nonabelian special \(q_i\)-groups where \(q_i = 2^{a_i} - 1\) varies over the resulting Mersenne primes; when \(p\) is odd, \([H, x^{p^a - 1}]\) is a nonabelian special 2-group. (Use that \(V_\alpha\) is faithful and argue as in (2) and (3) of the proof of the proposition below.) Note that this commutator group is in the Fitting subgroup of \(G_0\).

We emphasize that Theorem B imposes strong conditions on the defect \(a\) in case \(d \neq p^a\). Clearly \(d = p^a\) if and only if \(V_\alpha\) is projective-free, i.e., \(V_\alpha\) has no projective summand \(\neq 0\). We shall prove that then \(V_\alpha\) is homogeneous; every indecomposable summand \((\neq 0)\) of \(V_\alpha\) is of the same dimension \(d = p^a - a(p^a - 1)\).

Any of the specified situations can be realized. We outline this for the exceptional case under (b): Let \(Q\) be the central product of three quaternion groups of order 8. The group of outer automorphisms of \(Q\) is isomorphic to \(O^{-}(6,2)\). We deduce that \(Q\) has an automorphism of order 9. Let \(n \geq 2\) and let \(H = Q_1 \times \cdots \times Q_{3^n-2}\) with \(Q_i \cong Q\). Then \(H\) admits an automorphism \(x\) of order \(3^n\) permuting the direct factors \(Q_i\) transitively. Let \(G = \langle x \rangle H\) be the semidirect product. Let \(W\) be the unique (up to isomorphism) irreducible \(kH\)-module with \(C_k(W) = Q_1 \times \cdots \times Q_{3^n-2}, k \cong \mathbb{F}_q\) being a field of characteristic \(p = 3\) (dim \(W = 8\)). There exists an (irreducible) \(k(\langle x^{3^n-2} \rangle H)\)-module \(U\) with \(U_H = W\), and the induced module \(V = U^G\) is a faithful irreducible \(kG\)-module in a 3-block with defect \(a = 2\).

For the proof of Theorem B to the usual Hall-Higman reduction does not work. The principal objective will be to produce a suitable normal \(q\)-subgroup. In an earlier version of the paper we even needed the Feit-Thompson theorem on solvability of groups of odd order to handle the case \(p = 2\). However, it is possible to avoid this deep result.

1. Preliminaries

For convenience we collect some known lemmas. First an elementary fact concerning Mersenne and Fermat primes; a proof can be found in Suzuki [4].

Lemmas 1. Let \(a \geq 1\) be an integer.

(a) If \(2^a - 1\) is a (positive) power of some prime \(q\), then \(2^a - 1 = q\).

(b) If \(p\) is an odd prime such that \(p^a - 1\) is a power of 2, then either \(a = 1\) or \(p = 3\) and \(a = 2\).

For the remainder of this section we fix an algebraically closed field \(k\) of characteristic \(p > 0\) and a finite group \(G\).
LEMMA 2. Let $k_1 \subseteq k_2$ be subfields of k and let b_1, b_2 be block idempotents of $k_1 G$ and $k_2 G$, respectively. If $b_1 b_2 = b_2$, then b_1 and b_2 have the same defect groups.

This follows directly from definition of defect groups. Use that taking relative traces in group algebras is compatible with scalar extensions.

LEMMA 3. Let H be a normal subgroup of G such that G/H is a p-group.

(a) If V is an irreducible kG-module, V_H is the direct sum of pairwise non-isomorphic irreducible kH-modules, i.e., the ramification index of V with respect to H is 1.

(b) If W is an irreducible kH-module which is invariant in G (under conjugation), there is a unique (up to isomorphism) kG-module V such that $V_H \cong W$.

Assertion (a) follows by inducing up to G the projective cover of any irreducible summand of V_H and applying Green's theorem [1] and Frobenius reciprocity. Of course, V_H is completely reducible (Clifford). As for (b), let V be any irreducible submodule of the induced module W^G and use (a). Uniqueness follows since now every composition factor of $W^G \cong V \otimes k[G/H]$ is isomorphic to V. (If G/H is cyclic, W^G is also uniserial.)

LEMMA 4. Suppose G has a normal p-complement, say H. Let B be a p-block of G with defect group D. Then

(i) B contains a unique irreducible kG-module V;
(ii) $V \cong U^G$ for some irreducible $k\langle DH\rangle$-module U;
(iii) $W = U_H$ is irreducible and DH is the inertial group of W in G.

Choose an irreducible kG-module $V \in B$ and let W be an irreducible constituent of V_H. Let I be the inertial group of W. By Lemma 3 there is a unique (irreducible) kI-module U with $U_H \cong W$. Clifford's theorem yields that $V \cong U^G$. Now every composition factor of $W^G = (W^I)^G$ is isomorphic to V, and W^G is projective as H is a p'-group (and indecomposable by Green's theorem; if I/H is cyclic, W^G is also uniserial). This gives (i). We deduce that D is a vertex of V. It remains to show that any Sylow p-subgroup \bar{D} of I is a vertex of V too.

It is evident that $V \cong U^G$ is relatively \bar{D}-projective. Furthermore, as $\dim U = \dim W$ is a p'-number, $|G:I|$ is the largest power of p dividing $\dim V$. Hence the result.
2. The Special Case

We refine Thompson’s [5] arguments. As before k denotes an algebraically closed field of characteristic $p > 0$.

Proposition. Let $G = PH$ where $P = \langle x \rangle$ is a cyclic p-group of order $p^n > 1$ and $H \neq 1$ is a normal q-subgroup of G for some prime $q \neq p$. Assume the commutator group $[H, P_0] = H$, where $P_0 = \langle x^{p^n - 1} \rangle$ is the subgroup of order p in P. Suppose that V is a faithful indecomposable kG-module belonging to a block with defect a. If V_p is projective-free, then

(i) $p^a - 1$ is a power of q;
(ii) H is a nonabelian special q-group of order $|H| > (p^a - 1)^2$;
(iii) V is irreducible with $\dim V = p^n - a(p^a - 1)$, and V_p is indecomposable.

In particular, $p^a - a(p^a - 1)$ is the degree of the minimal polynomial of x acting on V.

Proof. Let $D \subseteq P$ be a defect group of the block containing V. We have $P_0 \subseteq D$ as V is not projective. Note that DH is a normal subgroup of G and that V is relatively D-projective. By Green’s theorem [1] there exists an indecomposable $k[DH]$-module U such that $V \cong U^G$. Let \bar{U} be an irreducible submodule of U. By Lemma 4 all composition factors of U are isomorphic to \bar{U} (a block with defect 0, i.e., U is even uniserial). We also know that \bar{U}_H is an irreducible constituent of V_H and that \bar{U}_H^G is the unique irreducible constituent of V. For the sake of clarity we break the proof into several steps.

1. P_0 acts fixed-point-freely on H/H':

 Since H is a p'-group, we have
 $$H/H' = [H/H', P_0] \times C_{H/H'}(P_0).$$

 Apply the hypothesis $[H, P_0] = H$.

2. P_0 centralizes every P-invariant abelian subgroup of H:

 Suppose A is a P-invariant abelian subgroup of H which is not centralized by P_0. Replacing A by $[A, P_0]$ we may assume that $[A, P_0] = A \neq 1$. Since V is faithful, there exists an irreducible constituent W of V_{pA} on which A acts nontrivially. It follows that $PA/C_A(W)$ is a Frobenius group. From Lemma 4 we infer that W belongs to a block of defect 0, i.e., W is projective. This is impossible as V_p is projective-free by hypothesis.

3. H is a nonabelian special q-group:

 This follows from (2) and the hypothesis $[H, P_0] = H \neq 1$ by a result of Thompson (cf. [3, Satz III.13.6]).
(4) \(Q = H/C_H(U) \) is extra-special and \(D \) centralizes \(Q' \):

Since \(V \) is faithful and \(H \) is a \(p' \)-group, \(C = C_H(U) = C_H(\bar{U}) \) is a proper \(D \)-invariant normal subgroup of \(H \). From \([H, P_0] = H\) it follows that \(P_0 \) does not centralize \(Q = H/C \). Consequently \(O_p(DH/C) = 1 \) and \(\bar{U} \) is a faithful and irreducible \(k[DH/C] \)-module. Since \(\bar{U}_Q \) is irreducible, application of Schur's lemma gives that \(Z(Q) \) is a cyclic central subgroup of \(DH/C \). As \(P_0 \subset D \) acts fixed-point-freely on \(Q/Q' \cong H/CH' \) by (1), \(Q \) cannot be abelian. The assertion follows.

(5) Let \(|Q| = q^{2m+1} \). Then \(\dim \bar{U} = q^m \):

Noting that \(\bar{U}_q \) is irreducible and faithful, this follows from the ordinary character theory of extra-special \(q \)-groups.

(6) \(U_D \) is indecomposable:

From \(V \cong U^G \) (and the structure of \(G \)) we deduce that

\[
V_p \cong (U_D)^p.
\]

In particular, \(U_D \) is projective-free as \(V_p \) is projective-free. In view of (1) \(DH/CH' \) (\(C = C_H(U) \)) is a Frobenius group. Hence Mackey decomposition yields that \(\bar{U} \) remains indecomposable when restricted to \(D(CH') \).

(Use that \(U \) is relatively \(DH' \)-projective.) Since by (4) \(D(CH')/C = Q' \times DC/C \), we can conclude that even \(U_D \) is indecomposable.

(7) \(U = \bar{U} \) is irreducible and \(\dim U = p^a - 1 \):

\(D \) acts on the \(\mathbb{F}_q \)-vector space \(Q/Q' \) preserving the obvious symplectic (commutator) form. By Maschke \(Q/Q' \) is a completely reducible \(\mathbb{F}_q D \)-module. As \(P_0 \subset D \) acts fixed-point-freely on \(Q/Q' \), every irreducible \(\mathbb{F}_q D \)-submodule is faithful of the same dimension. From (5) and (6) it follows that \(q^m < p^a = |D| \). We can conclude that \(D \) acts irreducibly on \(Q/Q' \) and that \(p^a \) divides \(q^m + 1 \). Hence the result.

(8) Conclusion:

Because of Lemma 4, \(V \cong U^G \) is irreducible as well and has the stated dimension. By (6) \(V_p \cong (U_D)^p \) is indecomposable. This implies that \(\dim V \) is the degree of the minimal polynomial of \(x \) on \(V \), completing the proof.

3. The General Case

Theorem \(B' \) is an immediate consequence of Lemma 1 and the following result.

Theorem. Assume the hypotheses of Theorem \(B' \). Suppose \(V_p \) is
THEOREM B OF HALL AND HIGMAN

...
faithful module for $\mathcal{G} = \text{PH}/C_H(\mathcal{V})$ and that $O_p(\mathcal{G}) = 1$. Clearly \mathcal{V}_p is projective-free.

Let $\mathcal{D} \subseteq P$ be a defect group of the block of PH containing \mathcal{V}. Then \mathcal{D} maps isomorphically onto a defect group of the block of \mathcal{G} containing \mathcal{V}. The ramification index of the unique irreducible kG-module \mathcal{V} in B with respect to PH is 1 because G/PH is cyclic. As G/PH is a p'-group also, we get $\mathcal{D} = D$.

Now \mathcal{G} is p-solvable with $O_p(\mathcal{G}) = 1$ and with a cyclic Sylow p-subgroup of order p^n, and \mathcal{V} is a faithful indecomposable kG-module belonging to a block with defect α such that \mathcal{V}_p is projective-free. A corresponding statement holds for the conjugates of \mathcal{V}. Thus minimality of $|G|$ forces $G = \text{PH}$.

(4) $D = P$ (and so $a = n$):

Of course, V is relatively D-projective. In view of Green's theorem [1], there is an indecomposable $k[DH]$-module U with $V \cong U^G$. Note that DH is a normal subgroup of $G = \text{PH}$ containing P. It follows that V_{DH} is a direct sum of P-conjugates of U and that P cannot centralize $H/C_H(U)$. Thus $O_p(DH/C_H(U)) = 1$, and U is a faithful module for $DH/C_H(U)$ belonging to a block with defect α. We have $V_p \cong (U_p)^P$. Hence U_p is projective-free. If every indecomposable summand of U_p is of dimension d_0, then every indecomposable summand of V_p is of dimension $p^n - a d_0$. Thus we may conclude that $D = P$ by the choice of G.

(5) V is irreducible:

Every composition factor of V is isomorphic to \mathcal{V} and \mathcal{V} is faithful. Assume V is not irreducible. Then any indecomposable summand of \mathcal{V}_p is of dimension $p^n - 1$, because of the choice of V and of (4). The theory of modules over principal ideal domains shows that then also every indecomposable summand of V_p is of the maximal possible dimension $d = p^n - 1$ (Stickelberger). The other statements of the theorem would follow too.

(6) V_α is irreducible:

This follows from (3), (4), (5) and Lemma 4.

(7) Suppose there is an odd prime q dividing $|H : C_H(P_0)|$. Then $p = 2$ and $q = 2^{a_q} - 1$ for some $a_q \leq n$, and V_p has an indecomposable summand of dimension $q \cdot 2^{n - a_q}$.

By Sylow's theorem P normalizes some Sylow q-subgroup S_q of H. We have $T_q = [S_q, P_0] \neq 1$, and $T_q = [T_q, P_0]$ is P-invariant as well. Let U be an indecomposable summand of V_{PT_q} on which T_q acts nontrivially. (The letter U will be used with variable meaning.) Then P_0 does not centralize $T_q/C_{T_q}(U)$. It follows that U is a faithful module for $PT_q/C_{T_q}(U)$. Clearly U_p is projective-free. Hence the proposition applies to $PT_q/C_{T_q}(U)$ and U.
Hence, if \(a_q \) denotes the defect of the block containing \(U \), then \(p^{a_q} - 1 \) is a power of \(q \). This forces \(p = 2 \) as \(q \) is odd. From Lemma 1 we infer that even \(q = 2^{a_q} - 1 \). We also know from the proposition that \(U_p \) is indecomposable of dimension \(q \cdot 2^{n-a_q} \), as desired.

(8) If \(p \) is odd, then \([H, P_0] \) is a 2-group:

By (7) the index \(|H : C_H(P_0)| \) is a power of 2 here. Let \(S_2 \) be a \(P \)-invariant Sylow 2-subgroup of \(H \). Then \(H = C_H(P_0) S_2 \) and

\[
|H, P_0| = |S_2, P_0| \subseteq S_2,
\]
as asserted.

(9) \(P_0 \) centralizes every proper \(P \)-invariant normal subgroup of \(H \):

Assume the contrary. Let \(N \) be a proper \(P \)-invariant normal subgroup of \(H \) which is not centralized by \(P_0 \). Replacing \(N \) by \([N, P_0]\) we may assume that \(N = [N, P_0] \neq 1 \). Note that \(N \) is normal in \(G \). By (4) there exists an indecomposable summand \(U \) of \(V_{P_N} \) with vertex \(P \). This \(U \) belongs to a block of \(P_N \) with defect \(a = n \). Let \(\bar{U} \) be the unique irreducible constituent of \(U \). Then \(W = \bar{U}_N \) is irreducible (Lemma 4). From Clifford’s theorem it follows that every irreducible summand of \(V_N \) is \(G \)-conjugate to \(W \).

Now \(V \) is faithful. We deduce that \(C_N(U) = C_N(W) \) is a proper \(P \)-invariant normal subgroup of \(N \). Since \([N, P_0] = N, P_0 \) does not centralize \(N/C_N(U) \) and so \(O_p(PN/C_N(U)) = 1 \). Thus \(U \) is a faithful (and indecomposable) module for \(PN/C_N(U) \) belonging to a block with defect \(a = n \). Also \(U_P \) is projective-free. By minimality of \(|G| \) we obtain that \(p^n - 1 \) is a power of some prime \(q \) and that \(N/C_N(U) \) is a nonabelian special \(q \)-group of order larger than \((p^n - 1)^2 \). From the proposition it follows that \(U = \bar{U} \) is irreducible and that \(U_P \) is indecomposable. Moreover,

\[
dim U = \dim W = p^n - 1.
\]

Since \(N/C_N(W) \) is a \(q \)-group and \(\bigcap_{g \in G} C_N(W)^g = 1 \), \(N \) itself is a \(q \)-group. As in the proof of the proposition, by showing that \(P_0 \) centralizes every \(P \)-invariant abelian subgroup of \(N \), we obtain that \(N \) is even a special \(q \)-group.

Suppose \(\bar{U} (\neq 0) \) is another indecomposable summand of \(V_{P_N} \). Then \(\bar{U}_N \) is a direct sum of \(G \)-conjugates of \(W \). Let \(\bar{a} \) be the defect of the block containing \(\bar{U} \). From the proposition it follows that

\[
dim \bar{U} = p^{\bar{a}} - (p^{\bar{a}} - 1)
\]

with \(p^{\bar{a}} - 1 \) being a power of \(q \). But \(\dim \bar{U} \) must be a multiple of \(\dim W = p^n - 1 \). This forces \(\bar{a} = n \). Since also \(\bar{U}_P \) is indecomposable, we see that every indecomposable summand of \(V_P \) is of dimension \(d = p^n - 1 \).

As \(G \) is a counterexample we now must have \([H, P_0] = H\), because
otherwise we could specialize \(N = [H, P_0] \). We claim that nevertheless \(H \) is a \(q \)-group. If \(p \) is odd, then \(q = 2 \) and \(H \) is a 2-group by (8). In case \(p = 2 \) we infer from (7) that \([H : C_H(P_0)] \) is a power of \(q \), because all indecomposable summands of \(V_p \) have the same dimension \(2^n - 1 \). Hence \(H = [H, P_0] \) is a \(q \)-group as claimed. We are in the situation of the proposition, in view of (3), which is impossible by the choice of \(G \).

\[
(H, P_0) = H \text{ and } p = 2;
\]

From (2) and (9) it follows that \([H, P_0] = H \). If \(p \) is odd, then \(H \) is a 2-group by (8), and the proposition applies.

It remains to handle the case \(p = 2 \). Using solvability of \(H = O_{2n}(G) \) it is fairly easy to complete the proof also in this case. We are able, however, to avoid the Feit–Thompson theorem. Let \(\pi \) denote the set of all primes dividing \([H : C_G(P_0)] \). For every \(q \in \pi \) fix a \(P \)-invariant Sylow \(q \)-subgroup \(S_q \) of \(H \) and write \(T_q = [S_q, P_0] \). Recall that then \(q = 2^{a_q} - 1 \) is a Mersenne prime by (7).

\[
(11) \quad |\pi| > 1:
\]

Assume \(\pi = \{q\} \) consists of one element. Then \([H : C_H(P_0)] \) is a power of \(q \) and \([H, P_0] = [S_q, P_0] \subseteq S_q \). But then, by (10), \(H = [H, P_0] \) is a \(q \)-group and the proposition applies.

\[
(12) \quad H = \langle S_q ; q \in \pi \rangle:\n\]

Let \(\bar{H} = \langle S_q ; q \in \pi \rangle \). By definition of the set \(\pi \) of primes, the indices \([H : \bar{H}] \) and \([H : C_H(P_0)] \) are relatively prime. Hence \(H = C_H(P_0)\bar{H} \) and so \([H, P_0] = [\bar{H}, P_0] \subseteq \bar{H} \), because \(\bar{H} \) is \(P \)-invariant. Consequently \(H = \bar{H} \) by (10).

\[
(13) \quad \text{If } R \text{ is a proper } P \text{-invariant subgroup of } H, \text{ then } [R, P_0] \text{ is a nilpotent } \pi \text{-group:}
\]

We may assume that \(R = [R, P_0] \neq 1 \). Let \(U \) be an indecomposable summand of \(V_{PR} \) on which \(R \) acts nontrivially. Then \(P_0 \) does not centralize \(R/C_R(U) \) and therefore \(O_2(PR/C_R(U)) = 1 \). By minimality of \(|G| \) we deduce that \(R/C_R(U) \) is a \(q \)-group for some \(q \in \pi \). Since \(V \) is faithful, the assertion follows.

\[
(14) \quad T = \langle T_q ; q \in \pi \rangle \text{ is nilpotent:}
\]

It is evident that \(T \) is \(P \)-invariant and that \([T, P_0] = T \). In view of (13) it therefore suffices to show that \(T \) is a proper subgroup of \(H \). Let \(U \) be an indecomposable summand of \(V_{PT} \) on which \(T_q \) does not act trivially (\(q \in \pi \)). Then, as in step (7), the proposition applies. We obtain that \(U \) belongs to a block with defect \(a_q \) and that \(U_p \) is indecomposable with dimension \(q \cdot 2^{n-a_q} \). Now write

\[
V_p = \bigoplus_{q \in \pi} V_q \oplus L,
\]
where V_q is the direct sum of all indecomposable summands of V_P with dimension $q \cdot 2^{n-a_q}$ ($q \in \pi$) and L is the sum of the remaining components. Any T_q respects this decomposition. In fact, T_q acts faithfully on V_q and trivially on the other components. From (11) we infer that V_T cannot be irreducible. Consequently $T \neq H$ because V_H is irreducible by (6).

We are now in a position to achieve the final contradiction: Fix $q \in \pi$. $T_{q_0} = [S_{q_0}, P_0]$ is not normal in H for otherwise $H = T_{q_0}$ were a q_0-group by (9) and so $\pi = \{q_0\}$ in contrast to (11). On the other hand, by (14)

$$R_0 = N_H(T_{q_0}) \supseteq T.$$

Note that $R_0 \supseteq S_{q_0}$ and that R_0 is a proper P-invariant subgroup of H. From (13) it follows that $[R_0, P_0] \supseteq [T, P_0] = T$ is nilpotent. Using that $O_2([R_0, P_0])$ is contained in a P-invariant Sylow q-subgroup of H and that the P-invariant Sylow q-subgroups of H are conjugate under $C_H(P) \subseteq C_H(P_0)$, we deduce that

$$T_q = O_q([R_0, P_0])$$

for any $q \in \pi$. Consequently T_q is normalized by S_{q_0}. By symmetry we get that any S_q normalizes T_{q_0}. From (12) we obtain that T_{q_0} is yet normal in H. This completes the proof of the theorem.

\textit{Note added in proof}. (Nov. 9, 1981). It might be worth mentioning that the module V in the second alternative of Theorem B"{a} necessarily is completely reducible. We know that $N = [O_{\ast}(G), x^{e-1}]$ is a normal q-subgroup of G for some prime $q \neq p$ and that all composition factors of V are isomorphic (by block theory). Applying the Proposition we obtain that every indecomposable summand of V_{p^N} is irreducible (of dimension d). Now use the fact that V is relatively PN-projective.

\textbf{References}