
International Journal of Solids and Structures 51 (2014) 93–110
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
A coupled elastoplastic-damage constitutive model with Lode angle
dependent failure criterion
0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.09.015

⇑ Corresponding author.
E-mail address: borja@lms.polytechnique.fr (B. Erice).
Borja Erice a,⇑, Francisco Gálvez b

a Solid Mechanics Laboratory (CNRS-UMR 7649), Department of Mechanics, École Polytechnique, Palaiseau, France
b Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Univesidad Politécnica de Madrid, UPM, Calle del profesor Aranguren s/n, 28040 Madrid, Spain

a r t i c l e i n f o
Article history:
Received 22 January 2013
Received in revised form 3 September 2013
Available online 25 September 2013

Keywords:
Weakening
Nickel-base superalloy
Finite element
High strain rate
Constitutive equations
a b s t r a c t

A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion for high
strain and ballistic applications is presented. A Lode angle dependent function is added to the equivalent
plastic strain to failure definition of the Johnson–Cook failure criterion. The weakening in the elastic law
and in the Johnson–Cook-like constitutive relation implicitly introduces the Lode angle dependency in
the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718
nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened con-
stitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide
reliable results. Additionally, the mesh size dependency on the prediction of the fracture patterns was
studied, showing that was crucial to predict such patterns.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The material models that are typically used for the ductile met-
als may be classified according to their formulation as uncoupled
and coupled. In the former the failure criterion does not affect to
the constitutive relationships, whereas in the latter the accumu-
lated damage weakens somehow the elastic moduli, the constitu-
tive relationships or both. Several uncoupled material models
with third deviatoric invariant dependent yield function and fail-
ure criterion can be found in the literature such as the published
by Wilkins et al. (1980), Bai and Wierzbicki (2008) or Bai and
Wierzbicki (2010). Nevertheless, such models are not the only ones
that account for the third invariant dependency. Other uncoupled
models with independent failure criteria also can be found. In a re-
cent investigation, Kane et al. (2011) used a Johnson–Cook-like
constitutive relationship combined with two uncoupled failure cri-
teria: Cockcroft–Latham (Cockcroft and Latham, 1968) criterion
and a Continuum Damage Mechanics (CDM) based criterion
(Lemaitre, 1996). They show the effect that the Lode parameter
has in the fracture strain. Conversely, the coupled models prefer
to employ classical metal yield functions such and von Mises yield
function and insert the third invariant in the plasticity through
elastoplastic-damage coupled constitutive relationships. That is
the case of the models proposed Wierzbicki and Xue (Xue, 2007;
Xue and Wierzbicki, 2008) or Nahshon and Hutchinson (2008).
The conclusion achieved by all the authors using all those material
models is almost equivalent. The third deviatoric invariant should
be introduced in the model if complex fracture patterns are to be
captured.

In the recently postulated JCX model by Chocron et al. (2011),
the introduction of the third deviatoric invariant in the uncoupled
Johnson–Cook model was investigated. In accordance with the pre-
viously stated, one of the conclusions that such research arose was
that it was not possible to obtain complex fracture patterns unless
the third invariant was somehow included in the plasticity model.
In the JCX material model the third invariant was added by using a
Lode angle dependent function. This formulation implied a non-
convex yield surface. Although it was demonstrated that it was a
perfectly valid formulation, non-convex yield surfaces are
unorthodox in metal plasticity. With the same background, a
new formulation using a von Mises yield surface and a coupled
elastoplastic-damage constitutive model is now proposed.

Since the model is intended for high strain rate phenomena and
ballistic applications, the Johnson–Cook model (Johnson and Cook,
1985, 1983) is taken as a basis. The objective is to use a Lode angle
dependent function only in the definition of the equivalent plastic
strain to failure. The coupled elastoplastic-damage constitutive
model, similar to the damage coupled Johnson–Cook model pre-
sented by Børvik et al. (2001), carries out the rest. The influence of
third deviatoric invariant is then implicitly included with the help
of the coupled relationship. The concept of including the third devi-
atoric invariant in such a way to obtain complex fracture patterns
like slanted cracks, was ascertained by Xue and Wierzbicki (2009).
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An extensive experimental campaign was carried out in order to
calibrate the postulated model for the precipitation hardened Inco-
nel 718 nickel-base superalloy. The mechanical tests were per-
formed by employing different geometries and testing
techniques. Therefore, they were divided in the three following
groups:

� Quasi-static tensile tests of axisymmetric smooth and notched
specimens at room temperature.
� Quasi-static tensile tests of plane specimens.
� Dynamic tests of smooth axisymmetric specimens at various

temperatures.

Numerical simulations of all the tests using the explicit version
of LS-DYNA non-linear finite element code were carried out in or-
der to check the validity of the model. The capability of the pro-
posed material model in terms of reproducing fracture patterns
was also studied. The effect of the mesh size on such patterns
was found as crucial.
2. The model

2.1. Stress invariant representation

Any yield surface can be described by using the r stress tensor
invariants I1, I2 and I3 (Souza et al., 2008). This representation is ex-
tremely useful, given that in most of the cases it is associated to a
geometric interpretation in the principal stress space. A scalar yield
function /ðI1; I2; I3Þ represents a surface in the principal stress
space ðr1;r2;r3Þ. Nevertheless, a combination of another three
invariants ðrH; J2; hÞ is more common. Thus, the yield function
can also be a function of them as:

/ ¼ /ðI1; I2; I3Þ ¼ /ðrH; J2; hÞ ð1Þ

where rH ¼ 1=3I1 ¼ 1=3trðrÞ is the hydrostatic stress, J2 is the sec-
ond deviatoric stress invariant and h is the Lode angle. The first
invariant is related with the stress tensor, whereas the other two
are related with the deviatoric stress tensor.

In metals, this dependency is usually neglected (Hill, 1950).
Therefore, for metal plasticity the yield function can be written
as /ðJ2; hÞ. As an example, two of the most extensively used yield
functions are depicted in Fig. 1, von Mises and Tresca yield crite-
Fig. 1. von Mises and Tresca yield criteria. Geometric interpretation of the three
invariants (rH ; J2; h) in the principal stress space.
rion. The former is only J2 dependent, whereas the latter is J2; h
dependent.

The second and third deviatoric stress invariants J2 and J3,
respectively are:

J2 ¼ �I2ðr0Þ ¼
1
2

trðr02Þ ¼ 1
2
r0 : r0 ð2Þ

J3 ¼ I3ðr0Þ ¼ detðr0Þ ¼ 1
3

trðr0Þ3 ð3Þ

Typically, the third invariant is not used per se in the formula-
tion of the yield function. Another invariant is used in exchange,
the Lode angle. The main reason is that this last invariant has a
clear geometric interpretation in the principal stress space. The
Lode angle h is:

h ¼ �1
3

sin�1 3
ffiffiffi
3
p

J3

2J3=2
2

 !
¼ �1

3
sin�1 27J3

2r3

� �
ð4Þ

The Lode angle takes values from �p=6 6 h 6 p=6
(�30� 6 h 6 30�), with the angle being between r0 and nearest
pure shear line (see Fig. 1). According to the definition, h ¼ �30�

represents an axisymmetric tensile stress state, while h ¼ 30� rep-
resents an axisymmetric compression stress state. Between them,
h ¼ 0� is for a pure shear stress state.

Since the Lode angle represents the different stress states can
be also used to define the strain to failure. Most ductile fracture
criteria are based on nucleation, growth and coalescence of
voids. The void growth inside the material is considered to be
stress triaxiality-driven. Hence, the strain to failure can also be
expressed as a function of the stress triaxility r� ¼ rH=r and
the Lode angle.
2.2. Constitutive model

The model was designated as Johnson–Cook–Xue-damage
(JCXd) to distinguish it from the uncoupled version JCX postulated
by Chocron et al. (2011). The details of the numerical implementa-
tion can be found in Erice (2012).

Assuming the additive decomposition of the strain tensor as:

e ¼ ee þ ep ð5Þ

the coupled elastic-damaged law reads:

r ¼ wðDÞC : ee ¼ wðDÞC : ðe� epÞ ð6Þ

where wðDÞ is the weakening function defined as:

wðDÞ ¼ 1� Db ð7Þ

where D is the damage parameter and b is a material constant. C is
the fourth-order isotropic tensor of elastic moduli given by:

C ¼ K � 2G
3

� �
I � I þ 2GI ¼ mE

ð1þ mÞð1� 2mÞ I � I þ E
ð1þ mÞ I ð8Þ

where E is the elastic modulus, m is the Poisson’s ratio, G is the shear
modulus and K is the bulk modulus.

A classical metal plasticity yield function was adopted to model
the plastic flow, i.e. the von Mises yield function. For the JCXd
material model the yield function is:

/ðr;YJCXdÞ ¼ /ðJ2; ep; _ep; T;DÞ ¼ rðrÞ � YJCXdðep; _ep; T;DÞ ð9Þ

where is r ¼
ffiffiffiffiffiffiffi
3J2

p
the equivalent stress and YJCXd is the JCXd flow

stress defined as:

YJCXdðep; _ep; T;DÞ ¼ wðDÞYMðep; _ep; TÞ ð10Þ
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where YM represents the matrix material hardening. The hardening
of the matrix material was modelled by using a Johnson–Cook-like
relationship (Johnson and Cook, 1983) as follows:

YM ¼ YJCðep; _ep; TÞ ¼ ½Aþ Ben
p�½1þ C ln _e�p�½1� T�m� ð11Þ

where A, B, n, C and m are material constants, _e�p ¼ _ep= _e0 is the
dimensionless plastic strain rate, _e0 is the reference strain rate,
T� ¼ ðT � TrÞ=ðTr � TmÞ is the homologous temperature, T is the cur-
rent temperature and Tr is the room or reference temperature. Tm is
the melting temperature, which is defined as the temperature for
which the material holds no strength, i.e. YM ¼ 0. The only differ-
ence with the original Johnson–Cook relationship is the introduc-
tion of the initial temperature T0, which allows to have the
elements initially at the user-designated temperature maintaining
Tr constant.

The flow rule chosen was associative. Therefore, the plastic
strain rate tensor is defined as follows:

_ep ¼ _k
@/ðr;YJCXdÞ

@r
ð12Þ
2.3. Failure criterion and evolution of the internal variables

The set of internal variables chosen for the present model is:

a ¼ fep;Dg ð13Þ

where ep is the equivalent plastic strain and D is the damage param-
eter. The generalised hardening modulus (Souza et al., 2008) is then
composed by:

H ¼ fH1;H2g ð14Þ

The evolution law for the equivalent plastic strain is:

_ep ¼ _k

H1 ¼ 1
ð15Þ
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Fig. 2. Damage evolution, damage parameter and weakening function as a function
of equivalent plastic strain for a constant equivalent plastic strain to failure of 0.5.
The evolution law for the damage parameter was defined by
Xue (2007) and may be described as follows:

_D ¼ _kH2 ¼ mDðepÞmD�1 1

ef JCXd
p ðr�; _ep; T; hÞ

 !mD

_ep

H2 ¼ mDðepÞmD�1 1

ef JCXd
p ðr�; _ep; T; hÞ

 !mD
ð16Þ

where mD is a material constant and ef JCXd
p is the equivalent plastic

strain to failure. The versatility of this expression lies in the con-
stant mD. Such a constant allows shaping the damage accumula-
tion as a function of the equivalent plastic strain as can be seen
in Fig. 2. For example, for mD ¼ 1 the damage accumulation is lin-
ear, while for mD ¼ 2 the damage accumulation is quadratic. Note
that for mD ¼ 1 the Johnson–Cook damage evolution law is
recovered.

The expression for the equivalent plastic strain to failure ef JCXd
p

is:

ef JCXd
p ¼ ef JCX

p ¼ ef JC
p lhðhÞ ð17Þ

where lh is the second kind of the Lode angle dependent function
(Xue, 2007), ef JCX

p is the equivalent plastic strain defined for the
JCX model and ef JC

p is the equivalent plastic strain of the Johnson–
Cook model given by:

ef JC
p ðr�; _ep; TÞ ¼ ½D1 þ D2 expðD3r�Þ�½1þ D4 ln _e�p�½1þ D5T�� ð18Þ

where D1, D2, D3, D4 and D5 are material constants, r� ¼ rH=r is the
stress triaxiality ratio. _e�p and T� are identical as those variables
previously.

The second kind of Lode angle is one of the two different inter-
polating functions proposed by Xue (2007). In this case, the func-
tion interpolates the equivalent plastic strain to failure
corresponding to the different stress states. It is defined as:

lh ¼ cþ ð1� cÞ 6jhj
p

� �k

ð19Þ

where c ¼ ef S
p ðr�Þ=ef T;C

p ðr�Þ, is the relative ratio between the equiv-
alent plastic strain to failure corresponding to a generalised shear
(upper-script S) and an axisymmetric tension (upper-script T) or
compression (upper-script C) stress states. It should be noted that
for the sake of simplicity k has been set to the unity.

The evolution law for the temperature is given by:

_T ¼ v
qCp

r : _ep ð20Þ

The expression of the plastic multiplier comes from the consis-
tency condition ( _/ ¼ 0). The consistency condition for the postu-
lated yield function is:

_/ ¼ @/
@r

: C : ð _e� _kNÞ þ _k
@/
@ep

H1 þ _k
@/
@D

H2 ¼
@/
@r

: C : ð _e� _kNÞ

þ _k
@/

@YJCXd

@YJCXd

@ep
H1 þ

@/

@YJCXd

@YJCXd

@w
@w
@D

H2

 !

¼ @/
@r

: C : ð _e� _kNÞ � _k w
@YM

@ep
H1 � YM

@w
@D

H2

� �

¼ @/
@r

: C : ð _e� _kNÞ � _kðwHH1 � bDb�1YMH2Þ ¼ 0 ð21Þ

where H is the hardening modulus of the matrix material
H ¼ @YM=@ep. Operating in the expression above the plastic multi-
plier can be obtained as:

_k ¼
@/
@r : C : _e

@/
@r : C : N þwHH1 � bDb�1YMH2

ð22Þ
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3. Material description

The material tested was a wrought polycrystalline nickel-base
superalloy. The commercial designation for such a superalloy is
Inconel 718. The chemical composition in weight percentage is
summarised in Table 1. The alloy was precipitation hardened
according to the heat treatment summarised in Table 2. The pre-
cipitation hardened Inconel 718 nickel-base superalloy is com-
monly employed to manufacture components that work with
relatively high temperatures. Some examples of jet engine compo-
nents are turbine casings or high pressure compressor rotor blades.

4. Experiments

The consequence of the introduction of a Lode angle dependent
function in the model is that more points in the equivalent plastic
strain to failure vs. triaxiality space are needed to calibrate the fail-
ure criterion. The tensile tests of axisymmetric smooth and
notched specimens are enough to calibrate triaxiality dependent
failure criteria as Johnson–Cook (Johnson and Cook, 1985) or
Rice–Tracey (Rice and Tracey, 1969) criteria. The axisymmetric
notched specimens provide different triaxialities depending on
their notch radius (Bridgman, 1952). Nevertheless, all present the
same Lode angle value, h ¼ �30� (Bai and Wierzbicki, 2008). There-
fore, additional tests are required to calibrate Lode dependent fail-
ure criteria.

To complete those additional tests, two approaches are custom-
arily adopted. The first one consists of using machines that allow
performing tests with combined stress states (multi-axial, ten-
sion-shear, amongst others). As an example, the reader is referred
to the combined tension-torsion experiments carried out by
Barsoum and Faleskog (2007). The second approach, and relatively
more simple, consists of designing a specimen geometry capable of
developing the desired stress state in its gauge area. Shear and
plane strain specimens are those most widely employed. Many
tested shear specimens have been designed (Bai and Wierzbicki,
2008; Bao and Wierzbicki, 2004; Eriksson et al., 2006; Mae et al.,
2007).

Three groups of tests were performed for the calibration of the
JCXd material model for the precipitation hardened Inconel 718
nickel-base superalloy. The first group was composed of quasi-sta-
tic tensile tests of axisymmetric smooth and notched specimens.
The second group was constituted of quasi-static plane specimens:
shear and plane strain. Finally, the third entailed dynamic tensile
tests of smooth axisymmetric specimens.

4.1. Quasi-static tests of axisymmetric smooth and notched specimens

The geometry and dimensions of the axisymmetric smooth and
notched specimens employed are depicted in Fig. 3(a) and (b),
Table 1
Certificated chemical composition in %wt. of Inconel 718 nickel-base superalloy.

Cr Ni Mo Nb Ti Al F C Cu

19.0 52.5 3.0 5.1 0.9 0.5 18.5 0.08max 0.15max

Table 2
Heat treatment chart for the precipitation hardening of the Inconel 718 nickel-base super

Process number Initial temperature (�C) Final temperature (�C) Vacuu

1 25 720 >10-4

2 720 720 >10-4

3 720 620 >10-4

4 620 620 >10-4

5 620 RT
respectively. The tensile tests were conducted in a universal
screw-driven testing machine at a strain rate of 1.0 � 10�3 s�1.
Three geometries of axisymmetric specimens were tested: smooth,
notch radius R = 2 mm and notch radius R = 0.8 mm.

Initial triaxiality values were analytically calculated using
Bridgman’s analysis for axisymmetric notched specimens:

r� ¼ 1
3
þ ln 1þ r

2R

� �
ð23Þ

where r is the initial cross-section radius and R is the notch radius.
For all the specimens the initial Lode angle value was h ¼ �30� (see
Table 3).

The minimum cross-section diameter of the specimens was
monitored during the tests. The measures were performed by
employing two perpendicularly located laser-based micrometres
mounted on a mobile frame. The mobility of the frame allowed
measuring the minimum cross-section diameter at all times. Such
diameter measurement was used to calculate true stress and strain
values until failure as:

r ¼ F

pd2
=4

ð24Þ
e ¼ 2 ln
d0

d

� �
ð25Þ

where d0 and d are the initial and current values of the minimum
cross-section diameter, respectively, F is the load red from the load
cell. Assuming the additive decomposition of the strains, the true
plastic strain ep was calculated as:

ep ¼ e� ee ¼ e� r=E ð26Þ

where ee is the elastic strain and E is the elastic modulus. The true
stress–strain and stress–plastic strain curves of the tensile tests per-
formed with the smooth and notched axisymmetric specimens are
depicted in Fig. 4(a) and (b), respectively.

4.2. Dynamic tests of axisymmetric smooth specimens at various
temperatures

A Split Hopkinson Tension Bar (SHTB) was used to carry out dy-
namic tensile tests of axisymmetric smooth specimens. The geom-
etry and dimensions of the specimens employed are shown in
Fig. 3(c). The dimensions and set-up of the SHTB can be seen in
Fig. 6. The tests were conducted at an approximate strain rate of
1.0 � 103 s�1.

A temperature chamber was installed in the SHTB (see Fig. 5) to
perform the mechanical testing of the specimens at various tem-
peratures. The temperature chamber was controlled by a thermo-
couple attached to the specimen. In order to maintain the
properties of the bars as constant as possible with the temperature,
two René 41 nickel-base super-alloy bars were used as input and
output bars. The mass density and the elastic modulus of the
René 41 bars were qb ¼ 8240 kg=m3 and Eb ¼ 218 GPa,
respectively.
alloy.

m level (mbar) Process mode Velocity Time (h)

Heating 10 C/min. or max. velocity
Maintain 8
Cooling 	1 C/h
Maintain 8
Cooling max. velocity air cool
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Fig. 3. Dimensions and geometry of the axisymmetric smooth (a) and notched (b) specimens used for the quasi-static tensile tests and axisymmetric smooth specimens (c)
used for the dynamic tests at various temperatures.

Table 3
Triaxiality ratio, Lode angle and equivalent plastic strain to failure data from the experimental data and from numerical simulations.

Specimen Analytical Numerical simulations

r� hð�Þ f f
p

Tf ð�CÞ r� hð�Þ ef
p

Quasi-static regime _e ¼ 1:0� 103 s�1

Smooth 1/3 �30 0.320 25 0.615 �30 0.342
Notched R ¼ 2 mm 0.652 �30 0.138 25 1.337 �30 0.135
Notched R ¼ 0:8 mm 0.995 �30 0.120 25 1.650 �30 0.137
Shear 0.000 0 1.100 25 �0.018 �0.018 1.157
Plain strain 0.577 0 0.425 25 0.871 �1.551 0.401

Dynamic regime _e ¼ 1:0� 103 s�1

Smooth T0 = 25 �C 1/3 �30 0.517 282 0.800 �30 0.504
Smooth T0 = 394 �C 1/3 �30 0.600 282 0.850 �30 0.550
Smooth T0 = 589 �C 1/3 �30 0.662 636 0.840 �30 0.616
Smooth T0 = 691 �C 1/3 �30 0.693 810 0.841 �30 0.630
Smooth T0 = 781 �C 1/3 �30 0.697 909 0.845 �30 0.660
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The specimens were tested at room temperature, 394 �C, 589 �C,
691 �C and 781 �C. The input bar was 8050 mm in length and the
output 3850 mm. The diameter of both bars was 19.30 mm. The
striker bar was a 2000 mm long tubular bar. It was launched with
compressed air in the opposite direction of the wave propagation.
The striker bar impact caused a tensile elastic wave, the incident
wave. With this SHTB configuration the incident wave pulse length
was around 800 ls. The wave travelled along the input bar until it
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reached the specimen. Material and geometry mismatch caused a
reflected and transmitted wave. These three waves could be
decomposed in strains which affect input and output bars. Incident
(ei) and reflected (er) strains affect the input bar and transmitted
strain affects (et) the output bar. The strain history was recorded
with strain gauges attached to the input and output bars (see
Fig. 6). The use of strains or stresses is equivalent, given that the
bars are constantly in elastic regime. According to the elastic
one-dimensional wave propagation theory and its application to
the SHTB (Kolsky, 1963):

ei þ er ¼ et ð4:1Þ
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where ei is the strain corresponding to the incident wave, er is the
strain of the reflected wave and et is the strain of the transmitted
wave. The specimen engineering stress s is:

s ¼ Fs

A0
¼ EbAb

A0
et ð4:2Þ

where Fs is the force applied over the specimen by the SHTB, Eb is
the elastic modulus of the input and output bars and Ab is the input
and output bar cross-section area. The specimen engineering strain
e and strain rate _e are:

e ¼ �2c0

ls

Z t

0
erdt ð4:3Þ

_e ¼ �2c0

ls
er ð4:4Þ

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=qb

p
is the elastic wave propagation velocity inside

input and output bars, qb is the mass density of the bars and ls is
the specimen initial length.

Assuming the volume conservation, the well-known expres-
sions for the determination of the nominal true stress and true
strain from their corresponding engineering values (Lubliner,
1990) can be used. The expressions are as follows:

eN ¼ lnð1þ eÞ; rN ¼ sð1þ eÞ ð27Þ

The sub-index ‘‘N’’ was used to distinguish them from the true
stress and strain calculated with the current diameter measure-
ments (see Eqs. (23) and (24)). According to that stated in the pre-
vious section, the initial stress triaxiality was r� ¼ 1=3, whereas
the Lode angle was h ¼ �30� (see Table 3).

The diameter of the fractured specimens was measured by
employing an optical profilometer. Those values of the diameters
allowed calculating the equivalent plastic strain to failure values
as:

ef
p ¼ 2 ln

d0

df

� �
ð28Þ

The true nominal stress–strain curves for the axisymmetric
smooth specimens tested at various temperatures are gathered in
Fig. 7. A progressive decrease of the strength with the temperature
was clearly observed. The flow stress at 0.5% of the equivalent
plastic strain (solid blue1 circles) and equivalent plastic strain to
failure (solid red squares) are plotted against the natural logarithm
of the dimensionless strain rate and the homologous temperature
in Fig. 8(a) and (b), respectively. The former figure shows that both
flow stress and equivalent plastic strain to failure grew with the
strain rate, while the latter shows a decrease of the flow stress and
an increase of the equivalent plastic strain to failure with the
temperature.

4.3. Quasi-static tests of plane specimens

The quasi-static tensile tests of plane specimens were carried
out by using a screw-driven universal testing machine. The tests
were conducted at a strain rate of 1.0 � 10�3 s�1. Two geometries,
corresponding to two different stress states, were utilised. The
geometry and dimensions of the shear and the plane strain speci-
mens can be seen in Fig. 9(a) and (b), respectively. Both geometries
were machined from 1.6 mm thickness plates. The geometries pre-
sented here, have been previously employed in the calibration of
Lode angle dependent models by Gruben et al. (2012).

The gauge area of the shear specimens is especially designed to
develop a pure shear stress state. Therefore, the initial values for
the triaxiality and Lode angle assuming a pure shear stress state
in the gauge area, are r� ¼ 0 and h ¼ 0�.

As pointed out by Gruben et al. (2011), the small length-width
ratio of the gauge area in the plane strain specimens yields a nearly
plane strain stress state. Assuming plane strain state, the equiva-
lent stress in terms of principal stresses is:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

3
1
2
r1

� �2
s

¼
ffiffiffi
3
p

2
r1 ð29Þ

and the hydrostatic stress is given by:

rH ¼ 1=2r1 ð30Þ

The initial triaxiality and Lode angle values for the plane strain
specimen are r� ¼ 1=

ffiffiffi
3
p

 0:577 and h ¼ 0�.

The tests were recorded by using a high-resolution digital cam-
era. The images acquired by the camera were post-processed
employing an in-house Digital Image Correlation (DIC) software
programmed by Fagerholt et al. (2010). One side of the plane spec-
imens was painted in white and sprayed with black paint after-
wards to create a speckle pattern (see Fig. 10 (a) and (b)). This
speckle pattern allowed the DIC software to obtain the strain fields
in the gauge area of the specimens. Additionally, an extensometer
with 20 mm of gauge length was attached to the specimens.

The load–displacement curves of the quasi-static tensile tests of
the shear and plane strain specimens are plotted in Fig. 11(a) and
(b), respectively. The equivalent strain to failure was measured in
the most critical zone of the gauge area in both specimen geome-
tries, i.e. in the centre of the gauge areas.

5. Identification of constants

The identification of constants process for elastoplastic-damage
coupled material models is iterative by nature, since constitutive
relation is fed by the failure criterion. It can be a tough process if
the starting point for the iterative procedure is not carefully cho-
sen. The numerical simulations of the tests were an essential tool
for the calibration procedure. The JXCd material model was imple-
mented in LS-DYNA (2007) non-linear finite element commercial
code by means of a user-defined material subroutine. The time
integration was chosen explicit The element erosion was
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performed setting the stress tensor equal to zero, r ¼ 0, when the
damage parameter reached the unity, D ¼ 1. All the simulations
were carried out without mass scaling. More details on the imple-
mentation are given in Erice (2012). The calibration procedure was
ordered in four stages. In each one of these stages a set of constants
was calibrated.

5.1. Determination of A, B, n, D1, D2, D3 and the weakening exponent b

In this stage the quasi-static tests of axisymmetric smooth and
notched specimens were used. The specimens were modelled by
using eight-node solid elements with one integration point and
stiffness-based hourglass control. Forty-four elements across the
diameter were employed in the gauge area, giving an approximate
element size of 68 � 68 � 68 lm3 (see Fig. 12(a)–(c)). A prescribed
motion was imposed to the nodes corresponding to one end of the
specimen, while the movement of the nodes corresponding to the
opposite end were also constrained. The numerical simulations
were run with quasi-static loading conditions. The minimum
cross-section diameter was monitored in order to determine the
true strain.

An initial set of constants was necessary to start the iterative
process. As a first approximation, no weakening was assumed, this
is, b0 ¼ 1 (see Fig. 13). The Johnson–Cook type damage evolution
law was adopted since there was not any experimental evidence
found that suggested any other behaviour. Therefore, the material
parameter mD was set mD ¼ 1:0 yielding to the next damage evolu-
tion law:

_D ¼ 1

ef JCXd
p ðr�; _ep; T; hÞ

_ep

H2 ¼
1

ef JCXd
p ðr�; _ep; T; hÞ

ð31Þ

The initial values for the failure criterion constants D0
1, D0

2 and
D0

3, were obtained by fitting the failure locus curve on the equiva-
lent plastic strain to failure vs. triaxiality space using Bridgman’s
analysis (Børvik et al., 2001). The initial triaxiality and the



Fig. 9. Dimensions and geometry of the 1.6 mm thickness plane specimens: (a) shear specimen and (b) plane strain specimen.

Fig. 10. Plane specimens painted with a speckle pattern. (a) Shear and (b) plane strain specimens after fracture. (c,d) show in detail the fracture area of plane strain and shear
specimens, respectively.
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experimental equivalent plastic strain to failure values used for
such a fit are listed in Table 3. The strain rate dependency was ig-
nored by setting C0 ¼ D0

4 ¼ 0, and the thermal softening was deac-
tivated setting the Taylor-Quinney constant equal to zero, v0 ¼ 0.
The Lode angle dependency was also deactivated by setting c0

F ¼ 1.
The initial values of A0, B0 and n0 were determined with the

experimental true stress–plastic strain curve plotted in Fig. 4(b).
A, B and n were adjusted with a certain amount of simulation runs
of the smooth axisymmetric specimen until the stress–plastic
strain response obtained fitted the experimental one (see Table 4).

Having fixed A, B and n with the set of initial constants D0
1, D0

2

and D0
3, numerical simulations of the three axisymmetric speci-

mens were run. The purpose of such simulations was to obtain a
first approximation of the triaxiality and equivalent plastic strain
histories. It has been proven (Børvik et al., 2003, 2005; Erice
et al., 2012) that the triaxiality ratio in the centre of axisymmetric
specimens is far from being constant during tensile tests. There-
fore, the triaxiality histories were collected and averaged from
the centre of the specimens, while the equivalent plastic strains
were computed as ep ¼ 2 lnðd0=dÞ in order to compare it with the
experimental values. With those corrected values a new set of
D1

1, D1
2 and D1

3 was determined.
The weakening exponent was calibrated only by employing the

true-stress strain curve of the smooth axisymmetric specimen. A
constant value of ef JCXD

p ¼ D1
1 þ D1

2 expð1=3D1
3Þ 
 0:5 was assumed

for the estimation of the weakening exponent b. Otherwise, the
calculation of the weakening function would not be trivial task.
The effect of the weakening exponent b on the constitutive relation
YJCXD ¼ ð1� DbÞðA0 þ B0en0

p Þ is plotted in Fig. 13. After a few simula-
tion runs, the value b ¼ 6:0 was chosen as a good value for the
weakening exponent. Once the constants of the damage evolution
and weakening function were fixed, mD ¼ 1:0 and b ¼ 6:0, several
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simulations of the three axisymmetric specimens were run modi-
fying Dk

1, Dk
2 and Dk

3 until the best fit with the experimental results
was obtained.

The equivalent plastic strain to failure expression of the JCXd
model as a function of the triaxiality is plotted in Fig. 14(a) as a
black solid curve. It should be mentioned that such a curve is for
values with constant Lode angle of h ¼ �30�, therefore lh ¼ 1:0.
The dashed green lines show the evolution of the equivalent plastic
strain as a function of the triaxiality during the loading until failure
for the axisymmetric specimens. The failure is marked with green
solid circles.

5.2. Determination of cF

Numerical simulations of the plane specimens were performed
in the present calibration stage. The finite element models of the
shear and plane strain specimens are shown in Fig. 12(d) and (e),
respectively. The red coloured parts in Fig. 12 were modelled as
rigid bodies.

In the shear finite element model, the red coloured parts simu-
late the bolts that transmitted the load from the testing machine to
the specimens (see Fig. 12(d)). In the in-plane gauge area, an
approximate element size of 60 � 60 lm2 was used. Eight ele-
ments were employed to discretise the thickness. In order to avoid
element volumetric locking in the gauge area, eight-node fully
integrated solid elements were used, while in the rest of the spec-
imen eight-node solid elements with one integration point were
employed. Prescribed motions were imposed to the rigid bodies
that simulating quasi-static loading conditions.

The red parts of the plane strain finite element model represent
the clamps that held the specimens during the tests (see Fig. 12(e)).
The in-plane gauge area was meshed with an approximate element
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size of 80 � 80 lm2. The thickness was discretised with eight ele-
ments. Eight-node solid elements with one integration point and
stiffness-based hourglass control were used for the whole finite
element model of the plane strain specimen. The quasi-static load-
ing conditions were simulated imposing prescribed axial motions
to the rigid bodies.

The displacement was computed in both shear and plane strain
specimens by monitoring the axial displacement of two nodes that
simulated the initial gauge length of the extensometer. The triaxi-
ality and equivalent plastic strain histories were collected from
elements that coincided with the points from where the DIC mea-
surements were performed.

The only constant to be calibrated in this stage was cF . With the
calibrated constants of D1, D2 and D3 the equivalent plastic strain
to failure for the initial values of triaxiality and Lode angle corre-
sponding to the pure shear stress state (r�0 ¼ 0 and h ¼ 0�) gave
ef JCXD

p ¼ ðD1 þ D2Þ � cF 
 0:81 � cF . A starting value was set for cF

based on the experimental equivalent plastic strain to failure of
the pure shear stress state:

cF ¼ ef S exp
p =ef T

p ðr� ¼ 0; h ¼ 0�Þ ¼ 1:1=0:81 
 1:36 ð32Þ

After performing a certain amount of simulation runs cF ¼ 1:50
was found to be a good value for such a constant. Fig. 14(a) shows
in green dashed lines the equivalent plastic strains collected from
the above-mentioned elements as a function of the triaxiality until
failure, marked with solid green triangles. In the same figure, the
black solid curve corresponds to the calibrated equivalent plastic
strain to failure expression of the JCXd model for lh ¼ 1:0, whereas
the red solid curve corresponds to the calibrated expression for
lh ¼ 1:5. The Lode angle dependent function is plotted in the
e1 þ e2 þ e3 ¼ 0 plane in the principal strain space in Fig. 15.

5.3. Determination of C, D4, m and D5

Numerical simulations of the dynamic tensile tests of axisym-
metric smooth specimens were performed in this stage of the cali-
bration procedure. The finite element model used for the
simulation of such tests is depicted in Fig. 12(f). Twenty elements
across the diameter, giving an approximate element size of
150 � 150 � 150 lm3, were used. The discretisation was performed
employing eight-node solid elements with one integration point
and stiffness-based hourglass control.
The incident wave was simulated as a prescribed velocity in the
nodes of the input bar end nodes. The incident stress wave was
transform to a velocity profile with vðtÞ ¼ c0eiðtÞ. The incident,
reflected and transmitted stress waves were collected from
element on the periphery of the input and output bars, located at
the same distance as the strain gauges of the SHTB (see Fig. 6).

The constant C was obtained fitting linearly the flow stresses at
0.5% equivalent plastic strain of quasi-static and dynamic tests at
room temperature (see Fig. 8(a)). The 0.5% equivalent plastic strain
value was chosen to avoid the oscillations that appear at low
strains in the dynamic true nominal stress–strain curves (see
Fig. 7). Avoiding such oscillations means that the flow stress was
measured ensuring that the specimen was being strained at con-
stant strain rate, i.e. the specimen was in equilibrium. The model
can be expressed only as a function of the dimensionless strain rate
as follows:

YJCXd
0:5%ð _e

�
pÞ ¼ ð1� β Þ½Aþ Bð0:05Þn�½1� C lnð _e�pÞ�½1� * m� ð33Þ

where the weakening and the thermal softening effect are consid-
ered negligible due to the low equivalent plastic strain. Fig. 8(a)
shows the fitting of model and experimental data.

D4was similarly adjusted, the equivalent plastic strain to failure
values of the quasi-static and dynamic tests at room temperature
were compared. The equivaelent plastic strain to failure expression
of the JCXd model may be written as a function of the dimension-
less strain rate as:

ef JCXd
p ð _e�pÞ ¼ ½D1 þ D2 expðD3 � 0:615Þ�½1þ D4 lnð _e�pÞ� ð34Þ

The triaxiality value was computed from the quasi-static tensile
tests as is specified in Section 5.1. Fitting linearly the data D4 was
obtained (see Fig. 8(a)). It should be noted that the triaxiality chan-
ged for the dynamic tests, as is going to be showed later on in the
article. Additionally, the temperature of the specimen increased
during the dynamic loading due to adiabatic heating. Therefore,
the D4 constant was validated simulating the tensile test carried
out in the SHTB. Using the same approach as in Section 5.1, the tri-
axiality and equivalent plastic strain histories were gathered from
the numerical simulations. The experimental and numerical equiv-
alent plastic strain to failure values were in good agreement as can
be seen in Table 3.

The thermal softening exponent m was obtained by comparing
the flow stresses at 0.5% of the equivalent plastic strain for the dy-
namic tests carried out at various temperatures. Now, the constitu-
tive relation of the JCXd material model can be written as a
function of the homologous temperature as:

YJCXd
0:5%ðT

�Þ ¼ ð1� β Þ½Aþ Bð0:05Þn�½1� C lnð106Þ�½1� T�m� ð35Þ

Fig. 8(b) depicts the evolution of the normalised flow stresses
with the homologous temperature as well as the JCXd model fit
with m ¼ 1:20. Note that for such a low equivalent plastic strains
the adiabatic heating does not affect at the flow stress
measurement.

Nevertheless, the adiabatic heating plays and important role in
the determination of D5. The Fig. 8(b) shows the experimental
equivalent plastic strains to failure of the dynamic tests performed
at various temperatures plotted in solid red squares. However, the
temperature increment could not be measured in the test. Typi-
cally, such an increment is measured as:

DT ¼ v
qCp

Z ef
p

0
rdep ð36Þ

In this study the equivalent stress–strain curves for the
dynamic tests were not calculated. To obtain such curves, in-situ
minimum cross-section diameter measurements (Arthington



Table 4
JCXd material constants for precipitation hardened Inconel 718.

Physical properties and isotropic elastic constants

E (GPa) m q (kg/m3) Cp (J/kg �C) v

185 0.33 8190 435 0.9

Constitutive relation

Strain hardening Strain rate hardening Thermal softening

A (MPa) B (MPa) n C _e (s�1) m Tr (�C) Tm (�C)

1200 1284 0.54 0.006 1.0 � 10�3 1.20 25 1800

Failure criterion
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Fig. 14. Fracture loci in the equivalent plastic strain vs. triaxiality space for the (a) quasi-static and (b) dynamic loading cases.
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et al., 2012; Arthington et al., 2009) and a true stress correction
based on the notch curvature radius (Bridgman, 1952; Le Roy
et al., 1981; Mirone and Corallo, 2010) are required. To cope with
this issue and be consistent with the calibration methodology, a
more local measurement was taken. The adiabatic temperature
increment was computed and averaged for the same elements
from which the triaxiality was obtained. The temperature and
the triaxiality values at failure collected from such elements are re-
ported in Table 3. The equivalent plastic strains to failure com-
puted from the numerical simulations are shown in Fig. 8(b) as
hollow red triangles. The same values are plotted in solid red trian-
gles after summing the adiabatic heating to their initial tempera-
tures. Now the equivalent plastic strain to failure of the JCXd
model for dynamic tests can be written as a function of the homol-
ogous temperature as:

ef JCXd
p ðT�Þ ¼ ½D1 þ D2 expðD3 � 0:80Þ�½1þ D4ð106Þ�½1þ D5ðT�Þ� ð37Þ

Although the triaxiality changes for different temperatures, it
should be noted it was maintained constant, r� ¼ 0:8 when plot-
ting the model (dashed red line). The constant D5 was obtained fit-
ting the data shown in Fig. 8(b).

5.4. Fracture locus

The JCXd material model constants calibrated for the precipita-
tion hardening Inconel 718 nickel-base superalloy are listed in Ta-
ble 4. The calibrated fracture locus in the equivalent plastic strain
vs. triaxiality space for the quasi-static case is plotted in Fig. 14(a).
In the figure, the black solid curve corresponds to the axisymmetric
tension or compression stress state failure locus (h ¼ �=þ 30�,
lh ¼ 1:0), whereas the red solid curve corresponds to the pure
shear/torsion or plane strain states failure locus (h ¼ 0�,
lh ¼ 1:5). The blue solid curve represents the failure locus of the
plane stress state. For such a stress state the Lode angle is not con-
stant, it is a function of the stress triaxiality as (Erice, 2012; Walk-
er, 2013):

hðr�Þ ¼ �1
3

sin�1 �27
2

r� ðr�Þ2 � 1
3

� �	 

ð38Þ

That is why the blue solid curve shows local minimum and maxi-
mums in the equivalent plastic strain vs. triaxiality space (see
Fig. 14(a)). The three dimensional fracture surface plotted in
Fig. 16 shows the same ‘‘zigzag’’ shaped blue curve.

In Figs. 14(a) and 16 the hollow points, circles and triangles, are
plotted using the experimental equivalent plastic strain to failure
and the constant initial triaxiality calculated with the Bridgman’s
analysis. The constant triaxiality loading path is plotted in solid
Fig. 15. Second kind of Lode angle dependent function for cF ¼ 1:5 plotted in the
e1 þ e2 þ e3 ¼ 0 plane of the principal strain space for constant triaxiality.
green lines. Conversely, the dashed green curves show the evolu-
tion equivalent plastic strain while the specimens are being loaded
until failure obtained from the numerical simulations of the axi-
symmetric specimens. The failure is marked with solid green
points, circles and triangles. The Lode angle and triaxiality histories
were collected from the centre of the specimens, whereas the
equivalent plastic strain was computed employing the current
minimum cross-section diameter measurements. For the shear
and plane strain specimens the equivalent plastic strain, Lode an-
gle and triaxiality histories were taken from elements close to
the points from where DIC measurements were performed. Frac-
ture initiation in the plane specimens was detected in the interior
and not in the surface. Hence, the elements from which the histo-
ries were collected were the interior elements.

The fracture loci for various temperatures and constant strain
rate are depicted in Fig. 14(b). In order to compare the fracture loci
at low and high strain rates, the fracture locus for the quasi-static
case was also plotted in the figure as a solid black curve. The figure
shows in dashed green curves the triaxiality-dependent path that
the equivalent plastic strain followed during the dynamic loading
for various temperatures until failure, marked with green solid cir-
cles. To construct such paths numerical simulations were neces-
sary, the triaxility and temperature histories were collected from
the elements located in centre of the specimens. The current min-
imum cross-section diameter measurements were employed to
compute the equivalent plastic strain. The solid green lines and
hollow green circles represent the constant initial triaxility and
experimental strain to failure at various temperatures,
respectively.

In all the studied cases, the equivalent plastic strain histories
collected from the simulations started from their corresponding
initial, or analytical, triaxiality values though they soon left to be
constant. Therefore, the numerical simulations were necessary to
calibrate the failure criterion. As pointed out in by Erice et al.
(2012), the Bridgman’s analysis only could work as a lower limit
for the failure criterion. The triaxiality, Lode angle and equivalent
plastic strain to failure for all the cases are summarised in Table 3.
6. Numerical study

6.1. Results

The objective of this study was to check the capability of the
calibrated JCXd material model (see Table 4) to predict the true
stress–strain and load–displacement experimental curves. The
strain corresponding to the specimens failure was also analysed.
All the numerical simulations were run with the same discretisa-
tions as those employed in the calibration procedure.

The true stress–strain curves obtained from the numerical sim-
ulations of the quasi-static tensile tests at room temperature corre-
sponding to the smooth and notched specimens with notch radius
R = 2.0 mm and R = 0.8 mm are shown in Fig. 4(a). The true stress–
strain curves of the smooth axisymmetric and R = 2.0 mm notched
specimens were in excellent agreement with the experimental
data. Both elastoplastic behaviour and failure strains, marked with
blue arrows, were quite well predicted (see Table 3). Nevertheless,
observing Fig. 4(a), one can see that the elastoplastic response was
slightly overestimated for the R = 0.8 mm notched axisymmetric
specimen. This seems to be a generalised issue since has been re-
ported in several studies (Børvik et al., 2003, 2005; Dey et al.,
2006). The failure was also higher than the experimental value as
can be also observed in Fig. 14(a). However, the model was consid-
ered to give reliable results.

The comparison between the experimental and numerical true
nominal stress–strain curves of the dynamic tensile tests at various
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temperatures is depicted in Fig. 7. The numerical results seem to be
predicting the elastoplastic behaviour with reasonable accuracy for
temperatures ranging from 25 �C to 691 �C. Nevertheless, the
numerical true nominal stress–strain curve of the highest initial
temperature was above the experimental response. This result
was expected since the model fitting was also slightly above the
experimental flow stress at 0.5% of equivalent plastic strain as
can be seem in Fig. 8(b). The equivalent plastic strain to failure
was found reasonable for all the temperatures. The experimental
and numerical equivalent plastic strains to failure are reported in
Table 3.

The numerical load–displacement curve is compared with the
experimental register for the tensile tests of the shear specimens
in Fig. 11(a). The load–displacement response is overestimated
by the numerical simulations. A plausible reason for that behaviour
is that the plates, from which the plane specimens were machined,
were manufactured by rolling. Fourmeau et al. (2011), obtained a
very similar behaviour when testing aluminium plates with the
same geometry. They reported that such behaviour might be due
to the anisotropy of the rolled plates. In the present case, the grain
texture could have been the responsible of the overestimation of
the elastoplastic behaviour. Additionally, the load–displacement
curves obtained for the different specimens presented a consider-
able scatter. Conversely, the strain to failure was in close agree-
ment with the experimental data (Table 3). A DIC image from a
representative test is compared with the numerical simulation of
the shear specimen in Fig. 17, where equivalent plastic strain con-
tours can be seen. Both, DIC and numerical simulation, presented
Fig. 17. DIC strain field (a) from a representative shear specimen compa
the same equivalent plastic strain contours and they were localised
in the same zone. The load–displacement curve from the numerical
simulation of the plane strain specimens is plotted in Fig. 11(b).
The elastoplastic response as well as the failure strain were reason-
ably predicted.

6.2. Mesh sensitivity study

The fracture patterns for three test types were studied in Cho-
cron et al. (2011). The mesh size was found to be crucial for obtain-
ing the desired patterns. In this research, the capability of the JCXd
material model to predict complex fracture patterns was analysed.

A cup-cone fracture pattern was expected when simulating the
axisymmetric smooth specimens. However, the mesh size used for
the calibration of the model was not able to capture such a pattern.
The damage contours for the simulations run with 44 elements
across the diameter are plotted in the first sequence of Fig. 18. A
flat fracture surface was obtained. However, the damage contours
indicated that a slanted localisation existed near the perimeter of
the specimen when the crack was expanding outwards. The next
numerical simulation was performed by using 72 elements across
the diameter. The fracture sequence can be seen in the second row
of the Fig. 18. On this occasion, the suspicions were confirmed.
Localisation, while more obvious, was not able to form slanted
fractures. Nevertheless, the fracture pattern obtained was not flat
any more. The fracture surface was a mixture between the flat sur-
face and cup-cone. Finally, a numerical simulation with 144 ele-
ments across the diameter was carried out. The last row of
stacked images from Fig. 18 shows the fracture sequence. The
localisation near the border produced the expected slanted frac-
ture shaping a cup-cone fracture pattern. A smaller mesh size than
the used in the JCX model (Chocron et al., 2011) was necessary to
capture the cup-cone fracture pattern.

The fracture pattern of the shear specimen (see Fig. 10(d)) was
predicted with the mesh used in the calibration procedure of the
material model. Since the plastic strain was extremely localised al-
most from the moment that the plasticity appears in the specimen,
is not a complex pattern to predict (see Fig. 17).

The plane strain specimens presented a slanted fracture pattern
as can be seen in Fig. 10(c). The same patterns have been reported
previously by Besson et al. (2001) or Xue (2009). The numerical
simulation carried out with the model calibration mesh that had
eight elements over the thickness, gave a flat fracture surface. In
order to see the fracture initiation in the images collected from
the numerical simulations, half of the specimen was removed
(see Fig. 19).

A sequence showing three images: intact, fractured and fully
fractured, was obtained to study the effect of the mesh size on
the fracture pattern of the plane strain specimens. The fracture se-
quence is plotted with damage contours in the first row of the
Fig. 19. Damage localisation was clearly observed in ‘‘X-like’’ shape
but the elements were too big to take it into account. The element
red with the numerical simulations (b) just before failure occurred.
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refining was only performed in the thickness direction of the spec-
imen. The in-plane discretisation was much finer than the discret-
ization made in the thickness direction. Therefore, it was
considered that changing the element size in the thickness direc-
tion will give reasonable results.

In the first refinement, 16 elements were used over the thick-
ness. Even though, the localisation seemed to be stronger, the same
result as the coarsest mesh was obtained. The fracture sequence
can be seen in the second row of Fig. 19. Finally, 32 elements over
the thickness were employed to mesh the specimen. With this ele-
ment size the slanted fracture appeared in the centre of the spec-
imen, as can be observed in the last row of stacked images in
Fig. 19.

6.3. Lode angle dependency

To ensure that the fracture patterns obtained in the precious
section (cup-cone and slanted fracture) were not obtained as a re-
sult of the discretisation, the effect of the weakened constitutive
equations and the Lode angle in such pattern prediction was stud-
ied. To form an idea of the importance that the weakening and the
Lode angle had in the fracture prediction, three cases were run for
both smooth axisymmetric and plane strain specimens with the
finest mesh discretisation. This is, 144 elements were used across
the diameter for the smooth axisymmetric specimen and 32 ele-
ments over the thickness for the plain strain specimen. The cases
Fig. 18. From left to right, numerical simulations of the fracture sequence on smooth
sequences show the mesh size sensitivity of the cup-cone fracture pattern. Damage con
run were all particular cases of the proposed JCXd material model
(the reader is referred to Section 2 for the formulation details):

(i) No weakening and no Lode angle dependency. This was a
regular uncoupled Johnson–Cook material model. To uncou-
ple the constitutive equations the weakening exponent was
set to b ¼ 1. The Lode angle dependency was deactivated
from the failure criterion making c ¼ 1:0, which led to a con-
stant value of the Lode angle dependent function of lh ¼ 1:0.

(ii) No weakening but Lode angle dependent failure criterion.
Which is equivalent to a Johnson–Cook-like uncoupled con-
stitutive relationship with a Lode angle dependent failure
criterion. Again, the model was uncoupled setting b ¼ 1.
In contrast to the case (i), here the failure criterion used
the calibrated value of c ¼ 1:5 for the Lode angle dependent
function (see Table 4).

(iii) Weakened constitutive equations and Lode angle dependent
failure criterion, or JCXd coupled material model. The cali-
brated weakening exponent b ¼ 6:0 was employed, i.e. the
coupled elastoplastic-damage constitutive equations were
activated. As occurred in case (ii) the calibrated value of
c ¼ 1:5 was used for the Lode angle dependent function
(see Table 4).

The results obtained after running the numerical simulations
for the axisymmetric specimen for the three cases (i), (ii) and (iii)
axisymmetric specimens depending on the element size. The last images of the
tours are plotted in the images.



Fig. 19. From left to right, numerical simulations of the fracture sequence on the plane strain specimens. The last image from each row shows the fracture pattern created
depending on the mesh size. Damage contours are plotted in the images.

Fig. 20. Fracture surfaces obtained from the numerical simulations of three different cases: regular Johnson–Cook (a,d), JCXd without weakening (b,e) and JCXd (c,f). (Top)
Smooth axisymmetric specimen with 144 elements across the diameter. (Bottom) Plane strain specimen with 32 elements over the thickness.
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are plotted in Fig. 20(a), (b) and (c), respectively. The figures show
damage contour plots from D ¼ 0:0 to D ¼ 1:0. The upper part of
the specimens was removed and the rest was cut in half order to
check the damage evolution of the internal elements. Quite similar
result was obtained for the cases without weakening, cases (i) and
(ii). An almost flat fracture surface can be seen comparing Fig. 20(a)
and (b). Fig. 20(c) shows the fracture surface for the case (iii) that
presented, in contrast to the other two cases, a successful cup-cone
fracture pattern.
The numerical simulations of the plane strain specimen gave the
fracture surfaces that are depicted in Fig. 20(d), (f) and (g). Such fig-
ures show damage contour plots and correspond to the cases (i), (ii)
and (iii), respectively. The upper parts were removed for the sake of
clarity. The cases (i) and (ii) gave identical fracture patterns, i.e. flat
surface. The simulation ran with the JCXd material model, case (iii),
was the only successful case in predicting the slanted fracture of
the plane strain specimen. It can be then concluded that both effects,
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the weakening and the Lode angle dependency in the failure crite-
rion, were needed for a successful fracture prediction.
7. Concluding remarks

A coupled elastoplastic-damage material model for ballistic
applications was proposed. The model accounted for the third
deviatoric invariant dependency. Such a dependency was included
in the model with the Lode angle dependent function in the equiv-
alent plastic strain to failure expression of the Johnson–Cook fail-
ure criterion. The model also accounts for the weakening of the
elastic moduli and constitutive relation, introducing implicitly
the Lode angle dependency in the elastoplastic model of the
material.

The model, designated as Johnson–Cook–Xue-damage (JCXd),
was implemented in LS-DYNA non-linear finite element code by
means of a user-defined subroutine programmed in FORTRAN pro-
gramming language.

The JCXd material model was calibrated for the precipitation
hardening Inconel 718 nickel-base superalloy. In order to calibrate
the model three groups of mechanical tests were performed:

� Quasi-static tensile tests of axisymmetric smooth and notched
specimens.
� Dynamic tensile tests of axisymmetric smooth specimens at

various temperatures.
� Quasi-static tensile tests of shear and plane strain specimens.

An iterative calibration procedure through using numerical
simulation of all the tests was performed. The final numerical sim-
ulations run with the calibrated constants were in good agreement
with the experimental data. However, the elastoplastic behaviour
corresponding to the tensile test of shear specimens was not well
predicted.

A numerical study in terms of fracture pattern reproducibility
was made by using the calibrated JXCd material model for precip-
itation hardened Inconel 718 nickel-base superalloy. Fracture pat-
tern of the shear specimen was easily reproduced. Conversely, to
obtain the desired fracture patterns of plane strain and axisymmet-
ric smooth specimens an additional mesh sensitivity study was
carried out. In order to prove that the discretisation was not the
responsible of such fracture patterns, the effect of the weakening
and the Lode angle was analysed. The main conclusion that came
out from such an analysis is that both, the weakening and the Lode
angle dependency in the failure criterion, were needed to predict
complex fracture patterns.
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