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Abstract

In this paper, we study the combined effect of concave and convex nonlinearities on the number
of positive solutions for semilinear elliptic equations with a sign-changing weight function. With the
help of the Nehari manifold, we prove that there are at least two positive solutions for Eq. (Eλ,f ) in
bounded domains.
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1. Introduction

In this paper, we consider the multiplicity results of positive solutions of the following
semilinear elliptic equation:{−Δu = up + λf (x)uq in Ω,

0 � u ∈ H 1
0 (Ω),

(Eλ,f )

E-mail address: tfwu@mail.stut.edu.tw.
1 Partially supported by the National Science Council of Republic of China.
0022-247X/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.05.057

https://core.ac.uk/display/82705081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


254 T.-F. Wu / J. Math. Anal. Appl. 318 (2006) 253–270
where Ω is a bounded domain in R
N , 0 < q < 1 < p < 2∗ (2∗ = N+2

N−2 if N � 3, 2∗ = ∞ if

N = 2), λ > 0 and f :Ω → R is a continuous function which change sign in Ω . Associated
with Eq. (Eλ,f ), we consider the energy functional Jλ, for each u ∈ H 1

0 (Ω),

Jλ(u) = 1

2

∫
Ω

|∇u|2 dx − 1

p + 1

∫
Ω

|u|p+1 dx − λ

q + 1

∫
Ω

f (x)|u|q+1 dx.

It is well known that the solutions of Eq. (Eλ,f ) are the critical points of the energy func-
tional Jλ (see Rabinowitz [12]).

The fact that the number of positive solutions of Eq. (Eλ,f ) is affected by the con-
cave and convex nonlinearities has been the focus of a great deal of research in recent
years. If the weight function f (x) ≡ 1, the authors Ambrosetti et al. [2] have investigated
Eq. (Eλ,1). They found that there exists λ0 > 0 such that Eq. (Eλ,1) admits at least two
positive solution for λ ∈ (0, λ0), has a positive solution for λ = λ0 and no positive solu-
tion exists for λ > λ0. Actually, Adimurthy et al. [1], Damascelli et al. [7], Ouyang and
Shi [11], and Tang [16] proved that there exists λ0 > 0 such that Eq. (Eλ,1) in the unit ball
BN(0;1) has exactly two positive solution for λ ∈ (0, λ0), has exactly one positive solution
for λ = λ0 and no positive solution exists for λ > λ0.

The purpose of this paper is to consider the multiplicity of positive solution of
Eq. (Eλ,f ) for a changing sign potential function f (x). We prove that Eq. (Eλ,f ) has
at least two positive solutions for λ is sufficiently small.

Theorem 1. There exists λ0 > 0 such that for λ ∈ (0, λ0), Eq. (Eλ,f ) has at least two
positive solutions.

Among the other interesting problems which are similar of Eq. (Eλ,f ) for q = 0,
Bahri [3], Bahri and Berestycki [4], and Struwe [13] have investigated the following equa-
tion: {

−Δu = |u|p−1u + f (x) in Ω,

u ∈ H 1
0 (Ω),

(Ef )

where f ∈ L2(Ω) and Ω is a bounded domain in R
N . They found that Eq. (Ef ) possesses

infinitely many solutions. Furthermore, Cîrstea and Rădulescu [5], Cao and Zhou [6], and
Ghergu and Rădulescu [10] have been investigated the analogue Eq. (Ef ) in R

N.

This paper is organized as follows. In Section 2, we give some notations and prelim-
inaries. In Section 3, we prove that Eq. (Eλ,f ) has at least two positive solutions for λ

sufficiently small.

2. Notations and preliminaries

Throughout this section, we denote by S the best Sobolev constant for the embedding
of H 1

0 (Ω) in Lp+1(Ω). Now, we consider the Nehari minimization problem: for λ > 0,

αλ(Ω) = inf
{
Jλ(u)

∣∣ u ∈ Mλ(Ω)
}
,
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where Mλ(Ω) = {u ∈ H 1
0 (Ω)\{0} | 〈J ′

λ(u),u〉 = 0}. Define

ψλ(u) = 〈
J ′

λ(u),u
〉 = ‖u‖2

H 1 −
∫
Ω

|u|p+1 dx − λ

∫
Ω

f (x)|u|q+1 dx.

Then for u ∈ Mλ(Ω),〈
ψ ′

λ(u),u
〉 = 2‖u‖2

H 1 − (p + 1)

∫
Ω

|u|p+1 dx − (q + 1)λ

∫
Ω

f (x)|u|q+1 dx.

Similarly to the method used in Tarantello [14], we split Mλ(Ω) into three parts:

M+
λ (Ω) = {

u ∈ Mλ(Ω)
∣∣ 〈

ψ ′
λ(u),u

〉
> 0

}
,

M0
λ(Ω) = {

u ∈ Mλ(Ω)
∣∣ 〈

ψ ′
λ(u),u

〉 = 0
}
,

M−
λ (Ω) = {

u ∈ Mλ(Ω)
∣∣ 〈

ψ ′
λ(u),u

〉
< 0

}
.

Then, we have the following results.

Lemma 2. There exists λ1 > 0 such that for each λ ∈ (0, λ1) we have M0
λ(Ω) = ∅.

Proof. We consider the following two cases.

Case (I). u ∈ Mλ(Ω) and
∫
Ω

f (x)|u|q+1 dx = 0. We have

‖u‖2
H 1 −

∫
Ω

|u|p+1 dx = 0.

Thus,

〈
ψ ′

λ(u),u
〉 = 2‖u‖2

H 1 − (p + 1)

∫
Ω

|u|p+1 dx = (1 − p)‖u‖2
H 1 < 0

and so u /∈ M0
λ(Ω).

Case (II). u ∈ Mλ(Ω) and
∫
Ω

f (x)|u|q+1 dx = 0.

Suppose that M0
λ(Ω) = ∅ for all λ > 0. If u ∈ M0

λ(Ω), then we have

0 = 〈
ψ ′

λ(u),u
〉 = 2‖u‖2

H 1 − (p + 1)

∫
Ω

|u|p+1 dx − (q + 1)λ

∫
Ω

f (x)|u|q+1 dx

= (1 − q)‖u‖2
H 1 − (p − q)

∫
Ω

|u|p+1 dx.

Thus,

‖u‖2
H 1 = p − q

1 − q

∫
|u|p+1 dx (1)
Ω
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and

λ

∫
Ω

f (x)|u|q+1 dx = ‖u‖2
H 1 −

∫
Ω

|u|p+1 dx = p − 1

1 − q

∫
Ω

|u|p+1 dx. (2)

Moreover,(
p − 1

p − q

)
‖u‖2

H 1 = ‖u‖2
H 1 −

∫
Ω

|u|p+1 dx = λ

∫
Ω

f (x)|u|q+1 dx

� λ‖f ‖Lp∗ ‖u‖q+1
Lp+1 � λ‖f ‖Lp∗ Sq+1‖u‖q+1

H 1 ,

where p∗ = p+1
p−q

. This implies

‖u‖H 1 �
[
λ

(
p − q

p − 1

)
‖f ‖Lp∗ Sq+1

] 1
1−q

. (3)

Let Iλ : Mλ(Ω) → R be given by

Iλ(u) = K(p,q)

( |u|2p

H 1∫
Ω

|u|p+1 dx

) 1
p−1 − λ

∫
Ω

f (x)|u|q+1 dx,

where K(p,q) = ( 1−q
p−q

) p
p−1

(p−1
1−q

)
. Then Iλ(u) = 0 for all u ∈ M0

λ(Ω). Indeed, from (1)

and (2) it follows that for u ∈ M0
λ(Ω) we have

Iλ(u) = K(p,q)

( ‖u‖2p

H 1∫
Ω

|u|p+1 dx

) 1
p−1 − λ

∫
Ω

f (x)|u|q+1 dx

=
(

1 − q

p − q

) p
p−1

(
p − 1

1 − q

)((p−q
1−q

)p(∫
Ω

|u|p+1 dx
)p∫

Ω
|u|p+1 dx

) 1
p−1

− p − 1

1 − q

∫
Ω

|u|p+1 dx

= 0. (4)

However, by (3), the Hölder and Sobolev inequality, for u ∈ M0
λ(Ω),

Iλ(u) � K(p,q)

( |u|2p

H 1∫
Ω

|u|p+1 dx

) 1
p−1 − λ‖f ‖Lp∗ ‖u‖q+1

Lp+1

� ‖u‖q+1
Lp+1

(
K(p,q)

( ‖u‖2p

H 1

Sq(p−1)+2p‖u‖q(p−1)+2p

H 1

) 1
p−1 − λ‖f ‖Lp∗

)

= ‖u‖q+1
Lp+1

(
K(p,q)

(
1

Sq(p−1)+2p

) 1
p−1 1

‖u‖q − λ‖f ‖Lp∗
)

H 1
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� ‖u‖q+1
Lp+1

{
K(p,q)

(
1

Sq(p−1)+2p

) 1
p−1

λ
−q
1−q

[(
p − q

p − 1

)
|f |Lp∗ Sq+1

] −q
1−q

− λ‖f ‖Lp∗
}
.

This implies that for λ sufficiently small we have Iλ(u) > 0 for all u ∈ M0
λ(Ω), this con-

tradicts (4). Thus, we can conclude that there exists λ1 > 0 such that for λ ∈ (0, λ1), we
have M0

λ(Ω) = ∅. �
Lemma 3. If u ∈ M+

λ (Ω), then
∫
Ω

f (x)|u|q+1 dx > 0.

Proof. We have

‖u‖2
H 1 −

∫
Ω

|u|p+1 dx − λ

∫
Ω

f (x)|u|q+1 dx = 0

and

‖u‖2
H 1 >

p − q

1 − q

∫
Ω

|u|p+1 dx.

Thus,

λ

∫
Ω

f (x)|u|q+1 dx = ‖u‖2
H 1 −

∫
Ω

|u|p+1 dx >
p − 1

1 − q

∫
Ω

|u|p+1 dx > 0.

This completes the proof. �
By Lemma 2, for λ ∈ (0, λ1) we write Mλ(Ω) = M+

λ (Ω) ∪ M−
λ (Ω) and define

α+
λ (Ω) = inf

u∈M+
λ (Ω)

Jλ(u), α−
λ (Ω) = inf

u∈M−
λ (Ω)

Jλ(u).

The following lemma shows that the minimizers on Mλ(Ω) are “usually” critical points
for Jλ.

Lemma 4. For λ ∈ (0, λ1). If u0 is a local minimizer for Jλ on Mλ(Ω), then J ′
λ(u0) = 0 in

H−1(Ω).

Proof. If u0 is a local minimizer for Jλ on Mλ(Ω), then u0 is a solution of the optimization
problem

minimize Jλ(u) subject to ψλ(u) = 0.

Hence, by the theory of Lagrange multipliers, there exists θ ∈ R such that

J ′
λ(u0) = θψ ′

λ(u0) in H−1(Ω).

Thus, 〈
J ′ (u0), u0

〉
1 = θ

〈
ψ ′ (u0), u0

〉
1 . (5)
λ H λ H
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Since u0 ∈ Mλ(Ω), we have ‖u0‖2
H 1 − ∫

Ω
|u0|p+1 dx − λ

∫
Ω

f (x)|u0|q+1 dx = 0. Hence,

〈
ψ ′

λ(u0), u0
〉
H 1 = (1 − q)‖u0‖2

H 1 − (p − q)

∫
Ω

|u0|p+1 dx.

Moreover, 〈ψ ′
λ(u0), u0〉H 1 = 0 and so by (5) θ = 0. This completes the proof. �

For each u ∈ H 1
0 (Ω)\{0}, we write

tmax =
(

(1 − q)‖u‖2
H 1

(p − q)
∫
Ω

|u|p+1 dx

) 1
p−1

> 0.

Then, we have the following lemma.

Lemma 5. Let p∗ = p+1
p−q

and λ2 = ( p−1
p−q

)( 1−q
p−q

) 1−q
p−1 S

2(q−p)
p−1 ‖f ‖−1

Lp∗ . Then for each u ∈
H 1

0 (Ω)\{0} and λ ∈ (0, λ2), we have

(i) there is a unique t− = t−(u) > tmax > 0 such that t−u ∈ M−
λ (Ω) and Jλ(t

−u) =
maxt�tmax Jλ(tu);

(ii) t−(u) is a continuous function for nonzero u;

(iii) M−
λ (Ω) =

{
u ∈ H 1

0 (Ω)\{0}
∣∣∣∣ 1

‖u‖H 1
t−

(
u

‖u‖H 1

)
= 1

}
;

(iv) if
∫
Ω

f (x)|u|q+1 dx > 0, then there is a unique 0 < t+ = t+(u) < tmax such that
t+u ∈ M+

λ (Ω) and Jλ(t
+u) = min0�t�t− Jλ(tu).

Proof. (i) Fix u ∈ H 1
0 (Ω)\{0}. Let

s(t) = t1−q‖u‖2
H 1 − tp−q

∫
Ω

|u|p+1 dx for t � 0.

We have s(0) = 0, s(t) → −∞ as t → ∞, s(t) is concave and achieves its maximum
at tmax. Moreover,

s(tmax)

=
(

(1 − q)‖u‖2
H 1

(p − q)
∫
Ω

|u|p+1 dx

) 1−q
p−1 ‖u‖2

H 1

−
(

(1 − q)‖u‖2
H 1

(p − q)
∫
Ω

|u|p+1 dx

) p−q
p−1

∫
Ω

|u|p+1 dx

= ‖u‖q+1
H 1

[(
(1 − q)‖u‖p+1

H 1

(p − q)
∫
Ω

|u|p+1 dx

) 1−q
p−1 −

(
(1 − q)‖u‖

(p+1)(1−q)
p−q

H 1

(p − q)(
∫ |u|p+1 dx)

1−q
p−q

) p−q
p−1

]

Ω
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= ‖u‖q+1
H 1

[(
1 − q

p − q

) 1−q
p−1 −

(
1 − q

p − q

) p−q
p−1

]( ‖u‖p+1
H 1∫

Ω
|u|p+1 dx

) 1−q
p−1

� ‖u‖q+1
H 1

(
p − 1

p − q

)(
1 − q

p − q

) 1−q
p−1

(
1

Sp+1

) 1−q
p−1

,

or

s(tmax) � ‖u‖q+1
H 1

(
p − 1

p − q

)(
1 − q

p − q

) 1−q
p−1

(
1

Sp+1

) 1−q
p−1

. (6)

Case (I).
∫
Ω

f (x)|u|q+1 dx � 0.
There is a unique t− > tmax such that s(t−) = ∫

Ω
f (x)|u|q+1 dx and s′(t−) < 0. Now,

(1 − q)‖t−u‖2
H 1 − (p − q)

∫
Ω

|t−u|p+1 dx

= (t−)2+q

[
(1 − q)(t−)−q‖u‖2

H 1 − (p − q)(t−)p−q−1
∫
Ω

|t−u|p+1 dx

]

= (t−)2+qs′(t−) < 0,

and 〈
J ′

λ(t
−u), t−u

〉
= (t−)2‖u‖2

H 1 − (t−)p+1
∫
Ω

|u|p+1 dx − (t−)q+1λ

∫
Ω

f (x)|u|q+1 dx

= (t−)q+1
[
s(t−) − λ

∫
Ω

f (x)|u|q+1 dx

]
= 0.

Thus, t−u ∈ M−
λ (Ω). Since for t > tmax, we have

(1 − q)‖tu‖2
H 1 − (p − q)

∫
Ω

|tu|p+1 dx < 0,
d2

dt2
Jλ(tu) < 0

and

d

dt
Jλ(tu) = t‖u‖2

H 1 − tp
∫
Ω

|u|p+1 dx − tqλ

∫
Ω

f (x)|u|q+1 dx = 0 for t = t−.

Therefore, Jλ(t
−u) = maxt�tmax Jλ(tu).

Case (II).
∫
Ω

f (x)|u|q+1 dx > 0.

By (6) and
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s(0) = 0 < λ

∫
Ω

f (x)|u|q+1 dx � λ‖f ‖Lp∗ Sq+1‖u‖q+1
H 1

< ‖u‖q+1
H 1

(
p − 1

p − q

)(
1 − q

p − q

) 1−q
p−1

(
1

Sp+1

) 1−q
p−1

� s(tmax) for λ ∈ (0, λ2),

there are unique t+ and t− such that 0 < t+ < tmax < t−,

s
(
t+

) = λ

∫
Ω

f (x)|u|q+1 dx = s(t−)

and

s′(t+)
> 0 > s′(t−).

We have t+u ∈ M+
λ (Ω), t−u ∈ M−

λ (Ω), and Jλ(t
−u) � Jλ(tu) � Jλ(t

+u) for each t ∈
[t+, t−] and Jλ(t

+u) � Jλ(tu) for each t ∈ [0, t+]. Thus,

Jλ(t
−u) = max

t�tmax
Jλ(tu), Jλ

(
t+u

) = min
0�t�t−

Jλ(tu).

(ii) By the uniqueness of t−(u) and the external property of t−(u), we have that t−(u)

is a continuous function of u = 0.
(iii) For u ∈ M−

λ (Ω), let v = u
‖u‖

H1
. By part (i), there is a unique t−(v) > 0 such

that t−(v)v ∈ M−
λ (Ω), that is t−

(
u

‖u‖
H1

) 1
‖u‖

H1
u ∈ M−

λ (Ω). Since u ∈ M−
λ (Ω), we have

t−
(

u
‖u‖

H1

) 1
‖u‖

H1
= 1, which implies

M−
λ (Ω) ⊂

{
u ∈ H 1

0 (Ω)\{0}
∣∣∣∣ 1

‖u‖H 1
t−

(
u

‖u‖H 1

)
= 1

}
.

Conversely, let u ∈ H 1
0 (Ω)\{0} such that 1

‖u‖
H1

t−
(

u
‖u‖

H1

) = 1. Then

t−
(

u

‖u‖H 1

)
u

‖u‖H 1
∈ M−

λ (Ω).

Thus,

M−
λ (Ω) =

{
u ∈ H 1

0 (Ω)\{0}
∣∣∣∣ 1

‖u‖H 1
t−

(
u

‖u‖H 1

)
= 1

}
.

(iv) By Case (II) of part (i). �
By f :Ω → R is a continuous function which change sign in Ω , we have Θ =

{x ∈ Ω | f (x) > 0} is a open set in R
N . Without loss of generality, we may assume that Θ

is a domain in R
N. Consider the following elliptic equation:{−Δu = up in Θ,

0 � u ∈ H 1
0 (Θ).

(7)

Associated with Eq. (7), we consider the energy functional

K(u) = 1

2

∫
|∇u|2 dx − 1

p + 1

∫
|u|p+1 dx
Θ Θ
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and the minimization problem

βλ(Θ) = inf
{
Kλ(u)

∣∣ u ∈ Nλ(Θ)
}
,

where Nλ(Θ) = {u ∈ H 1
0 (Θ)\{0} | 〈K ′(u),u〉 = 0}. It is known that Eq. (7) has a positive

solution w0 such that K(w0) = βλ(Θ) > 0. Then we have the following results.

Lemma 6.

(i) There exists tλ > 0 such that

αλ(Ω) � α+
λ (Ω) < −1 − q

q + 1
t2
λβλ(Θ) < 0;

(ii) Jλ is coercive and bounded below on Mλ(Ω) for all λ ∈ (
0,

p−1
p−q

]
.

Proof. (i) Let w0 be a positive solution of Eq. (7) such that K(w0) = βλ(Θ). Then∫
Ω

f (x)w
q+1
0 dx =

∫
Θ

f (x)w
q+1
0 dx > 0.

Set tλ = t+(w0) as defined by Lemma 5(iv). Hence tλw0 ∈ M+
λ (Ω) and

Jλ(tλw0) = t2
λ

2
‖w0‖2

H 1 − t
p+1
λ

p + 1

∫
Ω

|w0|p+1 dx − λt
q+1
λ

q + 1

∫
Ω

f (x)|w0|q+1 dx

=
(

1

2
− 1

q + 1

)
t2
λ

2
‖w0‖2

H 1 +
(

1

q + 1
− 1

p + 1

)
t
p+1
λ

∫
Ω

|w0|p+1 dx

< −1 − q

q + 1
t2
λβλ(Θ) < 0.

This yields

αλ(Ω) � α+
λ (Ω) < −1 − q

q + 1
t2
λβλ(Θ) < 0.

(ii) For u ∈ Mλ(Ω), we have ‖u‖2
H 1 = ∫

Ω
|u|p+1 dx +λ

∫
Ω

f (x)|u|q+1 dx. Then by the
Hölder and Young inequality,

Jλ(u) = p − 1

2(p + 1)
‖u‖2

H 1 − λ

(
p − q

(p + 1)(q + 1)

)∫
Ω

f (x)|u|q+1 dx

� p − 1

2(p + 1)
‖u‖2

H 1 − λ

(
p − q

(p + 1)(q + 1)

)
‖f ‖Lp∗ Sq+1‖u‖q+1

H 1

�
[

p − 1

2(p + 1)
− λ

(
p − q

2(p + 1)

)]
‖u‖2

H 1

− λ

(
(p − q)(1 − q)

)(‖f ‖Lp∗ Sq+1) 2
1−q
2(p + 1)(q + 1)
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= 1

2(p + 1)

[
(p − 1) − λ(p − q)

]‖u‖2
H 1

− λ

(
(p − q)(1 − q)

2(p + 1)(q + 1)

)(‖f ‖Lp∗ Sq+1) 2
1−q .

Thus, Jλ is coercive on Mλ(Ω) and

Jλ(u) � −λ

(
(p − q)(1 − q)

2(p + 1)(q + 1)

)(‖f ‖Lp∗ Sq+1) 2
1−q

for all λ ∈ (
0,

p−1
p−q

]
. �

3. Proof of Theorem 1

First, we will use the idea of Tarantello [14] to get the following results.

Lemma 7. For each u ∈ Mλ(Ω), there exist ε > 0 and a differentiable function
ξ :B(0; ε) ⊂ H 1

0 (Ω) → R
+ such that ξ(0) = 1, the function ξ(v)(u − v) ∈ Mλ(Ω) and

〈
ξ ′(0), v

〉 = 2
∫
Ω

∇u∇v dx − (p + 1)
∫
Ω

|u|p−1uv dx − (q + 1)λ
∫
Ω

f |u|q−1uv dx

(1 − q)
∫
Ω

|∇u|2 dx − (p − q)
∫
Ω

|u|p+1 dx

(8)

for all v ∈ H 1
0 (Ω).

Proof. For u ∈ Mλ(Ω), define a function F : R × H 1
0 (Ω) → R by

Fu(ξ,w) = 〈
J ′

λ

(
ξ(u − w)

)
, ξ(u − w)

〉
= ξ2

∫
Ω

∣∣∇(u − w)
∣∣2

dx − ξp+1
∫
Ω

|u − w|p+1 dx

− ξq+1λ

∫
Ω

f (x)|u − w|q+1 dx.

Then Fu(1,0) = 〈J ′
λ(u),u〉 = 0 and

d

dt
Fu(1,0) = 2

∫
Ω

|∇u|2 dx − (p + 1)

∫
Ω

|u|p+1 dx − (q + 1)λ

∫
Ω

f (x)|u|q+1 dx

= (1 − q)

∫
Ω

|∇u|2 dx − (p − q)

∫
Ω

|u|p+1 dx = 0.

According to the implicit function theorem, there exist ε > 0 and a differentiable function
ξ :B(0; ε) ⊂ H 1(RN) → R such that ξ(0) = 1,

〈
ξ ′(0), v

〉 = 2
∫
Ω

∇u∇v dx − (p + 1)
∫
Ω

|u|p−1uv dx − (q + 1)λ
∫
Ω

f |u|q−1uv dx

(1 − q)
∫ |∇u|2 dx − (p − q)

∫ |u|p+1 dx

Ω Ω
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and

Fu

(
ξ(v), v

) = 0 for all v ∈ B(0; ε),
which is equivalent to〈

J ′
λ

(
ξ(v)(u − v)

)
, ξ(v)(u − v)

〉 = 0 for all v ∈ B(0; ε),
that is ξ(v)(u − v) ∈ Mλ(Ω). �
Lemma 8. For each u ∈ M−

λ (Ω), there exist ε > 0 and a differentiable function
ξ− :B(0; ε) ⊂ H 1

0 (Ω) → R
+ such that ξ−(0) = 1, the function ξ−(v)(u − v) ∈ M−

λ (Ω)

and 〈
(ξ−)′(0), v

〉
= 2

∫
Ω

∇u∇v dx − (p + 1)
∫
Ω

|u|p−1uv dx − (q + 1)λ
∫
Ω

f |u|q−1uv dx

(1 − q)
∫
Ω

|∇u|2 dx − (p − q)
∫
Ω

|u|p+1 dx
(9)

for all v ∈ H 1
0 (Ω).

Proof. Similar to the argument in Lemma 7, there exist ε > 0 and a differentiable function
ξ− :B(0; ε) ⊂ H 1(RN) → R such that ξ−(0) = 1 and ξ−(v)(u − v) ∈ Mλ(Ω) for all v ∈
B(0; ε). Since

〈
ψ ′

λ(u),u
〉 = (1 − q)‖u‖2

H 1 − (p − q)

∫
Ω

|u|p+1 dx < 0.

Thus, by the continuity of the functions ψ ′
λ and ξ−, we have〈

ψ ′
λ

(
ξ−(v)(u − v)

)
, ξ−(v)(u − v)

〉
= (1 − q)

∥∥ξ−(v)(u − v)
∥∥2

H 1 − (p − q)

∫
Ω

∣∣ξ−(v)(u − v)
∣∣p+1

dx < 0

if ε sufficiently small, this implies that ξ−(v)(u − v) ∈ M−
λ (Ω). �

Proposition 9. Let λ0 = min
{
λ1, λ2,

p−1
p−q

}
, then for λ ∈ (0, λ0),

(i) there exists a minimizing sequence {un} ⊂ Mλ(Ω) such that

Jλ(un) = αλ(Ω) + o(1),

J ′
λ(un) = o(1) in H−1(Ω);

(ii) there exists a minimizing sequence {un} ⊂ M−
λ (Ω) such that

Jλ(un) = α−
λ (Ω) + o(1),

J ′
λ(un) = o(1) in H−1(Ω).
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Proof. (i) By Lemma 6(ii) and the Ekeland variational principle [9], there exists a mini-
mizing sequence {un} ⊂ Mλ(Ω) such that

Jλ(un) < αλ(Ω) + 1

n
(10)

and

Jλ(un) < Jλ(w) + 1

n
‖w − un‖H 1 for each w ∈ Mλ(Ω). (11)

By taking n large, from Lemma 6(i), we have

Jλ(un) =
(

1

2
− 1

p + 1

)
‖un‖2

H 1 −
(

1

q + 1
− 1

p + 1

)
λ

∫
Ω

f (x)|un|q+1 dx

< αλ(Ω) + 1

n
< −1 − q

q + 1
t2
λβλ(Θ). (12)

This implies

‖f ‖Lp∗ Sq+1‖un‖q+1
H 1 �

∫
Ω

f (x)|un|q+1 dx >
(p + 1)(1 − q)

λ(p − q)
t2
λβλ(Ω) > 0. (13)

Consequently un = 0 and putting together (12), (13) and the Hölder inequality, we obtain

‖un‖H 1 >

[
(p + 1)(1 − q)

λ(p − q)
t2
λβλ(Θ)S−(q+1)‖f ‖−1

Lp∗

] 1
q+1

(14)

and

‖un‖H 1 <

[
2(p − q)

(p − 1)(q + 1)
‖f ‖Lp∗ Sq+1

] 1
1−q

. (15)

Now, we will show that∥∥J ′
λ(un)

∥∥
H−1 → 0 as n → ∞.

Applying Lemma 7 with un to obtain the functions ξn :B(0; εn) → R
+ for some εn > 0,

such that ξn(w)(un − w) ∈ Mλ(Ω). Choose 0 < ρ < εn. Let u ∈ H 1
0 (Ω) with u ≡ 0 and

let wρ = ρu
‖u‖

H1
. We set ηρ = ξn(wρ)(un − wρ). Since ηρ ∈ Mλ(Ω), we deduce from (11)

that

Jλ(ηρ) − Jλ(un) � −1

n
‖ηρ − un‖H 1

and by the mean value theorem, we have〈
J ′

λ(un), ηρ − un

〉 + o
(‖ηρ − un‖H 1

)
� −1

n
‖ηρ − un‖H 1 .

Thus, 〈
J ′

λ(un),−wρ

〉 + (
ξn(wρ) − 1

)〈
J ′

λ(un), (un − wρ)
〉

� −1‖ηρ − un‖H 1 + o
(‖ηρ − un‖H 1

)
. (16)
n
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From ξn(wρ)(un − wρ) ∈ Mλ(Ω) and (16) it follows that

−ρ

〈
J ′

λ(un),
u

‖u‖H 1

〉
+ (

ξn(wρ) − 1
)〈
J ′

λ(un) − J ′
λ(ηρ), (un − wρ)

〉
� −1

n
‖ηρ − un‖H 1 + o

(‖ηρ − un‖H 1

)
.

Thus, 〈
J ′

λ(un),
u

‖u‖H 1

〉
� ‖ηρ − un‖H 1

nρ
+ o(‖ηρ − un‖H 1)

ρ

+ (ξn(wρ) − 1)

ρ

〈
J ′

λ(un) − J ′
λ(ηρ), (un − wρ)

〉
. (17)

Since

‖ηρ − un‖H 1 � ρ
∣∣ξn(wρ)

∣∣ + ∣∣ξn(wρ) − 1
∣∣‖un‖H 1

and

lim
ρ→0

|ξn(wρ) − 1|
ρ

�
∥∥ξ ′

n(0)
∥∥.

If we let ρ → 0 in (17) for a fixed n, then by (15) we can find a constant C > 0, independent
of ρ, such that〈

J ′
λ(un),

u

‖u‖H 1

〉
� C

n

(
1 + ∥∥ξ ′

n(0)
∥∥)

.

We are done once we show that ‖ξ ′
n(0)‖ is uniformly bounded in n. By (8), (15) and the

Hölder inequality, we have

〈
ξ ′
n(0), v

〉
� b‖v‖H 1

|(1 − q)
∫
Ω

|∇un|2 dx − (p − q)
∫
Ω

|un|p+1 dx| for some b > 0.

We only need to show that∣∣∣∣(1 − q)

∫
Ω

|∇un|2 dx − (p − q)

∫
Ω

|un|p+1 dx

∣∣∣∣ > c (18)

for some c > 0 and n large enough. We argue by contradiction. Assume that there exists
a subsequence {un} such that

(1 − q)

∫
Ω

|∇un|2 dx − (p − q)

∫
Ω

|un|p+1 dx = o(1). (19)

Combining (19) with (14), we can find a suitable constant d > 0 such that∫
|un|p+1 dx � d for n sufficiently large. (20)
Ω
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In addition (19), and the fact that un ∈ Mλ(Ω) also give

λ

∫
Ω

f (x)|un|q+1 dx = ‖un‖2
H 1 −

∫
Ω

|un|p+1 dx = p − 1

1 − q

∫
Ω

|un|p+1 dx + o(1)

and

‖un‖H 1 �
[
λ

(
p − q

p − 1

)
‖f ‖Lp∗ Sq+1

] 1
1−q + o(1). (21)

This implies

Iλ(u) = K(p,q)

( ‖un‖2p

H 1∫
Ω

|un|p+1 dx

) 1
p−1 − λ

∫
Ω

f (x)|un|q+1 dx

=
(

1 − q

p − q

) p
p−1

(
p − 1

1 − q

)((p−q
1−q

)p(∫
Ω

|un|p+1 dx
)p∫

Ω
|un|p+1 dx

) 1
p−1

− p − 1

1 − q

∫
Ω

|un|p+1 dx

= o(1). (22)

However, by (20), (21) and λ ∈ (0, λ0),

Iλ(u) � K(p,q)

( ‖un‖2p

H 1∫
Ω

|un|p+1 dx

) 1
p−1 − λ‖f ‖Lp∗ ‖un‖q+1

Lp+1

� ‖un‖q+1
Lp+1

(
K(p,q)

( ‖un‖2p

H 1

Sq(p−1)+2p‖un‖q(p−1)+2p

H 1

) 1
p−1 − λ‖f ‖Lp∗

)

� ‖un‖q+1
Lp+1

{
K(p,q)

(
1

Sq(p−1)+2p

) 1
p−1

λ
−q
1−q

[(
p − q

p − 1

)
‖f ‖Lp∗ Sq+1

] −q
1−q

− λ‖f ‖Lp∗
}
,

this contradicts (22). We get〈
J ′

λ(un),
u

‖u‖H 1

〉
� C

n
.

This completes the proof of (i).
(ii) Similarly, by using Lemma 8, we can prove (ii). We will omit the details here. �
Now, we establish the existence of a local minimum for Jλ on M+

λ (Ω).

Theorem 10. Let λ0 > 0 as in Proposition 9, then for λ ∈ (0, λ0) the functional Jλ has
a minimizer u+ in M+(Ω) and it satisfies
0 λ



T.-F. Wu / J. Math. Anal. Appl. 318 (2006) 253–270 267
(i) Jλ(u
+
0 ) = αλ(Ω) = α+

λ (Ω);
(ii) u+

0 is a positive solution of Eq. (Eλ,f );
(iii) Jλ(u

+
0 ) → 0 as λ → 0.

Proof. Let {un} ⊂ Mλ(Ω) be a minimizing sequence for Jλ on Mλ(Ω) such that

Jλ(un) = αλ(Ω) + o(1) and J ′
λ(un) = o(1) in H−1(Ω).

Then by Lemma 6 and the compact imbedding theorem, there exist a subsequence {un}
and u+

0 ∈ H 1
0 (Ω) such that

un ⇀ u+
0 weakly in H 1

0 (Ω),

un → u+
0 strongly in Lp+1(Ω)

and

un → u+
0 strongly in Lq+1(Ω). (23)

First, we claim that
∫
Ω

f (x)|u+
0 |q+1 dx = 0. If not, by (23) we can conclude that∫

Ω

f (x)
∣∣u+

0

∣∣q+1
dx = 0

and ∫
Ω

f (x)|un|q+1 dx → 0 as n → ∞.

Thus, ∫
Ω

|∇un|2 dx =
∫
Ω

|un|p+1 dx + o(1)

and

Jλ(un) = 1

2

∫
Ω

|∇un|2 dx − 1

p + 1

∫
Ω

|un|p+1 dx − λ

q + 1

∫
Ω

f (x)|un|q+1 dx

=
(

1

2
− 1

p + 1

)∫
Ω

|un|p+1 dx + o(1)

=
(

1

2
− 1

p + 1

)∫
Ω

∣∣u+
0

∣∣p+1
dx as n → ∞,

this contradicts Jλ(un) → αλ(Ω) < 0 as n → ∞. In particular, u+
0 ∈ Mλ(Ω) is a nonzero

solution of Eq. (Eλ,f ) and Jλ(u
+
0 ) � αλ(Ω). We now prove that un → u+

0 strongly in
H 1(Ω). Supposing the contrary, then ‖u+‖H 1 < lim infn→∞ ‖un‖H 1 and so
0 0
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∥∥u+
0

∥∥2
H 1 −

∫
Ω

∣∣u+
0

∣∣p+1
dx − λ

∫
Ω

f (x)
∣∣u+

0

∣∣q+1
dx

< lim inf
n→∞

(
‖un‖2

H 1 −
∫
Ω

|un|p+1 dx − λ

∫
Ω

f (x)|un|q+1 dx

)
= 0,

this contradicts u+
0 ∈ Mλ(Ω). Hence un → u+

0 strongly in H 1
0 (Ω). This implies

Jλ(un) → Jλ

(
u+

0

) = αλ(Ω) as n → ∞.

Moreover, we have u+
0 ∈ M+

λ (Ω). In fact, if u+
0 ∈ M−

λ (Ω), by Lemma 5, there are unique
t+0 and t−0 such that t+0 u+

0 ∈ M+
λ (Ω) and t−0 u+

0 ∈ M−
λ (Ω), we have t+0 < t−0 = 1. Since

d

dt
Jλ

(
t+0 u+

0

) = 0 and
d2

dt2
Jλ

(
t+0 u+

0

)
> 0,

there exists t+0 < t̄ � t−0 such that Jλ(t
+
0 u+

0 ) < Jλ(t̄u
+
0 ). By Lemma 5,

Jλ

(
t+0 u+

0

)
< Jλ

(
t̄u+

0

)
� Jλ

(
t−0 u+

0

) = Jλ

(
u+

0

)
,

which is a contradiction. Since Jλ(u
+
0 ) = Jλ(|u+

0 |) and |u+
0 | ∈ M+

λ (Ω), by Lemma 4 we
may assume that u+

0 is nonnegative solution. By Drábek et al. [8, Lemma 2.1], we have
u+

0 ∈ L∞(Ω). Then we can apply the Harnack inequality due to Trudinger [15] in order to
get that u+

0 is positive in Ω . Moreover, by Lemma 6,

0 > Jλ

(
u+

0

)
� −λ

(
(p − q)(1 − q)

2(p + 1)(q + 1)

)(‖f ‖Lp∗ Sq+1) 2
1−q .

We obtain Jλ(u
+
0 ) → 0 as λ → 0. �

Next, we establish the existence of a local minimum for Jλ on M−
λ (Ω).

Theorem 11. Let λ0 > 0 as in Proposition 9, then for λ ∈ (0, λ0) the functional Jλ has
a minimizer u−

0 in M−
λ (Ω) and it satisfies

(i) Jλ(u
−
0 ) = α−

λ (Ω);
(ii) u−

0 is a positive solution of Eq. (Eλ,f ).

Proof. By Proposition 9(ii), there exists a minimizing sequence {un} for Jλ on M−
λ (Ω)

such that

Jλ(un) = α−
λ (Ω) + o(1) and J ′

λ(un) = o(1) in H−1(Ω).

By Lemma 6 and the compact imbedding theorem, there exist a subsequence {un} and
u−

0 ∈ M−
λ (Ω) is a nonzero solution of Eq. (Eλ,f ) such that

un ⇀ u−
0 weakly in H 1

0 (Ω),

un → u− strongly in Lp+1(Ω)
0
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and

un → u−
0 strongly in Lq+1(Ω).

We now prove that un → u−
0 strongly in H 1

0 (Ω). Suppose otherwise, then ‖u−
0 ‖H 1 <

lim infn→∞ ‖un‖H 1 and so∥∥u−
0

∥∥2
H 1 −

∫
Ω

∣∣u−
0

∣∣p+1
dx − λ

∫
Ω

f (x)
∣∣u−

0

∣∣q+1
dx

< lim inf
n→∞

(
‖un‖2

H 1 −
∫
Ω

|un|p+1 dx − λ

∫
Ω

f (x)|un|q+1 dx

)
= 0.

This contradicts u−
0 ∈ M−

λ (Ω). Hence un → u−
0 strongly in H 1

0 (Ω). This implies

Jλ(un) → Jλ

(
u−

0

) = α−
λ (Ω) as n → ∞.

Since Jλ(u
−
0 ) = Jλ(|u−

0 |) and |u−
0 | ∈ M−

λ (Ω) by Lemma 4 we may assume that u−
0 is

nonnegative solution. By Drábek et al. [8, Lemma 2.1], we have u−
0 ∈ L∞(Ω). Then we

can apply the Harnack inequality due to Trudinger [15] in order to get that u−
0 is positive

in Ω . �
Now, we complete the proof of Theorem 1.
By Theorems 10, 11, for Eq. (Eλ,f ) there exist two positive solutions u+

0 and u−
0 such

that u+
0 ∈ M+

λ (Ω), u−
0 ∈ M−

λ (Ω). Since M+
λ (Ω) ∩ M−

λ (Ω) = ∅, this implies that u+
0 and

u−
0 are different.
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[10] M. Ghergu, V. Rădulescu, Singular elliptic problems with lack of compactness, Ann. Mat. Pura Appl., in

press.
[11] T. Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem II, J. Differential

Equations 158 (1999) 94–151.
[12] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,

Regional Conf. Ser. in Math., Amer. Math. Soc., 1986.
[13] M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear

boundary value problems, Manuscripta Math. 32 (1980) 335–364.
[14] G. Tarantello, On nonhomogeneous elliptic involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal.

Non Linéaire 9 (1992) 281–304.
[15] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm.

Pure Appl. Math. 20 (1967) 721–747.
[16] M. Tang, Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlin-

earities, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 705–717.


