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Abstract

In this paper, we study the combined effect of concave and convex nonlinearities on the number
of positive solutions for semilinear elliptic equations with a sign-changing weight function. With the
help of the Nehari manifold, we prove that there are at least two positive solutions for Eq. (Ej; ¢) in
bounded domains.
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1. Introduction

In this paper, we consider the multiplicity results of positive solutions of the following
semilinear elliptic equation:

—Au=uP +Af(x)u? in £, P
0<ueHNQ), (Es.p)
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where §2 isaboundeddomaininRN,0<q <l<p<2*@2*= %—f% if N >3,2*=00if
N =2),1>0and f:£ — Risacontinuous function which change sign in £2. Associated
with Eq. (Ey, r), we consider the energy functional Jj, for each u € Hé (£2),

1 1 2
JA(“)=5/|Vu|2dx_m/|ulp+1dx_ m/f(x)lmqﬂdx.
2 Q o

It is well known that the solutions of Eq. (E) r) are the critical points of the energy func-
tional J, (see Rabinowitz [12]).

The fact that the number of positive solutions of Eq. (Ey, ) is affected by the con-
cave and convex nonlinearities has been the focus of a great deal of research in recent
years. If the weight function f(x) = 1, the authors Ambrosetti et al. [2] have investigated
Eq. (E;.1). They found that there exists Ao > O such that Eq. (£, 1) admits at least two
positive solution for A € (0, 1), has a positive solution for A = A9 and no positive solu-
tion exists for A > Ag. Actually, Adimurthy et al. [1], Damascelli et al. [7], Ouyang and
Shi [11], and Tang [16] proved that there exists Ao > O such that Eq. (E; 1) in the unit ball
BN (0: 1) has exactly two positive solution for A € (0, Ag), has exactly one positive solution
for A = X and no positive solution exists for A > Ag.

The purpose of this paper is to consider the multiplicity of positive solution of
Eq. (Ey,r) for a changing sign potential function f(x). We prove that Eq. (Ej, ) has
at least two positive solutions for A is sufficiently small.

Theorem 1. There exists Ay > 0 such that for A € (0, o), Eq. (Ey, ) has at least two
positive solutions.

Among the other interesting problems which are similar of Eq. (Ej r) for g =0,
Bahri [3], Bahri and Berestycki [4], and Struwe [13] have investigated the following equa-
tion:

—Au=ulP'u+ f(x) in £,

E
ue HL (), Ep)

where f € L2(£2) and £2 is a bounded domain in RV They found that Eq. (E y) possesses
infinitely many solutions. Furthermore, Cirstea and Radulescu [5], Cao and Zhou [6], and
Ghergu and Ridulescu [10] have been investigated the analogue Eq. (E r) in RN,

This paper is organized as follows. In Section 2, we give some notations and prelim-
inaries. In Section 3, we prove that Eq. (Ej ) has at least two positive solutions for A
sufficiently small.

2. Notations and preliminaries

Throughout this section, we denote by S the best Sobolev constant for the embedding
of H& (£2) in LPT1(£2). Now, we consider the Nehari minimization problem: for A > 0,

a0, (2) =inf{J, () | u € M, (2)},
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where M, (£2) = {u € H(} (S\{0} | (J; (u), u) = 0}. Define

V) = (] ), ) = [l —/|u|p+1dx—A/f(x)|u|q+ldx,
2 2
Then for u € M, (£2),
(Vi) ) =2lullyys = (p + 1)/Iulp“ dx—(q+1)xff(x>|u|q+‘ dx.
2 2

Similarly to the method used in Tarantello [14], we split M, (§2) into three parts:

M} (2) = {u e Mu(2) | (¥}.(u), u) > 0},
M) (£2) = {u e M;.(£2) | (W] (), u) =0},
M; (2) ={u e M;.(22) | (v} ), u) < 0}.

Then, we have the following results.
Lemma 2. There exists A1 > 0 such that for each ) € (0, A1) we have Mg(.Q) ={.
Proof. We consider the following two cases.
Case (I). u €M, (£2)and [, f(x)|u]?! dx = 0. We have

%, —/|u|l’+1 dx = 0.
2
Thus,

(5.G0),u) = 2]lullFyy — (p + 1)/ ulPdx = (1= p)llullf, <0
2

and sou ¢ Mg(.Q).

Case (ID). u €M, () and [, f(x)|ul?"!dx #0.
Suppose that MY (£2) # ¢ for all A > 0. If u € MY (£2), then we have

0= (W} (0. u) =20lul%y — (p + 1)/ ™ dx — (g + l)k/f(x)lulq“ dx
2 2
= (1=l — (p —q)f ! dx.
2

Thus,

2 pP—q p+1
u =— u dx
lul,, 1_qf| |
2
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and

-1
k/f()c)lul"“dx: el —/|u|ﬂ+1dx=f—f|u|”“dx. )
2 2 qQ

Moreover,
p—1 2 2 p+l g+1
— Mulgy = luly — [ " dx=a | fO)|ul® dx
pP—q
2 2
+1 +1
<ALl o Nl ey S ANF Nl e Sq+1||u||21 ;
where p* = Z—J_r;. This implies

1

ol g1 < M%)nfnm S‘f“] 3)

Let I, : M, (£2) — R be given by

1

2p
|u|Hl

p—1
Ix(u)=K(P’4)<W) —)»/f(x)quHdX,
2

where K (p,q) = (ﬁ)ﬁ(%). Then I, (u) = 0 for all u € MY (£2). Indeed, from (1)

and (2) it follows that for u € Mg (£2) we have

fg lu|P+1dx

_(1=a 7T =1\ (D Ug " dx)"\ 7
P—q l—¢q [ lulP+ldx
—1
—p—/|u|p+1dx
l—gq
2

=0. “

lall2h 7 |
1A<u)=1<<p,q>(7) “a / FEOI|" dx
2

However, by (3), the Holder and Sobolev inequality, for u € Mg(.Q),

1

2p

172 ) = 1

Ix(u)>K(P,q)<f|u|+dx) = Al lull e
2

- luel2 =
> ul % (K (p.g) — M f Il

Sa(p=D+2p ||y ||‘;{({"1)+21’

1

R 1 1 *
- ||u||Lp+l (K(p’ q)<S‘1(P1)+2p> ||”||c,1_11 )\'”f”Lp
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1 —q
1

1 p—1 —

+1 P q

R e B [y [
_)‘||f||Lp*}~

This implies that for A sufficiently small we have I, (#) > O for all u € Mg(.Q), this con-
tradicts (4). Thus, we can conclude that there exists A; > 0 such that for A € (0, A1), we
have MV(2) =0. O

Lemma 3. If u € M} (2), then [, f(x)lu|?"!dx > 0.

Proof. We have
a3, —f|u|”“dx —Aff(x)lul"“ dx=0

2

and

1
lul?, > —/W* dx.

Thus,

-1
x/f(x)mrf“dx:||u||§1l —/|u|1’+1dx> f_—q/|u|f’+1dx>0.
2 2 2

This completes the proof. O

By Lemma 2, for A € (0, A1) we write M, (£2) = Mj{([?) UM, (£2) and define

of (2)=inf Ji(w), o, ()= inf Jy(w).
ueM; (2) ueM; (£2)

The following lemma shows that the minimizers on M, (§2) are “usually” critical points
for J,.

Lemma 4. For A € (0, A1). If ug is a local minimizer for J, on M, (§2), then Jx’(uo) =0in
H-1(2).

Proof. If u is a local minimizer for J) on M, (£2), then ug is a solution of the optimization
problem
minimize J) () subjectto i (u) =0
Hence, by the theory of Lagrange multipliers, there exists 6 € R such that
J; (o) =0V (uo) in H~'(£2).
Thus,
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Since ug € M, (£2), we have uol1%,, — [q luol”* dx — & [ £ (x)|uol?™" dx = 0. Hence,

(v (o). w0y = (1 = @)lluoll = (p = q>f Juo| P+ dx.
2

Moreover, (1//)1 (o), uo) g1 # 0 and so by (5) & = 0. This completes the proof. O

Foreachu € H(} (£2)\{0}, we write

1

— (=) lull?, =
"N — ) [o lulpt dx '

Then, we have the following lemma.

Lemma 5. Let p* = 2L qnd 3, = (”—_1)(1;4)117%152(3:
: P= 2= =4/ \p=q
HO1 (82)\{0} and X € (0, Ap), we have

p)
1 ”f”Zpl*‘ Then for each u €

(i) there is a unique t~ =1t~ (u) > tmax > 0 such that t"u € M, (£2) and J,(t"u) =
max; > Jo({tu);
(1) ¢t~ (u) is a continuous function for nonzero u;

(iif) M;(Q):{ueﬁg(sz)\m}‘ ! f( “ ):1};

lleell g ol g1
(v) if [o FOul?T dx > 0, then there is a unique 0 <t = t¥(u) < tmax such that
tYu e M (2) and J,(tTu) = mingg, <, Ji(tu).

Proof. (i) Fix u € H] (2)\{0}. Let

s(t) =" ull?, —tp_q[|u|p+1dx for ¢ > 0.
2

We have s(0) =0, s(t) > —o0 as t — o0, s(t) is concave and achieves its maximum
at fmax. Moreover,

§ (tmax)
I—q

(U=l \F
= (p_q)fg |u|p+l dx ”u”[-[l
P—q

A=)lul3,  \rt iy
_ (p—q)fg |u|p+] dx J |M| X

(p+DHd—q)
1—q
T

_||M”q+1|:( (l—q)||u||ZT1 >p_( (A= )lull " )’p"f:|
H! (P_‘])IQWIPde (p_q)(f9|u|p+ldx)ﬁ
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1— — 1 1—
| ”q+l 1—gq = 1—¢ bt ||u||?1_ =
= ||u —_— —( —= ___H
H [\ p—g pP—q Jo lulPt1dx
1=q 1-q
> (2= ) (222 ()
U \p—q)\p—gq Sptl ’

1-q 1=q
gri(P=L\(1—g\r T/ 1 \r
$Ctmax) > ull (p_q)(p_q) i) ©

Case (). [ f)|ul9™ dx <O0.
There is a unique = > fmax such that s(t7) = [, f(x)u|?" dx and s'(r7) < 0. Now,

or

A=)l — (p— q)f ulP dx
2

= (f)“‘f[(l — ) ul — (p— )P f |t ulP ! dx}
2

= (t7)*M5'(17) <0,

and
([ w), t7u)

= ()2 |ull3,, —<f)p+1f|u|"+1dx—(t—)q“xff(x)wrf“dx
2 2

= ()?t! |:s(t) - A/ £ o) ul?t! dx] =0.
2

Thus, t7u € M, (£2). Since for t > tmax, we have

d2
(1 =g)ltull}, —(p—q)/|tu|f’+1dx<o, a0 <0
2

and

d
EJk(ru)=z||u||’§{1 —t”/|u|”+1dx—th/f(x)|u|q+ldx=O forr=1".
2 2

Therefore, J; (t~u) = max; >, . J (tu).

Case (D). [ f(x)|u]?™ dx > 0.
By (6) and
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1 1 +1
50 =0< [ FCOut dx <AL Fl e STl

1= 1=¢
q+1 p—1 1 —qg\ 7T 1 pT
<|lu ” (p q)(p_q) Pt <s(tmax)  for & € (0, 12),

there are unique t* and ¢~ such that 0 <t < 0 <17,

=Aff(X)|u|"“ dx=s(t")

and

s' () > 0>5'(t7).
We have tTu € M} (2), t7u € M, (2), and J, (t"u) > J;(tu) > J,(tTu) for each t €
[tF,¢t7]and J, (tTu) < Jy(tu) foreach t € [0, tT]. Thus,

J(t"u) = max J;(tu), L(tTu)= min J;(tw).
t/tmax 0\ \l7
(ii) By the uniqueness of #~(x) and the external property of ¢~ (u), we have that r~ (u)
is a continuous function of u # 0.
(iii) For u € M; (£2), let v =

that ¢~ (v)v € M (£2), that is ¢~ (”u”H1 ) Wl
t‘(L); = 1, which implies

Tall,r ) Tl 0

By part (i), there is a unique ¢~ (v) > O such
u € M, (£2). Since u € M, (£2), we have

Tal ot

MA(Q)C{ueH&(Q)\{O}‘”ﬁ z—( - >=1}.
Hl

]l g1

Conversely, let u € HJ (£2)\{0} such that ”u” 1 _(W) 1. Then
z‘( “ ) L M (Q)
lullg )l e~

Thus,
@ ={ren@o | g (i) 1)
M, (£2) = {u € Hy (£2)\{0} t =14.
lluell g1

l[aell g1

(iv) By Case (Il) of part (i). O

By f:£2 — R is a continuous function which change sign in £2, we have ® =
{x € 2| f(x) > 0} is a open set in R . Without loss of generality, we may assume that ©
is a domain in RY . Consider the following elliptic equation:

—Au=uP in®O,
{ogueH(}(@). @)

Associated with Eq. (7), we consider the energy functional

1 1
K(u):ifwuﬁdx—ﬁ/lulf’“dx
p
e
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and the minimization problem
Bi(©) =inf{K; (u) | u € N, (©)},

where N (@) ={u € Hol(@)\{O} | (K'(u), u) = 0}. It is known that Eq. (7) has a positive
solution wq such that K (wg) = B, (®) > 0. Then we have the following results.

Lemma 6.

(1) There exists t > 0 such that

@ (2) <o (2)

+1 18 (0) <0;

>ii) Jy is coercive and bounded below on M, ($2) for all ) € ( p_;]

Proof. (i) Let wg be a positive solution of Eq. (7) such that K (wo) = B, (®). Then

/f(x)wq+1 dx —/f(x)wg“ dx > 0.

Set t,, = t+(wy) as defined by Lemma 5(iv). Hence f, wq € M+ (£2) and

q+1

/ F)lwol? ! dx

2 p+1
I (two) = 2w %, — -2 /wpﬂdx—
% (Hwo) 2|| ol 1 [wol
22

! 1 \& 2 1 (! p+l
=(5- 2 llwoll: + Iw 177 dx
2 g+1)2 q+1 p+1

11—
< — +1 ,BA(O)<O

This yields

©) <0.

(ii) For u € M, (£2), we have ||ul|3,, = [q [ul?*'dx+2 [ f(x)|u|?"! dx. Then by the
Holder and Young inequality,

_ r—1 2 P—q g+1
i) = Sl A(i(erl)(qul))([f(X)lul dx

p—1 2 pP—q +1 q+1
>—|u A — ST |lu
20+ D) el ((p+1)(q+1)>||fllu llaell,

p=1 [ p—q 2
2[2<p+1> A(2(p+1>>}”””1"‘

o =9 —q) LG+l
A<2<p+1)(q+1)>(”f”” 5
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s _ _ _ 2
= 35Tl =D =20 =)l

iRt L9+ T
k<2(p+1)(q+1)>(llf||u,s )T

Thus, J is coercive on M, (£2) and

(P91 —q) L gty Tg
T (u) > A(z(erl)(qul))(llflleS )

forall 2 € (0, 2=2]. O

3. Proof of Theorem 1
First, we will use the idea of Tarantello [14] to get the following results.

Lemma 7. For each u € M, (S2), there exist € > 0 and a differentiable function
E:B(0;¢e) C HO1 (£2) — RT such that £(0) = 1, the function £(v)(u — v) € M; (2) and

( '(0) ) f uVodx (p+1)/9| |p_114v )c—((]—i-l))Lfo|M|2 Yuvdx
& , V)= 2 u d
(l—q)f |Vu|2dx—(p_q)f P dx

®)
forallv e H)(2).

Proof. For u € M;,(£2), define a function F :R x Hj (£2) — R by
Fu€, w) =(J(Ew—w)), £ — w))
:;2/\V(u — w)|2dx —gptl / lu —w|PTdx
2 2

- E‘]HA/f(x)lu —w]it dx.
2

Then F,(1,0) = (J; (u), u) =0 and

d
EFM(1,0)=2/|Vu|zdx—(p+1)/|u|p+ldx—(q+l))\/f(x)luw“dx
2 2 2

—a —q)/ Vul? dx — (p—q)/ lPH dx £0,
2 2

According to the implicit function theorem, there exist € > 0 and a differentiable function
£:B(0;¢) c HY(RY) — R such that £(0) = 1,

2 [o VuVvdx — (p+ 1) [, [ulP~ uvdx — (g + DA [, flul? uvdx
(1—q) [oIVul?dx — (p—q) [ |u|PT1dx

(£'0),v) =
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and

F, (E(v), v) =0 forallve B(0;¢),
which is equivalent to

(J)((E(v)(u — v)), E()(u — v)) =0 forallve B(0;¢),
thatis E(v)(u —v) e M, (£2). O

263

Lemma 8. For each u € M, (§2), there exist € > 0 and a differentiable function
E7:B0;¢) C H(} (2) — RT such that £~ (0) = 1, the function £~ (v)(u — v) € M, (£2)

and

() (©0), )

_ 2f9 VuVvdx — (p+ l)fg lul?tuvdx — (g + l)kf_q Flul? Yuvdx

(1—q) [oIVul?dx — (p—q) [ lu|PT1dx
forallve H}(R).

€))

Proof. Similar to the argument in Lemma 7, there exist € > 0 and a differentiable function
£~ :B(0;¢) c H'(RV) — R such that £ (0) = 1 and £~ (v)(u — v) € M (£2) for all v €

B(0; €). Since

(@)= (= @l = =) [ 1™ dx <0.
2

Thus, by the continuity of the functions W,{ and £, we have
(YiE" @@ —v). 6 ) —v)
=(1-q|& - U)Hip —(p— q)/|$_(v)(u - v)\erl dx <0
Q

if € sufficiently small, this implies that £~ (v)(u —v) € M, (£2). O

Proposition 9. Let 1o = min{A;, A2, ﬁ—:; }, then for A € (0, 1),

(1) there exists a minimizing sequence {u,} C M, (£2) such that
Jr(un) = a3 (82) + o(1),
T () =0(1) in H'(2);

(ii) there exists a minimizing sequence {u,} C M, (§2) such that

Dlun) =a; (82) +o(1),
Ji () =o0(1) in H- ().
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Proof. (i) By Lemma 6(ii) and the Ekeland variational principle [9], there exists a mini-
mizing sequence {u,} C M, (§£2) such that

1
D (up) < 0y (£2) + o (10)
and
1
I(up) < Jn(w) + —lw —u,ll g1 for each w € M, (£2). (11)
n

By taking n large, from Lemma 6(i), we have

1 1 1
Ty (un) = (— - —)nunni,l — (— - —) /ﬂx)wm+1 dx
2 p+1 qg+1 p+1

Q 1 I=ap e 12
< o ( )+n +1A/3,\( ). 12)

This implies
(p+ DA =9,
> _—

22)>0. 13
ooy LB@=0 (3

1
LI ST 195 > / F)lun?ttd
2

Consequently u,, # 0 and putting together (12), (13) and the Holder inequality, we obtain

1

[ (1 a+T
letn Il g1 > % 38O S VI fI } (14)
and
1
[ 2(17_61) N q-5—1:|q
lunll g1 < _(p—l)(q—}-l)”f”Lp N . (15)

Now, we will show that
I J)/L(u,,)”H,l —0 asn— oo.

Applying Lemma 7 with u,, to obtain the functions &, : B(0; €,) — R™ for some ¢, > 0,
such that E,,(w)(un —w) € M, (£2). Choose 0 < p < €,. Letu € Hol(.Q) with u £ 0 and
let w, = Tl H . We set n, =&, (wy) (U, — w)p). Since n, € M, (£2), we deduce from (11)

that
1

JA(’?p) — D(up) 2 _;”77,0 - un“Hl

and by the mean value theorem, we have
, 1

(JA(“n), Np — un) +0(||7)p - “n”]—]l) = _;”71,0 - un“Hl-
Thus,

(J)/L(Mn)’ _wp)+ (‘fn(wp) - 1)<J)/L(”n)a (up — wp))

1
_;”np_un”[-]l+0(||77,0_un||1-11)' (16)
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From &, (w,)(u, — w,) € M, (£2) and (16) it follows that
_,0<J)L(un) ] > (En(wp) - 1)<J)<(un) - J):(np)’ (uy — w,o))
H!

1
_;”77,0 — up |l +0(||77p - un”[—[')~

Thus,

< . ><||np—un||H1+o<||np—un||m>
n X
- llu ||Hu np P

n -1 / /
+ @(wi%wun) L) Gt — ) (17)
Since
Inp — unll g1 < plEa(wp)| + |En(wp) — 1|l |l g1
and
. |‘i:n(wp) ’
tim B2 < [ 0],

If welet p — 0in (17) for a fixed n, then by (15) we can find a constant C > 0, independent
of p, such that

(s i) < S+ IO,

We are done once we show that ||&, (0)|| is uniformly bounded in n. By (8), (15) and the
Holder inequality, we have

bllvll
|(1 = q) [ IVun?dx = (p = q) [g |un|P+ dx|

We only need to show that

for some b > 0.

(&:(0),v) <

’(1—q>/|wn|2dx—<p—q>/|un|f’+1 dx| > ¢ (18)
2 2

for some ¢ > 0 and n large enough. We argue by contradiction. Assume that there exists
a subsequence {u,} such that

(1 —q>/|wn|2dx—(p—q)/|un|”+‘dx=o(1>. (19)

Combining (19) with (14), we can find a suitable constant d > 0 such that

/ lup|P dx >d for n sufficiently large. (20)
2
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In addition (19), and the fact that u,, € M, (£2) also give
-1
A/f(x)lunl"“ dx = lun |3, — / lun | P dx = ’1’— / lun| P dx + 0(1)
2 Q 7 Q
and

1
T—q
it ll g1 < Mi ")nfu“»ﬂsq+ ] +o(l). 1)

This implies

lunll 7\ 7 “
qu):K(p,q)(f . |P+‘d) —)»/f(X)Iunlq dx

() ey
—%/Iunlp“dx

=o(1). (22)
However, by (20), (21) and A € (0, A¢),

1

2P
llnlly P

+1

) = Afl ||un||ip+l

IA(u))K(PaCI)(f P |P+‘d

2p 1
> Jlunll (K( )( el BT
Un LP+1 p.q “D+2 - L
L PP

1 —q
1 =T pP—q T=¢
>l K00y ) | (S s

- )‘”f”Lp* }7
this contradicts (22). We get

C
n <=,
<*( ar ||Hn> n

This completes the proof of (i).
(i1) Similarly, by using Lemma 8, we can prove (ii). We will omit the details here. O

Now, we establish the existence of a local minimum for J; on M;L|r (£2).

Theorem 10. Let Loy > 0 as in Proposition 9, then for A € (0, Ag) the functional J, has
a minimizer ug in M;r(.Q) and it satisfies
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M) Ji(ug) = ax(2) = o (2);
(i1) u(')|r is a positive solution of Eq. (Ej r);
(iii) JA(MS_) —0as 2 —0.

Proof. Let {u,} C M, (£2) be a minimizing sequence for J, on M, (£2) such that
J(un) = (2) +o0(1) and  J{(uy) =0(1) in H ().

Then by Lemma 6 and the compact imbedding theorem, there exist a subsequence {u,}
and uar € H(} (£2) such that

up —ug  weakly in Hy (£2),
Uy — ug' strongly in LP+1(£2)
and
Uy — ug strongly in LI (). (23)

First, we claim that [, f(x)|ug |97 dx % 0. If not, by (23) we can conclude that

/ FoO|ud | dx =0
2

and

/ F)|un?t dx -0 asn— oo.
Thus,

/IVun|2dx :/lun|p+1 dx +o(1)
and

1 1
D) =5 [ 19— — / P i — / Ol dx
2

1
(- __ - pt+l
_<2 p—i—l)/'M' dx +o(1)

:(——T)/| +‘p+ldx asn — oo,
p

this contradicts Jj (u,) — o, (£2) < 0 as n — oo. In particular, u(")|r € M, (£2) is a nonzero
solution of Eq. (Ej, ) and J,\(uo) o, (£2). We now prove that u, — ug strongly in
HO1 (£2). Supposing the contrary, then ||u6r||H1 < liminf, o ||un| g1 and so
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Jut Vi = [l 7% = [ polu [ d
2 2

< hminf(ﬂunu%,l - / jun P dx — / F@) ™! dx) =0,
n—oo
ko) 2

this contradicts u(J{ € M,.(£2). Hence u, — u(J)r strongly in H(} (£2). This implies

Juy) = H(ug) =, (2) asn— oo.
Moreover, we have u(‘)Ir € M;LIr (£2). In fact, if u(‘)" €M, (£2), by Lemma 5, there are unique
t0+ and 7, such that tguar € M;’(Q) and to_uar €M, (£2), we have t(;r <1, =1.Since
d’ + +
WJ)”(IO MO) > O,
there exists tJ <1t <t, such that J, (tJua’) < Jy (t_uar). By Lemma 5,

D(tgug) < n(fug) < Dt ug) = 1(ug),
which is a contradiction. Since J,\(ua') = J,\(|u(J)r|) and |ua’| € Mj{(SZ), by Lemma 4 we
may assume that uar is nonnegative solution. By Drabek et al. [8, Lemma 2.1], we have

ua' € L*°(£2). Then we can apply the Harnack inequality due to Trudinger [15] in order to
get that ug is positive in £2. Moreover, by Lemma 6,

(p—q)1—q) 2
0> Ji(ug) > —’\(m>(llflluw* e

‘We obtain Jx(u(*)') —0asA—0. O
Next, we establish the existence of a local minimum for J; on M, (£2).

Theorem 11. Let Lo > 0 as in Proposition 9, then for A € (0, Lo) the functional J, has
a minimizer uy, in M, (£2) and it satisfies

D) Sluy) =a, (£2);
(i) u, is a positive solution of Eq. (E,_ f).

Proof. By Proposition 9(ii), there exists a minimizing sequence {u,} for J, on M, (£2)
such that
J(un) =@ (82) +o(1) and  J(uy) =o0(1) in H ().

By Lemma 6 and the compact imbedding theorem, there exist a subsequence {u,} and
u, € M; (£2) is a nonzero solution of Eq. (£}, ¢) such that

uy —u, weakly in HO1 (£2),

up — uy  strongly in L7 (£2)
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and
U, — u, strongly in LItH(Q).

We now prove that u, — u, strongly in HO1 (£2). Suppose otherwise, then |lu, || 41 <
liminf, o ||tts || 1 and so

Jig Vi = [l 7 dx =i [ ol 7
2 2

<liminf<||un||§{1 —f|un|”+ldx—A/f(x)lun|q+ldx) =0.
n—oo
2 2

This contradicts u, € M, (£2). Hence u, — u, strongly in HOl (£2). This implies
up) = D(ug) =a; (2) asn— oco.

Since Jy(ug) = Ji(lugl) and |uy | € M, (£2) by Lemma 4 we may assume that u, is
nonnegative solution. By Drabek et al. [8, Lemma 2.1], we have u, € L°°(£2). Then we

can apply the Harnack inequality due to Trudinger [15] in order to get that u is positive
in2. O

Now, we complete the proof of Theorem 1.

By Theorems 10, 11, for Eq. (E,, r) there exist two positive solutions u(')F and u such
that uf € M (), uy € M (£2). Since M (£2) N M; (£2) = ¢, this implies that u; and
u, are different.
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