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1. INTRODUCTION

Fix a prime p and a Sylow p-subgroup P of a finite group G, and
write N = NG�P�. The (still unproved) “McKay conjecture” asserts that
�Irrp′ �G�� = �Irrp′ �N��, or in other words that G and N have equal num-
bers of irreducible characters with degrees not divisible by p. (J. McKay
proposed his conjecture in 1971, but only for simple groups and only for
p = 2; the first formal statement of the general form of the conjecture was
given in 1975 by Alperin in [1].)

The McKay conjecture is now known to be valid for many classes of
groups. In 1973, the first author proved the conjecture for (solvable) groups
of odd order and for all solvable groups when p = 2. (This result appears
[3].) Subsequently, T. R. Wolf gave a proof valid for every solvable group
and E. C. Dade verified the conjecture for all p-solvable groups. A simpler
proof for p-solvable groups was then given by Okuyama and Wajima in
[10]. (Since our concern in this paper is only with p-solvable groups, we
will not mention explicitly the many other known cases.)
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In this paper, we show that even stronger results hold for p-solvable
groups. We will show that if G is p-solvable and χ ∈ Irrp′ �G�, then there
are certain linear characters of the Sylow subgroup P that are naturally
associated with χ. Also, we shall see that the linear characters associated
with χ constitute a single N-orbit and that every linear character of P is
associated with at least one member of Irrp′ �G�. (This generalizes the case
where P �G, where the linear characters of P that are associated with a
character χ ∈ Irrp′ �G� are just the irreducible constituents of the restriction
χP .) Our stronger form of the Okuyama–Wajima theorem can be stated
in terms of these associated linear characters. (The precise definition of
“associated” is somewhat technical, and so it seems best to defer it until it
is actually needed.)

Theorem A. Let G be p-solvable and write N = NG�P�, where P ∈
Sylp�G�. Then for each linear character λ of P , there are equal numbers of
characters in Irrp′ �G� and in Irrp′ �N� that are associated with λ.

Effectively, what we prove in this paper is that if G is p-solvable, then
the sets Irrp′ �G� and Irrp′ �N� can be naturally partitioned into “families”
of irreducible characters, where each family is associated with an N-orbit
of linear characters of P . There is, therefore, a natural bijection between
the set of families in Irrp′ �G� and the set of families in Irrp′ �N�, and
Theorem A tells us that corresponding families have equal size. (In gen-
eral, however, there does not exist a natural bijection from a family in
Irrp′ �G� onto the corresponding family in Irrp′ �N�. Of course, by summing
over the various families, we can recover from Theorem A the fact that
�Irrp′ �G�� = �Irrp′ �N�� when G is p-solvable.)

For each linear character λ of P , there is a natural numerical invariant:
the order of λ as an element of the group of linear characters of P . It is
natural, therefore, to ask how this invariant is reflected in the characters
χ ∈ Irrp′ �G� that are associated with λ. To answer this question, we need
to discuss field automorphisms.

Consider the cyclotomic field ��G�, which contains the values of all char-
acters of G. Given a positive integer e, there exists a unique automorphism
σe of this field such that σe fixes all p′-roots of unity and σe�ε� = ε1+pe for
every p-power root of unity ε. It is easy to see that σe has p-power order in
the Galois group Gal���G�/��. Furthermore, since σe fixes a p-power root
of unity ε if and only if εp

e = 1, we see that σe fixes a linear character λ of
a p-subgroup of G if and only if the order of λ divides pe. The following
result applies to these field automorphisms σe. It allows us to determine
from the values of χ ∈ Irrp′ �G� the order of the linear characters of P that
are associated with χ.
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Theorem B. Suppose that G is p-solvable and that P ∈ Sylp�G�. Let σ
be an automorphism of the cyclotomic field ��G� and assume that σ has p-
power order and that it fixes all p′-roots of unity. Then σ fixes χ ∈ Irrp′ �G� if
and only if σ fixes the linear characters associated with χ.

We observe that since the linear characters of P associated with a given
character χ ∈ Irrp′ �G� are conjugate under N = NG�P�, it follows that a
field automorphism that fixes any one of these linear characters necessarily
fixes all of them.

The following is immediate from Theorems A and B.

Corollary C. In the situation of Theorem B, let N = NG�P�. Then
the field automorphism σ fixes equal numbers of characters in Irrp′ �G� and
Irrp′ �N�.

It is tempting to conjecture that the conclusion of Corollary C might
remain true even if we drop the hypothesis that G is p-solvable.

Using the automorphisms σe, we obtain the following.

Corollary D. Let G be p-solvable. Then the character table of G deter-
mines the exponent of P/P ′, where P ∈ Sylp�G�.
Proof. The exponent of P/P ′ is the smallest positive integer e such that

the field automorphism σe fixes all characters in the set Irrp′ �G�. To see
why this is true, observe that the exponent of P/P ′ is equal to the exponent
of the group of linear characters of P , and this exponent divides pe if
and only if the field automorphism σe fixes every linear character of P . By
Theorem B, this happens if and only if σe fixes all members of Irrp′ �G�.

We can also say which members of Irrp′ �G� are associated with the prin-
cipal character of P .

Theorem E. Suppose that G is p-solvable and let P ∈ Sylp�G�. Then the
members of Irrp′ �G� that are associated with the principal character 1P are
exactly the p′-special characters of G.

We shall see that our association of linear characters of a Sylow p-
subgroup with the members of Irrp′ �G� respects the normal (and subnor-
mal) structure of G. For example, we have the following.

Theorem F. Suppose that S ��G, where G is p-solvable, and let Q be a
Sylow p-subgroup of S. Then a linear character µ of Q has an extension to
some Sylow p-subgroup of G containing Q if and only if there exist characters
θ ∈ Irrp′ �S� and χ ∈ Irrp′ �G� such that θ is a constituent of χS and µ is
associated with θ.
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The McKay conjecture was extended by Alperin so as to apply to individ-
ual p-blocks. The Alperin–McKay conjecture asserts that if B is a p-block
of G with defect group D and b is the block of NG�D� corresponding
to B according to Brauer’s “first main” theorem, then Irr�B� and Irr�b�
contain equal numbers of height-zero characters. (The Okuyama–Wajima
paper [10], to which we referred earlier, established the Alperin–McKay
conjecture for p-solvable groups.)

Our results can also be extended to work for p-blocks. For example, we
prove the following block-theoretic version of Corollary C. (Note that, in
general, field automorphisms permute the p-blocks of a group G, but an
automorphism that fixes p′-roots of unity fixes all Brauer characters of G,
and thus it fixes all p-blocks.)

Theorem G. Suppose that G is p-solvable and that B is a p-block of
G with Brauer correspondent b. Let σ be an automorphism of the cyclo-
tomic field ��G� and assume that σ has p-power order and fixes p′-roots of
unity. Then Irr�B� and Irr�b� contain equal numbers of σ-fixed height-zero
characters.

It seems reasonable to conjecture that Theorem G might remain true if
the hypothesis that G is p-solvable were dropped. Such a conjecture, of
course, would be a strengthened form of the Alperin–McKay conjecture.

Finally, we mention the following variation on Corollary D.

Theorem H. Let G be p-solvable and suppose that B is a p-block of G
with defect group D. Then D/D′ has exponent dividing pe if and only if the
field automorphism σe fixes all height-zero members of Irr�B�.

2. THE MAP �

Although it may be true that our results are most interesting in the case
of p-solvable groups, almost everything goes through without extra effort
for π-separable groups, where π is some set of primes. For that reason, we
do most of our work in this somewhat more general context. (To obtain the
results stated in the Introduction, it suffices to specialize to the case where
π = �p	.) We write Irrπ ′ �X� to denote the set of all irreducible characters
of π ′-degree of a group X.

Let G be π-separable, fix a Hall π-subgroup H of G, and let N =
NG�H�. Instead of starting with a character in Irrπ ′ �G� and constructing the
N-orbit of linear characters of H that are associated with it, it is more con-
venient to work backwards, starting with a linear character of H. Accord-
ingly, we construct a natural map � from the set of linear characters of H
into the set Irrπ ′ �G�.
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We begin by recalling some facts from the character theory of π-
separable groups.

(2.1) Theorem. Let H be a Hall π-subgroup of a π-separable group G
and suppose that λ ∈ Irr�H�. Then there is a unique subgroup W ⊇ H
maximal with the property that λ extends to W , and there is a unique π-
special extension γ of λ to W . Furthermore, if λ is quasiprimitive, then γG is
irreducible.

Proof. The uniqueness of the subgroup W is given by Theorem A of
[5]. Since λ has an extension to W , it follows by Theorem G of [7] that
λ has a π-special extension. That this extension is unique follows from
Proposition 6.1 of Gajendragadkar’s paper [2].

Now suppose that λ is quasiprimitive. By Theorem B of [6], we know
that λ extends to some subgroup R ⊇ H and that every extension of λ to
R induces irreducibly to G. By the uniqueness of W , we know that R ⊆ W ,
and thus γR is an extension of λ to R. Then �γR�G is irreducible, and it
follows that R = W and that γG is irreducible, as claimed.

In the situation of Theorem 2.1, if λ ∈ Irr�H� is quasiprimitive, we write
��λ� to denote the uniquely defined character ψ = γG ∈ Irr�G�. Note that
if λ is linear, then it is certainly quasiprimitive, and so ��λ� is defined for
each linear character λ of H. In this case, we see that the degree of ��λ�
is equal to �G � W �, which is a π ′-number, and thus � maps the linear
characters of H into the set Irrπ ′ �G�. We mention that in the case where λ
is linear, the π-special extension γ of λ to W is the unique extension of λ
whose order in the group of linear characters of W is a π-number.

Next, we work to determine the precise range of the map �. Before we
do this, however, we offer a little more review. If G is π-separable, we
consider pairs �S� δ�, where S ��G, δ ∈ Irr�S�, and δ is π-factored. (The
latter condition means that δ is a product of a π-special character and a
π ′-special character of S.) The set of these subnormal factored pairs in G
is naturally partially ordered, and we focus on the maximal members of this
set. All of the details that underlie the following brief summary of facts can
be found in the paper [4].

Let ψ ∈ Irr�G� be arbitrary, where G is π-separable. Then there exists
a unique (up to G-conjugacy) maximal subnormal factored pair �S� δ� such
that δ lies under ψ. Of course, if ψ is π-factored, then S = G and δ = ψ,
but otherwise, one can show that if T is the stabilizer in G of the pair
�S� δ�, then T < G. Furthermore, induction defines a bijection from the set
of irreducible characters of T that lie over δ onto the set of irreducible
characters of G that lie over δ. In particular, there is a unique character
η ∈ Irr�T � lying over δ such that ηG = ψ. If ψ is not π-factored, then we
can replace G by T and ψ by η and repeat this process. Since T < G, we



characters of p′-degree of p-solvable groups 399

see that, eventually, we must reach a pair �W�γ�, where γ is π-factored
and, of course, γG = ψ. The pair �W�γ� is said to be a nucleus for ψ, and
it is uniquely determined up to G-conjugacy. Finally, we recall that the set
Bπ�G� is exactly the set of characters ψ ∈ Irr�G� such that the nucleus
character γ of ψ is π-special, and in particular, Bπ�G� contains all of the
π-special irreducible characters of G.

(2.2) Theorem. Let G, H, λ, W , and γ be as in Theorem 2.1. Suppose
that λ is quasiprimitive and write ψ = γG, so that ψ = ��λ�. Then the pair
�W�γ� is a nucleus for ψ and ψ ∈ Bπ�G�.

Proof. If W = G, then ψ = γ is π-special, and in this case ψ ∈ Bπ�G�
and �W�γ� = �G�ψ� is a nucleus for ψ, as desired. We can assume, there-
fore, that W < G, and we work by induction on �G�.

Let S be the unique largest subnormal subgroup of G contained in W .
Note that S �W , and thus since H ⊆ W , we see that S ∩H �H and S ∩H
is a Hall π-subgroup of S. By assumption, λ ∈ Irr�H� is quasiprimitive, and
thus γS∩H = λS∩H is homogeneous. Each irreducible constituent of γS is
π-special, and the restriction of each of these constituents to the Hall π-
subgroup S ∩H of S is exactly the unique irreducible constituent of γS∩H .
It follows that γS has a unique irreducible constituent, which we call δ, and
we observe that δ is invariant in W .

Since δ is π-special, it is certainly π-factored, and we claim that �S� δ�
is a maximal subnormal factored pair in G. Otherwise, there exists U ��G
with U > S, and a π-factored character β ∈ Irr�U� lying over δ. In fact,
the π-special factor of β must lie over δ, and so it is no loss to assume that
β is π-special. Furthermore, we can assume that S �U and that U/S is a
composition factor of G, and so it is either a π-group or a π ′-group.

Since H ⊆ W and H ∩U is a Hall π-subgroup of U (because U ��G), we
see that �U � U ∩W � is a π ′-number. Also, S ⊆ U ∩W < U , and it follows
that U/S cannot be a π-group, and hence it is a π ′-group. We conclude
that βS = δ, and thus δ is invariant in U . We now know that U and W are
both contained in the stabilizer T of the pair �S� δ�, and U/S is a subnormal
π ′-subgroup of T/S. We conclude that the normal closure V/S of U/S in
T/S is a π ′-group. Since the π-special character δ of S is invariant in V , it
follows that δ has a unique π-special extension δ̂ to V , and δ̂ is invariant in
T . We see that each irreducible constituent of γV ∩W is a π-special character
lying over δ. Since δ̂V ∩W is the unique π-special character of V ∩W that
lies over δ, we conclude that δ̂V ∩W is an irreducible constituent of γV ∩W .
Of course, this constituent extends to δ̂ ∈ Irr�V �, which is invariant in
VW . We conclude that γ extends to some character of VW lying over δ̂.
(This follows from Corollary 4.2 of [4].) But by the definition of W , we
know that γ cannot extend to any subgroup of G that properly contains W .
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We conclude that V ⊆ W , and thus U ⊆ W , which is not the case. This
contradiction proves that �S� δ� is a maximal factored pair in G, as claimed.

Now S < G, and it follows that T < G, where T is the stabilizer of the
pair �S� δ�. Since W ⊆ T , the inductive hypothesis guarantees that �W�γ�
is a nucleus for the character γT , and thus by the definition of a nucleus
for ψ, we see that �W�γ� is a nucleus for �γT �G = ψ, as required. Also,
since the nucleus character γ for ψ is π-special, it follows by definition that
ψ ∈ Bπ�G�.
(2.3) Theorem. LetH ⊆ G be a Hallπ-subgroup, whereG isπ-separable.

Then � maps the linear characters of H onto the set Bπ�G� ∩ Irrπ ′ �G�.
Proof. We have already observed that if λ ∈ Irr�H� is linear, then ��λ�

lies in Irrπ ′ �G�, and by the previous theorem, we know that ��λ� ∈ Bπ�G�.
Conversely, we choose an arbitrary character ψ ∈ Bπ�G� ∩ Irrπ ′ �G� and we
work to show that ψ = ��λ� for some linear character λ of H.

Let �W�γ� be a nucleus for ψ. Then γ is π-special and since γG = ψ ∈
Irrπ ′ �G�, we see that γ has π ′-degree, and hence γ is linear. Also, �G � W � is
a π ′-number in this case, and so if we replace �W�γ� by a suitable conjugate,
we can assume that H ⊆ W , and thus γ is a π-special extension to W of
the linear character λ = γH . If M ⊇ W is maximal such that λ extends
to M and we let δ be the unique π-special extension of λ to M , we see
that δW is a π-special extension of λ, and thus δW = γ. Since γG = ψ is
irreducible, however, it follows that M = W and δ = γ. We see now that
��λ� = γG = ψ, and the proof is complete.

(2.4) Theorem. Let H ⊆ G be a Hall π-subgroup, where G is π-
separable, and let N = NG�H�. If ψ ∈ Bπ�G� ∩ Irrπ ′ �G�, then the preimage
of ψ under the map � is an N-orbit of linear characters of H.

Proof. If n ∈ N and λ is a linear character of H, then since the map �
is canonically defined, it follows that ��λn� = ��λ�n = ��λ�, and thus the
preimage of ψ under the map � is a union of N-orbits.

Suppose now that λ and µ are linear characters of H such that ��λ� =
ψ = ��µ�. Let �W�γ� and �V� δ� be maximal π-special extensions of λ and
µ, respectively, as in Theorem 2.1. Then by Theorem 2.2, we know that
�W�γ� and �V� δ� are nuclei for ψ, and thus these pairs must be conjugate
in G and we can write �W�γ�g = �V� δ� for some element g ∈ G. Then Hg

and H are Hall π-subgroups of V , and hence Hgv = H for some element
v ∈ V . We see now that gv ∈ N and γgv = δv = δ. It follows that λgv = µ,
as required.

We can summarize the results of this section as follows.

(2.5) Corollary. Let N = NG�H�, where H is a Hall π-subgroup of
the π-separable group G. Then the map � defines a bijection from the set of
N-orbits of linear characters of H onto the set Bπ�G� ∩ Irrπ ′ �G�.
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3. SATELLITE CHARACTERS

We begin by quoting some more of the general character theory of π-
separable groups.

(3.1) Theorem. Let ψ ∈ Bπ�G�, where G is π-separable, and suppose
�W�γ� is a nucleus for ψ. Then the map α �→ �αγ�G is an injection from the
set of π ′-special characters α ∈ Irr�W � into Irr�G�.
Proof. This is precisely Theorem C of [9].

We shall refer to the irreducible characters of the form �αγ�G in
Theorem 3.1 as the satellites of the character ψ ∈ Bπ�G�, and we note
that the set of satellites of ψ depends only on ψ, and not on the choice of
the particular nucleus �W�γ� for ψ. (This, of course, is because all of the
nuclei for ψ are G-conjugate.) Also, we note that ψ is a satellite of itself
since we can take α to be the principal character of W .

(3.2) Theorem. LetG be π-separable. Then the sets of satellites of distinct
members of Bπ�G� are disjoint.

Proof. This is an immediate consequence of Theorem 4.2 of [9].

It may be tempting to conjecture that if G is π-separable, then every
member of Irr�G� is a satellite of some character in Bπ�G�, but unfor-
tunately, that is not true in general. In fact, as we shall see in Section 6,
every irreducible character is a satellite if and only if G has a normal Hall
π-subgroup.

Note that if χ ∈ Irr�G� is a satellite of ψ ∈ Bπ�G�, then the π-parts of
the degrees of χ and ψ are equal. In particular, it follows that the satellites
of the members of Bπ�G� ∩ Irrπ ′ �G� all lie in Irrπ ′ �G�. If χ ∈ Irrπ ′ �G� is
a satellite of ψ ∈ Bπ�G� ∩ Irrπ ′ �G�, then ψ is unique, and we know (in the
notation of Section 2) that there is a unique N-orbit of linear characters λ
of H such that ��λ� = ψ.
(3.3) Definition. Let H be a Hall π-subgroup of a π-separable group

G and suppose that χ ∈ Irrπ ′ �G�. Then a linear character λ of H is asso-
ciated with χ if χ is a satellite of ��λ�.

Although it is not true in general that that every irreducible character of
G is a satellite, we shall see that each character in Irrπ ′ �G� is a satellite
of some (necessarily unique) member of Bπ�G� ∩ Irrπ ′ �G�. When this is
established, it will follow that every character in Irrπ ′ �G� is associated with
some linear characters of H. (We already know, of course, that every linear
character of H is associated with some characters χ ∈ Irrπ ′ �G�, and we also
know that the linear characters of H that are associated with a character χ
constitute an N-orbit, where N = NG�H�.)

We begin by quoting some counting results.
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(3.4) Theorem. Let N = NG�H�, where H is a Hall π-subgroup of the
π-separable group G. Then

(a) �Irrπ ′ �G�� = �Irr�N/H ′�� = �Irrπ ′ �N��.
(b) The number of π ′-special characters of G is equal to �Irr�N/H��.

Proof. Since it is clear that Irr�N/H ′� = Irrπ ′ �N�, we see that the first
assertion is just the π-version of the McKay conjecture for π-separable
groups. A proof (modeled on that of Okuyama and Wajima for p-solvable
groups) was given by Wolf, in [12], where our conclusion (a) is a special
case of Wolf’s Theorem A. Similarly, our conclusion (b) appears as a special
case of Wolf’s Corollary 1.16 in [12].

(3.5) Theorem. Let N = NG�H�, where H is a Hall π-subgroup of the
π-separable group G, and let λ be a linear character of H. Then the number
of satellites of the character ψ = ��λ� is equal to the number of characters of
N that lie over λ.

Proof. Let W ⊇ H be the maximum subgroup to which λ extends and
let γ be the π-special extension of λ to W . Then �W�γ� is a nucleus for
ψ and the number of satellites of ψ is equal to the number of π ′-special
characters of W . By Theorem 3.4(b), this is exactly �Irr��W ∩N�/H��.

In fact, W ∩N is exactly the stabilizer in N of λ. To see why this is true,
observe first that since γW ∩N is an extension of λ, it follows that λ is invari-
ant in W ∩ N . Also, if T is the stabilizer of λ in N , then since H is a
normal Hall subgroup of T , it follows that λ extends to T . But W is the
unique maximum subgroup containing H to which λ extends, and therefore
T ⊆ W . Thus W ∩N = T , as claimed.

Since λ extends to W ∩N , we can conclude by Gallagher’s theorem that
�Irr��W ∩N�/H�� = �Irr��W ∩N��λ��, and by the Clifford correspondence,
this is equal to �Irr�N�λ��, as desired.

We point out that the our proof of Theorem 3.5 uses Theorem 3.4(b),
but not Theorem 3.4(a). We will exploit this by observing that Theorem 3.5
can be used to give an alternative proof of 3.4(a).

(3.6) Theorem. Every character in Irrπ ′ �G� is a satellite of some unique
member of Irrπ ′ �G� ∩ Bπ�G�.
Proof. Every irreducible character of N/H ′ lies over a unique N-orbit

of linear characters of H. Furthermore, these N-orbits are in bijective cor-
respondence (via the map �) with the members of Bπ�G� ∩ Irrπ ′ �G�. It
follows by Theorem 3.5 that the total number of satellites of all of the
members of Bπ�G� ∩ Irrπ ′ �G� is equal to �Irr�N/H ′�� = �Irrπ ′ �N��. By
Theorem 3.4(a), this number is equal to �Irrπ ′ �G��. It follows from the fact
that the sets of satellites of the various members of Bπ�G� ∩ Irrπ ′ �G� are
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disjoint subsets of Irrπ ′ �G� that every member of the latter set is a satellite,
as required.

The counting argument that we have just presented actually shows that
if we know Theorem 3.5, then the fact that every member of Irrπ ′ �G�
is a satellite is equivalent to the fact (asserted in Theorem 3.4(a)) that
�Irrπ ′ �G�� = �Irrπ ′ �N��. In Section 4, we will give a different proof of
Theorem 3.6, and thus the above argument can be viewed as providing
a new proof of Theorem 3.4(a). This alternative proof, however, relies on
Theorem 3.4(b) since that result was used in the proof of Theorem 3.5.

As promised, we have now established that each member of Irrπ ′ �G� is
associated with a unique N-orbit of linear characters of H and that every
linear character λ of H is associated with at least one member of Irrπ ′ �G�.
In fact, by Theorem 3.5, we know that the number of characters associated
with λ is equal to the number of characters of N that lie over λ.

In the case where H �G, it is especially easy to determine the linear
characters of H that are associated with a character χ ∈ Irrπ ′ �G�: They are
exactly the irreducible constituents of χH . To see why this is so, observe
that in general, a linear character λ of H is a constituent of the restriction
ψH , where ψ = ��λ�. If H �G, then H is contained in the kernel of every
π ′-special character of every subgroup of G that contains H, and thus λ
is a constituent of χH , where χ is an arbitrary satellite of ψ = ��λ�. In
other words, if H �G, then a linear character λ of H is a constituent of χH
whenever λ is associated with χ.

It is now easy to prove the π-versions of Theorems A, B, and E.

(3.7) Corollary. Let H be a Hall π-subgroup of a π-separable group G
and write N = NG�H�. Then for each linear character λ of H, the numbers
of members of Irrπ ′ �G� and of Irrπ ′ �N� that are associated with λ are equal.

Proof. We know by Theorem 3.5 that the number of characters χ ∈
Irrπ ′ �G� that are associated with a linear character λ of H is equal to the
number of characters of N = NG�H� that lie over λ. But the characters of
N that lie over λ are exactly the members of Irrπ ′ �N� that are associated
with λ, and this completes the proof.

(3.8) Corollary. Let H be a Hall π-subgroup of a π-separable group
G and let σ be an automorphism of the cyclotomic field ��G�. Assume that
the order of σ is a π-number and that σ fixes all π ′-roots of unity in ��G�. If
χ ∈ Irrπ ′ �G�, then σ fixes χ if and only if σ fixes any one of (or equivalently
all of ) the linear characters of H that are associated with χ.

Proof. There is a unique character ψ ∈ Bπ�G� ∩ Irrπ ′ �G� such that χ
is a satellite of ψ, and thus if σ fixes χ, it must also fix ψ. Since the map
� is natural, it follows that σ permutes the preimage ( of ψ under this
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map. We know, however, that ( is an N-orbit of linear characters of H,
where N = NG�H�. Since the actions of σ and N on ( commute, it follows
that the �σ�-orbits in ( are transitively permuted by N , and thus they all
have the same size, which must divide both o�σ� and �(�. But o�σ� is a
π-number and �(� divides �N � H�, which is a π ′-number. It follows that σ
fixes all of the members of (, as required.

Conversely, suppose that σ fixes some linear character λ ofH. LetW ⊇ H
be the maximum subgroup to which λ extends and let γ be the unique π-
special extension of λ to W , so that ��λ� = γG. By uniqueness, σ fixes γ
and also σ fixes all of the π ′-special characters α ∈ Irr�W � since each of
these characters has values in the subfield of ��G� generated by π ′-roots of
unity, and by hypothesis, σ acts trivially on this subfield. It follows that σ
fixes each of the characters �αγ�G, and thus σ fixes all satellites of ��λ�.
These, of course, are exactly the members of Irrπ ′ �G� that are associated
with λ. The proof is now complete.

(3.9) Corollary. Let H be a Hall π-subgroup of a π-separable group G.
Then the members of Irrπ ′ �G� that are associated with the principal character
of H are exactly the π ′-special characters of G.

Proof. The maximum subgroup to which the principal character of H
can be extended is, of course, the group G, and the corresponding π-special
extension of 1H is 1G. The characters associated with 1H are therefore the
satellites of 1G, and these are exactly the π ′-special characters α of G.

4. SUBNORMAL SUBGROUPS

In this section, we discuss some connections between the normal and sub-
normal structure of a π-separable group and our results concerning satel-
lites and associated linear characters. Note that if S ��G and χ ∈ Irrπ ′ �G�,
then the irreducible constituents of χS all lie in Irrπ ′ �S�. Also, if ψ ∈ Bπ�G�,
then the irreducible constituents of ψS all lie in Bπ�S�. (The first of these
assertions is immediate because the degrees of the irreducible constituents
of χS all divide χ�1�; the second assertion follows from the results of [4].)

(4.1) Lemma. Suppose that S ��G, where G is π-separable. Let H be a
Hall π-subgroup of G and write K = S ∩H, so that K is a Hall π-subgroup
of S. Let λ be a linear character of H and let ψ = ��λ� ∈ Bπ�G� and
η = ��λK� ∈ Bπ�S�. Then η is a constituent of ψS .

Proof. Let W ⊇ H be the maximal subgroup to which λ can be extended
and let γ be the π-special extension of λ to W , so that ψ = γG. Now write
µ = λK and let V be the maximum subgroup of S to which µ extends.
If δ is the π-special extension of µ to V . then both δV ∩W and γV ∩W
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are π-special extensions of µ, and therefore these linear characters are
equal since K ⊆ V ∩ W ⊆ S and K is a Hall π-subgroup of S. It follows
that δ is a constituent of �γV ∩W �V , which, by Mackey’s theorem, is a con-
stituent of �γG�V = ψV . It follows that 0 �= �δ�ψV � = �δS�ψS� = �η�ψS�,
as required.
(4.2) Theorem. Suppose that S ��G, where G is π-separable, and let K

be a Hall π-subgroup of S. Let θ ∈ Irrπ ′ �S� and assume that θ is associated
with a linear character µ of K. Suppose that θ is a constituent of χS , where
χ ∈ Irrπ ′ �G�. Then µ extends to a linear character λ of some Hall π-subgroup
H of G, where H contains K and λ is associated with χ.

Before we proceed with the proof of Theorem 4.2, we mention some
consequences. First, we observe that if we combine Lemma 4.1 and
Theorem 4.2, we obtain the following.
(4.3) Corollary. Suppose that S ��G, where G is π-separable, and let

χ ∈ Irrπ ′ �G� and θ ∈ Irrπ ′ �S�, where θ is a constituent of χS . If θ is a satellite
of η ∈ Bπ�S�, then χ is a satellite of some character ψ ∈ Bπ�G�, where η is
a constituent of ψS .
Alternative proof of Theorem 3.6 We are given χ ∈ Irrπ ′ �G�, where G is

π-separable, and we need to find ψ ∈ Bπ�G� ∩ Irrπ ′ �G� such that χ is a
satellite of ψ. The existence of ψ follows from Corollary 4.3 by taking S to
be the trivial subgroup of G and θ = 1S = η.

As we remarked following the proof of Theorem 3.6 in Section 3, the fact
that 3.6 can be proved without using the counting result of Theorem 3.4
provides a new proof of Theorem 3.4(a). But as we pointed out, this proof
relies on Theorem 3.4(b).
Proof of Theorem 4.2. Working by induction on the index �G � S�, it is

easy to see that we can assume that S is maximal among proper subnormal
subgroups of G, and thus S �G and G/S is simple, and hence G/S is either
a π-group or a π ′-group. Let V be the maximum subgroup of S to which
µ can be extended and let δ be the π-special extension of µ to V . Then
η = δS lies in Bπ�S�, and because µ is associated with θ by assumption,
we know that θ is a satellite of η. It follows that there exists a π ′-special
character α of V such that �αδ�S = θ.

We suppose first that G/S is a π-group, and thus χS is irreducible since
χ has π ′-degree. In this case, we have θ = χS , and in particular, θ is G-
invariant. It follows that η is G-invariant since θ uniquely determines η.
Let W be the stabilizer of the pair �V� δ� in G. Since η is G-invariant, it
follows that every G-conjugate of its nucleus �V� δ� is also a nucleus for η,
and hence every such pair is conjugate to �V� δ� in S. We conclude from this
that WS = G. Also, since δ is invariant in W ∩ S and δ induces irreducibly
to S, it follows that W ∩ S = V . We conclude that �W � V � = �G � S� is a
π-number.
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Now �χV � αδ� = �χS� �αδ�S� = �χS� θ� = 1, and thus there is a unique
irreducible constituent τ of χW that lies over αδ, and we have �τV � αδ� = 1.
Also, we know that the pair �V� δ� and the character θ together determine
α uniquely, and thus since W stabilizes both �V� δ� and θ, it follows that
α is invariant in W . Thus αδ is invariant in W and we deduce that τW =
αδ. Also, since α is π ′-special and is invariant in W , and we know that
W/V is a π-group, it follows that α has a π ′-special extension β ∈ Irr�W �.
Furthermore, since δ is π-special, we see that all irreducible constituents of
δW are π-special, and thus since �αδ�W = βδW , we conclude that we can
write τ = βγ, where γ ∈ Irr�W � lies over δ. Since τ extends αδ, it follows
that γ extends δ, and thus γ is a linear π-special character of W .

Since �G � W � = �S � V � is a π ′-number, we can choose a Hall π-subgroup
H of G such that K ⊆ H ⊆ W , and thus K = S ∩H. If we write λ = γH , we
see that λ is an extension of µ. Also, W is the maximum subgroup of G to
which λ can be extended since V = S ∩W is the maximum subgroup of S
to which µ can be extended. Furthermore, γ is the π-special extension of λ
to W , and it follows that ψ = γG lies in Bπ�G� and that �W�γ� is a nucleus
for ψ. Since β ∈ Irr�W � is π ′-special, we know that �βγ�G is irreducible
and this character is a satellite of ψ. But βγ = τ, which lies under χ. Thus
χ = τG is a satellite of ψ, and hence λ is associated with χ, as desired.

We can assume now that G/S is a π ′-group, and thus K is a Hall π-
subgroup of G and we take H = K and λ = µ. Let W be the maximum
subgroup of G to which µ can be extended and let γ be the π-special
extensions of µ to W . Note that V ⊆ W and γV = δ. Also, if we write
ψ = γG, then ψ = ��µ� computed in G, and we must show that χ is a
satellite of ψ.

Now χ lies over θ = �αδ�S , and thus some irreducible constituent τ of
χW lies over αδ. It follows that τ is an irreducible constituent of �αδ�W =
αW γ. But �W � V � divides �G � K�, which is a π ′-number, and thus every
irreducible constituent of αW is π ′-special. It follows that τ = βγ, where
β is a π ′-special character of W . Then τG = �βγ�G is irreducible and is
a satellite of ψ. But χ lies over τ, and thus χ = τG is a satellite of ψ, as
desired. This completes the proof.

Our next result is the π-version of Theorem F.

(4.4) Theorem. Suppose that S ��G, where G is π-separable, and let µ
be a linear character of a Hall π-subgroup K of S. Then µ has an extension to
some Hall π-subgroup of G containing K if and only if there exist characters
θ ∈ Irrπ ′ �S� and χ ∈ Irrπ ′ �G� such that θ is a constituent of χS and µ is
associated with θ.

Proof. If θ and χ have the stated properties, then by Theorem 4.2, we
know that µ extends to some Hall π-subgroup of G. Conversely, suppose
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that µ extends to λ ∈ Irr�H�, where H is some Hall π-subgroup of G
containing K. Let θ = ��µ� and χ = ��λ�, so that θ ∈ Irrπ ′ �S� and χ ∈
Irrπ ′ �G�. Note that µ is associated with θ since θ is a satellite of itself. By
Lemma 4.1, we know that θ is a constituent of χS , and this completes the
proof.

5. BLOCKS

If we wished to continue to work with π-separable groups, we could do
so by referring to the π-block theory developed by Slattery in [11]. We have
decided, however, to limit our discussion to the classical theory of p-blocks,
and so in what follows, we will consider p-solvable groups.

We begin with some review. (All of this is discussed in Slattery’s paper
[11], to which we refer the reader for details.) Suppose that G is p-solvable
and let M = Op′ �G�. If B is a p-block of G, then there exists θ ∈ Irr�M�
such that all members of Irr�B� lie over θ (and θ is uniquely determined
up to G-conjugacy). Let T be the stabilizer of θ in G.

If T = G (so that θ is invariant in G) then a Sylow p-subgroup P of
G is a defect group for B, and in this case, the set Irr�B� is the full set
Irr�G�θ� of irreducible characters of G that lie over θ. Also, in this case, if
b is the block of N = NG�P� that corresponds to B according to Brauer’s
theorem, then Irr�b� = Irr�N � θ∗�, where θ∗ ∈ Irr�N ∩M� corresponds to
θ under the Glauberman correspondence with respect to the action of P on
M . (Note that N ∩M = CM�P�, so that this makes sense.) In this case, the
characters of height zero in B and b are exactly the characters of p′-degree
in these sets.

In the case where T < G, there is a p-block B0 of T such that all of the
members of Irr�B0� lie over θ and these characters are exactly the Clifford
correspondents of the members of Irr�B� with respect to the character θ.
(It follows that induction from T to G defines a bijection from Irr�B0�
onto Irr�B�.) In this case, a defect group D for B0 is also a defect group
for B and the characters of height zero in Irr�B� are exactly the characters
obtained by inducing the characters of height zero in B0 to G.

To describe the Brauer correspondent b of B in this case, write N =
NG�D� and let b0 be the block of N ∩ T corresponding to B0. Then N ∩ T
is the stabilizer in N of the Glauberman correspondent θ∗ of θ with respect
to the action of the defect group D, and the members of Irr�b0� are exactly
the Clifford correspondents of the characters in Irr�b� with respect to the
character θ∗ ∈ Irr�N ∩M�. In this situation, the characters of height zero
in b are exactly the characters obtained by inducing the characters of height
zero in b0 to N .

Given a p-block B of G with defect group D, let N = NG�D�. By analogy
with our earlier construction, We would like to associate to each height-zero
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character χ ∈ Irr�B� a unique N-orbit of linear characters of D. We con-
struct this block-association map recursively, as follows. Let M�θ, and T
be as in the foregoing discussion, where D is a defect group of the block
B0 of T . If T = G, then D is a Sylow p-subgroup of G and the height-zero
characters of B are exactly the characters of p′-degree in Irr�B�. To each
of these, we have previously (in Section 3) associated an N-orbit of lin-
ear characters of D, and these are the linear characters of D that we now
block-associate with χ.

If T < G, then we can suppose D is a defect group of the block B0 of T ,
and by the inductive hypothesis, we can assume that we have already block-
associated with each height-zero character η ∈ Irr�B0� an �N ∩ T �-orbit of
linear characters of D. If χ ∈ Irr�B� has height zero, we know that χ = ηG
for some unique character η in Irr�B0�, and furthermore, η has height zero
in B0. We block-associate with χ the full N-orbit of linear characters of D
that contains the �N ∩ T �-orbit that was block-associated with η.

Of course, the construction that we have just given appears to depend
on the choice of θ. We now show, however, that the N-orbit ( of linear
characters of D block-associated with the height-zero character χ ∈ Irr�B�
is unambiguously determined; it is independent of the choice of θ. Write
χ = ηG, where η ∈ Irr�B0�, and let , be the �N ∩ T �-orbit of linear char-
acters of D that is block-associated with η. (Working by induction on �G�,
we can suppose that , is unambiguously determined by η.) Now suppose
that we replace θ by θg. Then T is replaced by Tg and the block B0 of
T is replaced by the block �B0�g of Tg, which we are assuming also has
defect group D. Since Dg is also a defect group of this block, we know
that Dgt = D for some element t ∈ Tg. Since θg = θgt , we can replace g
by gt and assume that g normalizes D. When we carry out our construc-
tion with θg in place of θ, therefore, the �N ∩ T �-orbit , will be replaced
by the �N ∩ Tg�-orbit ,g. But since g ∈ N , both , and ,g are contained
in the same N-orbit (, and this shows that, as claimed, ( depends only on
χ and is independent of the choice of θ. Block-association therefore yields
an unambiguous assignment of linear characters of the defect group D of
B to the height-zero characters in Irr�B�.

We should mention that even in the case where the defect group D is a
full Sylow p-subgroup of G, and hence a height-zero character χ ∈ Irr�B�
lies in Irrp′ �G�, it is not clear that the linear characters of D that we have
just block-associated with χ are the same as the linear characters that we
associated with χ in Section 3. (Of, course, in the case where T = G, we
do get the same linear characters.)

(5.1) Lemma. Let B be a p-block of a p-solvable group G and suppose
that a defect group D of B is normal in G. If χ ∈ Irr�B� has height zero,
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then the linear characters of D that are block-associated with χ are exactly the
irreducible constituents of χD.

Proof. Choose θ and T as usual. If T = G, then D ∈ Sylp�G� and
the linear characters of D that are block-associated with χ are just the
associated linear characters in the sense of Section 3. Since D �G, we know
that these are exactly the irreducible constituents of χD.

We can suppose, therefore, that T < G, and using our previous notation,
we write χ = ηG, where η has height zero in B0. Also, D is a normal defect
group of B0, and so by our inductive hypothesis, the linear characters of
D that are block-associated with η are the irreducible constituents of ηD.
Since χ = ηG, we see that the G-orbit containing these linear characters
consists exactly of the set of irreducible constituents of χD.

We also need the following result, which is a refinement of Theorem 3.4(b).

(5.2) Theorem. Suppose that G is p-solvable and let P ∈ Sylp�G�. Write
N = NG�P� and let M �G be a p′-subgroup. Suppose that θ ∈ Irr�M�, where
θ is G-invariant and let θ∗ ∈ Irr�N ∩M� be the Glauberman correspondent
of θ with respect to the action of P . Then the number of p′-special characters
in Irr�G � θ� is equal to the number of p′-special characters in Irr�N � θ∗�.
Proof. In a p-solvable group X, the restriction map to p-regular ele-

ments defines a bijection from the set of p′-special characters of X onto
the set of irreducible Brauer characters of X having p′-degree. These are
exactly the irreducible Brauer characters of X for which a full Sylow p-
subgroup of X is a vertex.

We want to apply the results of [8] in the case where the prime set π of
that paper is p′. In this case, the quantity n�G�θ� P� of [8] is the number
of irreducible Brauer characters of G that lie over θ and have vertex P .
By Theorem 6.3 of [8], we have n�G�θ� P� = n�NM�θ� P�. Also, we can
apply Theorem 6.4 of that paper to the group NM , and we deduce that
n�NM�θ� P� = n�N�θ∗� P�. It follows that n�G�θ� P� = n�N�θ∗� P�. The
proof is now complete.

Now let λ be a linear character of D, where D is a defect group of the
p-block B of G, where G is p-solvable. We want to count the number of
height-zero characters of B that are block-associated with λ. Our result is
the block analog of Theorem A.

(5.3) Theorem. Let B be a p-block of the p-solvable group G, let D be
a defect group of B, and write N = NG�D�. Let b be the block of N that is
the Brauer correspondent of B and let λ be an arbitrary linear character of D.
Then the number of height-zero characters in Irr�B� that are block-associated
to λ is nonzero and is equal to the number of height-zero characters in Irr�b�
that are block-associated with (or equivalently, lie over) λ.
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Proof. Let θ, T , and B0 be as before, where D is also a defect group
of the block B0. Assume first that T = G, so that Irr�B� = Irr�G � θ� and
Irr�b� = Irr�N � θ∗�, where θ∗ is the Glauberman correspondent of θ with
respect to the action of D on M = Op′ �G�. In this case, D ∈ Sylp�G�
and the height-zero characters χ ∈ Irr�B� and θ ∈ Irr�b� that are block-
associated with λ are exactly the members of Irrp′ �G � θ� and Irrp′ �N � θ∗�
that are associated with λ in the sense of Section 3.

Let W ⊇ D be maximal such that λ extends to W and let γ be the p-
special extension of λ to W . The members of Irrp′ �G� that are associated
with λ are exactly the characters of the form χ = �αγ�G, where α runs over
the p′-special characters of W .

Now M ⊆ W and M ⊆ ker γ, and thus χ = �αγ�G lies over θ if and
only if α lies over θ. In other words, the number of members of Irrp′ �G � θ�
that are associated with λ is equal to the number of p′-special characters
α of W that lie over θ, and we must show that this number is equal to the
number of members of Irr�N� that lie over both θ∗ and λ. (Note that since
D is a full Sylow p-subgroup of N in this case, all irreducible characters of
N that lie over the linear character λ necessarily have p′-degree.)

Observe that �N ∩M�D �N and that this group is the direct product
of N ∩M and D. Also, the irreducible characters of N that lie over both
θ∗ and λ are exactly the members of Irr�N� that lie over θ∗ × λ, and of
course, this number is nonzero. Furthermore, the stabilizer of θ∗ × λ in N is
exactly the stabilizer of λ in N , and this stabilizer is N ∩W . By the Clifford
correspondence, therefore, the number of irreducible characters of N that
lie over both θ∗ and λ is equal to the number of irreducible characters of
N ∩W that lie over both θ∗ and λ. These characters of N ∩W are exactly
the characters of the form γN∩W β, where β runs over the characters of N ∩
W that lie over θ∗ and over the principal character of D. Finally, we observe
that since D is a Sylow p-subgroup of N ∩W , the characters β that we must
count are exactly the p′-special characters of N ∩W that lie over θ∗. We
know that this number is equal to the number of p′-special irreducible
characters α of W that lie over θ. (This is Theorem 5.2, applied to the
group W .) The result now follows in this case. We can now assume that
T < G, and thus the number of height-zero characters in Irr�B� that are
block-associated with λ is equal to the number of height-zero characters in
Irr�B0� that are block-associated with some N-conjugate of λ. Working by
induction on �G�, we can assume that this number is nonzero and is equal to
the number of height-zero characters of b0 that lie over some N-conjugate
of λ, where b0 is the block of T ∩N that is the Brauer correspondent of B0.
Since induction defines a bijection from the set of height-zero characters
in Irr�b0� onto the set of the height-zero characters in Irr�b�, and this map
carries the characters lying over some N-conjugate of λ to the characters
lying over λ, the result follows.
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In order to prove Theorem G of the introduction, we need the following
block analog of Theorem B.

(5.4) Theorem. Let G be p-solvable and suppose B is a block of G with
defect group D. Let σ be an automorphism of the cyclotomic field ��G� such
that σ has p-power order and fixes all p′-roots of unity. Then σ fixes a height-
zero character χ ∈ Irr�B� if and only if it fixes the linear characters of D that
are block-associated with χ.

Proof. We observe first that a linear character λ of D is σ-fixed if and
only if every linear character in the N-orbit of λ is σ-fixed. (This is because
the actions of N and �σ� on the set of linear characters of D commute.)
Let θ, T , and B0 be as usual, and observe that if T = G, then the result
follows by Theorem B. We can assume, therefore, that T < G and we write
χ = ηG where η ∈ Irr�B0� has height zero.

Since θ is a character of the p′-subgroupM = Op′ �G�, we see that θ is σ-
invariant, and thus σ fixes χ if and only if it fixes its Clifford correspondent
η. Working by induction on �G�, we know that σ fixes η if and only if it
fixes the linear characters of D that are block-associated with η. But these
are among the linear characters of D that are block-associated with χ, and
the result follows.

We can now prove Theorem G of the Introduction, which we restate here
for convenience.

(5.5) Theorem. Suppose that G is p-solvable and that B is a p-block
of G with Brauer correspondent b. Let σ be an automorphism of the cyclo-
tomic field ��G� and assume that σ has p-power order and fixes p′-roots of
unity. Then Irr�B� and Irr�b� contain equal numbers of σ-fixed height-zero
characters.

Proof. Let D be a defect group of B such that b is a block of NG�D�.
By Theorem 5.3, we know that for each linear character λ of D, the sets
Irr�B� and Irr�b� contain equal numbers of height-zero characters that are
block-associated with λ. Also, by Theorem 5.4, we know that the height-
zero characters (of both sets) that are block-associated with λ are σ-fixed
if and only if λ is σ-fixed. The result now follows.

Finally, we prove Theorem H, which we also restate.

(5.6) Theorem. Let G be p-solvable and suppose that B is a p-block of
G with defect group D. Then D/D′ has exponent dividing pe if and only if the
field automorphism σe fixes all height-zero members of Irr�B�.
Proof. By Theorem 5.4, we know that the field automorphism σe fixes

all of the height-zero characters in Irr�B� if and only if it fixes all of the
linear characters of D. (We are using the fact, established in Theorem 5.3,
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that every linear character of D is block-associated with some height zero
character in Irr�B�.) We also know that a linear character λ of D is fixed by
σe if and only if its order divides pe. Since the exponent of D/D′ is equal to
the exponent of the group of linear characters of D, the result follows.

6. MORE ON SATELLITES

We conclude with one additional result about satellites of characters in
Bπ�G�.

(6.1) Theorem. Suppose that G is π-separable. Then every member of
Irr�G� is a satellite of some character in Bπ�G� if and only if G has a normal
Hall π-subgroup.

Proof. Suppose first that all characters χ ∈ Irr�G� are satellites. We
claim that this hypothesis is inherited by all factor groups of G. To see
this, let N �G and suppose that N ⊆ ker�χ�, where χ ∈ Irr�G�. Suppose
that χ is a satellite of ψ ∈ Bπ�G�, and let �W�γ� be a nucleus for ψ, so that
we can write χ = �αγ�G, where α ∈ Irr�W � is π ′-special. It follows that
N ⊆ ker�αγ�, and hence since γ is π-special and α is π ′-special, it follows
that N ⊆ ker�γ� and N ⊆ ker�α�. In particular, since γG = ψ, we see that
N ⊆ ker�ψ� and we can view both ψ and χ as characters of G/N .

It is not hard to see from the construction of a nucleus that if we view γ
as a character of W/N , then the pair �W/N�γ� is a nucleus for ψ, viewed as
a character of G/N , and in fact, ψ ∈ Bπ�G/N�. Also, α can be viewed as
a π ′-special character of W/N , and it follows that χ = �αγ�G is a satellite
of ψ, viewed as characters of G/N .

Working by induction on �G�, we can assume that every proper homo-
morphic image of G has a normal Hall π-subgroup, and so we can suppose
that Oπ�G� = 1 and that 1 < M < K, where M = Oπ ′ �G� and K/M is the
normal Hall π-subgroup of G/M . We work to derive a contradiction.

Let H be a Hall π-subgroup of G. Then 1 < H ⊆ K, but H is not normal
in K since Oπ�K� ⊆ Oπ�G� = 1. It follows that H does not centralize M ,
and it is well known that this implies that there exists β ∈ Irr�M� such
that H does not stabilize β, and in particular, β is not invariant in K.
Since K �G, it follows that no irreducible character of K that lies over any
G-conjugate of β can have π ′-degree.

Now let χ ∈ Irr�G� lie over β. By hypothesis, χ is a satellite of some
member ψ ∈ Bπ�G�, and thus we can write χ = �αγ�G, where α is some
π ′-special character of W and �W�γ� is a nucleus for ψ. Since ψ ∈ Bπ�G�
and M �G is a π ′-group, we know that M ⊆ ker�ψ�, and thus since K/M
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is a π-group, the irreducible constituents of ψK are π-special. It follows
from the construction of a nucleus that K ⊆ W . Since χ = �αγ�G and χ
lies over β, we see that αγ lies over some G-conjugate of β.

Since γ is π-special, we know that M ⊆ ker�γ� and it follows that α lies
over a G-conjugate of β. But α is π ′-special, and hence it has π ′-degree.
The irreducible constituents of αK , therefore, have π ′-degree and lie over
G-conjugates of β, and this is the desired contradiction.

Conversely now, assume that the Hall π-subgroup H of G is normal.
Let χ ∈ Irr�G� be arbitrary and let δ be an irreducible constituent of χH .
Since δ is π-special, we know by the general theory in [4] that there exists a
character ψ ∈ Bπ�G� such that ψ lies over δ, and we let �W�γ� be a nucleus
for ψ. It is easy to see that H ⊆ W . Also, since �W � H� is a π ′-number, we
see that the π-special character γ restricts irreducibly to H. If we replace δ
by an appropriate G-conjugate, we can therefore assume that γH = δ, and
thus W is contained in the stabilizer T of δ in G.

SinceH is a normal Hall π-subgroup, it follows that δ extends to some π-
special character δ̂ of T , and we see that δ̂W is π-special, and thus δ̂W = γ.
But γG = ψ is irreducible, and thus γ cannot be extended to any subgroup
properly larger than W . We deduce that T = W , and thus χ is induced from
some character of W lying over δ. But every such character has the form
αγ, where α is a character of W/H, and hence α is π ′-special. It follows
that χ = �αγ�G is a satellite of ψ, and the proof is complete.

REFERENCES

1. J. L. Alperin, The main problem of block theory, in “Proceedings of the Conference on
Finite Groups (Univ. of Utah, Park City, Utah, 1975),” pp. 341–356, Academic Press,
New York, 1976.

2. D. Gajendragadkar, A characteristic class of characters of finite π-separable groups,
J. Algebra 59 (1979), 237–259.

3. I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973),
594–635.

4. I. M. Isaacs, Characters of π-separable groups, J. Algebra 86 (1984), 98–128.
5. I. M. Isaacs, Extensions of characters from Hall π-subgroups of π-separable groups, Proc.

Edinburgh Math. Soc. 38 (1985), 313–317.
6. I. M. Isaacs, Fong characters in π-separable groups, J. Algebra, 99 (1986), 89–107.
7. I. M. Isaacs, Induction and restriction of π-special characters, Canad. J. Math. 38 (1986),

576–604.
8. I. M. Isaacs and G. Navarro, Weights and vertices for characters of π-separable groups,

J. Algebra 177 (1995), 339–366.
9. G. Navarro, New properties of the π-special characters, J. Algebra 187 (1997), 203–213.

10. T. Okuyama and M. Wajima, Irreducible characters of p-solvable groups, Proc. Japan
Acad. Ser A 55 (1979), 309–312.

11. M. Slattery, π-blocks of π-separable groups, J. Algebra 102 (1986), 60–77.
12. T. R. Wolf, Variations on McKay’s character degree conjecture, J. Algebra 135 (1990),

123–138.


	1.INTRODUCTION
	2.THE MAP PSI
	3.SATELLITE CHARACTERS
	4.SUBNORMAL SUBGROUPS
	5.BLOCKS
	6.MORE ON SATELLITES
	REFERENCES

