
European Journal of Combinatorics 33 (2012) 336–339

Contents lists available at SciVerse ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Ramsey-type constructions for arrangements of segments
Jan Kynčl
Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI)1 , Charles University, Faculty of
Mathematics and Physics, Malostranské nám. 25, 118 00 Prague, Czech Republic

a r t i c l e i n f o

Article history:
Available online 10 October 2011

a b s t r a c t

Improving a result of Károlyi, Pach and Tóth, we construct an
arrangement of n segments in the plane with at most nlog 8/ log 169

pairwise crossing or pairwise disjoint segments. We use the
recursive method based on flattenable arrangements which was
established by Larman, Matoušek, Pach and Törőcsik.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An arrangement of segments is a finite set of compact straight-line segments in the plane in general
position (i.e., no three endpoints are collinear). We study the following Ramsey-type problem [6]:
what is the largest number r(k) such that there exists an arrangement of r(k) segments with at most
k pairwise crossing and at most k pairwise disjoint segments?

Larman et al. [6] proved that k5 ≥ r(k) ≥ klog 5/ log 2 > k2.3219. The upper bound has remained
unchanged since then. Károlyi et al. [3] improved the lower bound to r(k) ≥ klog 27/ log 4 > k2.3774.

We improve the construction for the lower bound even further and prove the following theorem.

Theorem 1. For infinitely many positive integers k, there exists an arrangement of klog 169/ log 8 > k2.4669
segments with at most k pairwise crossing and at most k pairwise disjoint segments.

Similar questions were studied by Fox et al. [2] for string graphs, a class of graphs generalizing
intersection graphs of segments. They proved, as a consequence of a stronger result, that for each
positive integer k there is a constant c(k) > 0 such that in any system of n curves in the plane where
every two curves intersect in atmost k points, there is a subset of nc(k) curves that are pairwise disjoint
or pairwise crossing.

In an extended version of this paper [5], we also show examples of arrangements of segments that
cannot be flattened.
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Fig. 1. A Cayley graph Cay(Z13; 1, 5).

2. Proof of Theorem 1

Both previous constructions for the lower bound [3,6] use the same approach. The starting
configuration is an arrangement M0 of n0 segments with at most k0 pairwise crossing or pairwise
disjoint segments. In the i-th step, an arrangement Mi of ni+1

0 segments is constructed from the
arrangement Mi−1 by replacing each of its segments by a flattened copy (a precise definition will
follow) ofM0, which acts as a ‘‘thick segment’’. Then two segments from different copies ofM0 cross if
and only if the two corresponding segments inMi−1 cross. Our new arrangementMi has then at most
ki+1
0 pairwise crossing or pairwise disjoint segments. This gives a lower bound r(k) ≥ klog n0/ log k0 for

infinitely many values of k.
We improve the construction by making a better starting arrangement. Unlike the previous

constructions, our basic pieces will be arrangements with different maximal numbers of pairwise
crossing and pairwise disjoint segments. By putting them together, we obtain our starting
arrangement M0.

Let Cay(Z13; 1, 5) denote the Cayley graph of the cyclic group Z13 corresponding to the generators
1 and 5. That is, V (Cay(Z13; 1, 5)) = {1, 2, . . . , 13} and E(Cay(Z13; 1, 5)) = {{i, j}; 1 ≤ i < j ≤

13, (j − i) ∈ {1, 5, 8, 12}}. See Fig. 1.

Lemma 2. The graph Cay(Z13; 1, 5) contains no clique of size 3 and no independent set of size 5.

Proof. Suppose that a < b < c are three vertices of Cay(Z13; 1, 5) inducing a clique. Then the
numbers k = c − a, l = c − b and m = b − a belong to the set {1, 5, 8, 12}, but this set contains no
triple k, l,m satisfying the equation k = l + m; a contradiction.

Now suppose that A = {a < b < c < d < e} is an independent set of Cay(Z13; 1, 5). By the
pigeon-hole principle, A contains two vertices with difference 2 (modulo 13). Thus, we can, without
loss of generality, assume that a = 1 and b = 3. It follows that {c, d, e} ⊆ {5, 7, 10, 12}. But A cannot
contain both 5 and 10, neither both 7 and 12. Hence |A ∩ {5, 7, 10, 12}| ≤ 2; a contradiction. �

A (k, l)-arrangement is an arrangement of segments with at most k pairwise crossing and at most
l pairwise disjoint segments.

An intersection graph G(M) of an arrangement M is a graph whose vertices are the segments of M
and two vertices are joined by an edge if and only if the corresponding segments intersect.

An arrangement M of segments is flattenable if for every ε > 0 there is an arrangement Mε with
G(Mε) = G(M) and two discs D1,D2 of radius ε whose centers are at unit distance, such that each
segment from Mε has one endpoint in D1 and the second endpoint in D2. A flattened copy of M is the
arrangement Mε with sufficiently small ε.

The key result is the following lemma.

Lemma 3. (1) There exists a flattenable (2, 4)-arrangement of 13 segments.
(2) There exists a flattenable (4, 2)-arrangement of 13 segments.
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Table 1
ArrangementMa(ε).

Left x Left y Right x Right y

1 −ε 0 1 − 2ε 2ε2
+ 2ε6

2 ε2 ε − ε3 1 − ε2 ε3

3 0 ε4
+ ε6 1 ε3

+ 3ε4

4 0 ε4
− ε6 1 − 2ε 2ε2

− ε6

5 −ε + ε2 0 1 − 2ε2 2ε3
− 2ε4

6 −ε 2ε6 1 − ε 2ε6

7 0 ε6 1 ε3
+ 2ε4

8 0 ε 1 + ε3 0
9 0 ε 1 − 2ε2 2ε3

− ε4

10 −ε2
+ 3ε3 3ε6 1 − 2ε 2ε2

+ ε6

11 −ε2 ε6 1 − 2ε2 2ε3
− 3ε4

12 0 ε4 1 0
13 −ε 0 1 + ε 0

Table 2
ArrangementMb(ε).

Left x Left y Right x Right y

1 ε ε2
− ε3

+ ε4
− 2ε5 1 + ε2

−ε4
+ ε6

2 0 ε2
+ 3ε5 1 − ε3 ε7

3 0 ε2
+ 4ε5 1 + ε −ε3

4 0 2ε3 1 + 3ε4
−ε8

5 ε − ε2
+ ε3 ε2

− ε3
+ ε4

− ε8 1 + ε −ε4

6 0 ε2
+ ε5 1 + ε −ε3

7 0 ε2
+ 5ε5 1 + 3ε4

−3ε7

8 ε − ε2
+ ε3

+ ε4
+ 2ε5 ε2

− ε3
+ ε4

+ ε5
+ ε6 1 + ε − ε4

−ε3

9 0 ε2 1 + ε −ε4

10 0 0 1 + 5ε3 0
11 0 ε2

+ 2ε5 1 + 3ε4
− 2ε5 ε8

12 ε − ε3 ε3
− ε4 1 + ε −ε4

13 0 0 1 ε

Note that 13 is the largest possible number of segments for these two types of arrangements since
every graph with more than 13 vertices contains either a clique of size 5 or an independent set of
size 3 [7].

Both previous constructions [3,6] used convex starting arrangement, i.e., an arrangement of
segments with endpoints in convex position. Convex arrangements are flattenable by a relatively
simple argument [3]. However, Kostochka [4] proved that any convex (k, k)-arrangement has at most
(1 + o(1)) · k2 log k segments. He also gave a construction of a convex (k, k)-arrangement with
Ω(k2 log k) segments (see also [1]). Černý [1] investigated convex (k, l)-arrangements for small values
of k. He showed, in particular, that any convex (2, 4)-arrangement has at most 12 segments, and any
convex (4, 2)-arrangement has at most 11 segments.

Our starting arrangements thus cannot be convex. Hence their flattening will require a special
approach.

Proof. For each sufficiently small ε > 0, we construct an arrangement Ma(ε) with intersection
graph Cay(Z13; 1, 5) and an arrangement Mb(ε) whose intersection graph is the complement of
Cay(Z13; 1, 5). See Fig. 2 for an illustration.

In Tables 1 and 2, we provide precise coordinates of the endpoints of all the 13 segments, as
functions of ε. To achieve general position of the segments, which is required by our definition, we
can slightly perturb the endpoints while preserving the intersection graph of the arrangement.

Since the coordinates of all the left endpoints converge to (0, 0) and the coordinates of all the
right endpoints converge to (1, 0), it remains to verify that for sufficiently small ε > 0, each of these
two described arrangements has the desired intersection graph. This is a straightforward calculation,
which can be done by the following simple algorithm.
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Fig. 2. A partially flattened (4, 2)-arrangement of 13 segments (left) and a (2, 4)-arrangement of 13 segments (right).

We use the fact that the functions describing the coordinates are polynomials in ε. For i ∈

1, 2, . . . , 13, let si be the i-th segment of the arrangement and let lx(i), ly(i), rx(i), ry(i) be the
polynomials representing the coordinates of the left and the right endpoint of si. For each pair i < j,
we need to determine whether si and sj cross if ε is small enough.

Let s be a segment with endpoints (lx, ly) and (rx, ry) and let s′ be a segment with endpoints (l′x, l
′
y)

and (r ′
x, r

′
y). Let p be the line containing s, and let p′ be the line containing s′. The segments s and s′

intersect if and only if s′∩p ≠ ∅ and s∩p′
≠ ∅.We have p = {(x, y); ax+by+c = 0}, where a = ry−ly,

b = rx − lx and c = rxly − lxry. Thus, s′ ∩ p ≠ ∅ if and only if (al′x + bl′y + c)(ar ′
x + br ′

y + c) ≤ 0. The
relation s ∩ p′

≠ ∅ can be expressed similarly.
The algorithm now follows. For each i, compute the polynomials ai = ry(i)− ly(i), bi = rx(i)− lx(i)

and ci = rx(i)ly(i)− lx(i)ry(i). Then for each pair i ≠ j, compute the polynomial di,j = (ailx(j)+bily(j)+
ci)(airx(j) + biry(j) + ci). Now si and sj intersect if and only if each di,j and dj,i is nonpositive in some
positive neighborhood of 0. That is, the polynomial is either zero or the coefficient by the non-zero
term of the smallest order is negative.

A program verifying both constructions can be downloaded from the following webpage:
http://kam.mff.cuni.cz/~kyncl/programs/segments. �

Nowwe are ready to finish the proof of Theorem1. Take a sufficiently flattened arrangementMa(ε)
and replace each of its segments by a copy of a sufficiently flattened arrangement Mb(δ). In this way,
we obtain our starting flattenable (8, 8)-arrangement M0 of 169 segments. Then we proceed by the
method described at the beginning of this section.
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