On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function

Tsung-Fang Wu ${ }^{1}$
Center for General Education, Southern Taiwan University of Technology, Tainan 71005, Taiwan

Received 16 March 2005
Available online 20 June 2005
Submitted by A. Cellina

Abstract

In this paper, we study the combined effect of concave and convex nonlinearities on the number of positive solutions for semilinear elliptic equations with a sign-changing weight function. With the help of the Nehari manifold, we prove that there are at least two positive solutions for Eq. ($E_{\lambda, f}$) in bounded domains.

© 2005 Elsevier Inc. All rights reserved.
Keywords: Semilinear elliptic equations; Nehari manifold; Concave-convex nonlinearities

1. Introduction

In this paper, we consider the multiplicity results of positive solutions of the following semilinear elliptic equation:

$$
\left\{\begin{array}{l}
-\Delta u=u^{p}+\lambda f(x) u^{q} \quad \text { in } \Omega, \\
0 \leqslant u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

[^0]where Ω is a bounded domain in $\mathbb{R}^{N}, 0<q<1<p<2^{*}\left(2^{*}=\frac{N+2}{N-2}\right.$ if $N \geqslant 3,2^{*}=\infty$ if $N=2$), $\lambda>0$ and $f: \bar{\Omega} \rightarrow \mathbb{R}$ is a continuous function which change sign in $\bar{\Omega}$. Associated with Eq. $\left(E_{\lambda, f}\right)$, we consider the energy functional J_{λ}, for each $u \in H_{0}^{1}(\Omega)$,
$$
J_{\lambda}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x-\frac{\lambda}{q+1} \int_{\Omega} f(x)|u|^{q+1} d x
$$

It is well known that the solutions of Eq. $\left(E_{\lambda, f}\right)$ are the critical points of the energy functional J_{λ} (see Rabinowitz [12]).

The fact that the number of positive solutions of Eq. ($E_{\lambda, f}$) is affected by the concave and convex nonlinearities has been the focus of a great deal of research in recent years. If the weight function $f(x) \equiv 1$, the authors Ambrosetti et al. [2] have investigated Eq. $\left(E_{\lambda, 1}\right)$. They found that there exists $\lambda_{0}>0$ such that Eq. $\left(E_{\lambda, 1}\right)$ admits at least two positive solution for $\lambda \in\left(0, \lambda_{0}\right)$, has a positive solution for $\lambda=\lambda_{0}$ and no positive solution exists for $\lambda>\lambda_{0}$. Actually, Adimurthy et al. [1], Damascelli et al. [7], Ouyang and Shi [11], and Tang [16] proved that there exists $\lambda_{0}>0$ such that Eq. ($E_{\lambda, 1}$) in the unit ball $B^{N}(0 ; 1)$ has exactly two positive solution for $\lambda \in\left(0, \lambda_{0}\right)$, has exactly one positive solution for $\lambda=\lambda_{0}$ and no positive solution exists for $\lambda>\lambda_{0}$.

The purpose of this paper is to consider the multiplicity of positive solution of Eq. ($E_{\lambda, f}$) for a changing sign potential function $f(x)$. We prove that Eq. ($E_{\lambda, f}$) has at least two positive solutions for λ is sufficiently small.

Theorem 1. There exists $\lambda_{0}>0$ such that for $\lambda \in\left(0, \lambda_{0}\right)$, Eq. $\left(E_{\lambda, f}\right)$ has at least two positive solutions.

Among the other interesting problems which are similar of Eq. ($E_{\lambda, f}$) for $q=0$, Bahri [3], Bahri and Berestycki [4], and Struwe [13] have investigated the following equation:

$$
\left\{\begin{array}{l}
-\Delta u=|u|^{p-1} u+f(x) \quad \text { in } \Omega \tag{f}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

where $f \in L^{2}(\Omega)$ and Ω is a bounded domain in \mathbb{R}^{N}. They found that Eq. (E_{f}) possesses infinitely many solutions. Furthermore, Cîrstea and Rădulescu [5], Cao and Zhou [6], and Ghergu and Rădulescu [10] have been investigated the analogue Eq. $\left(E_{f}\right)$ in \mathbb{R}^{N}.

This paper is organized as follows. In Section 2, we give some notations and preliminaries. In Section 3, we prove that Eq. ($E_{\lambda, f}$) has at least two positive solutions for λ sufficiently small.

2. Notations and preliminaries

Throughout this section, we denote by S the best Sobolev constant for the embedding of $H_{0}^{1}(\Omega)$ in $L^{p+1}(\Omega)$. Now, we consider the Nehari minimization problem: for $\lambda>0$,

$$
\alpha_{\lambda}(\Omega)=\inf \left\{J_{\lambda}(u) \mid u \in \mathbf{M}_{\lambda}(\Omega)\right\}
$$

where $\mathbf{M}_{\lambda}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \mid\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=0\right\}$. Define

$$
\psi_{\lambda}(u)=\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=\|u\|_{H^{1}}^{2}-\int_{\Omega}|u|^{p+1} d x-\lambda \int_{\Omega} f(x)|u|^{q+1} d x .
$$

Then for $u \in \mathbf{M}_{\lambda}(\Omega)$,

$$
\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=2\|u\|_{H^{1}}^{2}-(p+1) \int_{\Omega}|u|^{p+1} d x-(q+1) \lambda \int_{\Omega} f(x)|u|^{q+1} d x
$$

Similarly to the method used in Tarantello [14], we split $\mathbf{M}_{\lambda}(\Omega)$ into three parts:

$$
\begin{aligned}
& \mathbf{M}_{\lambda}^{+}(\Omega)=\left\{u \in \mathbf{M}_{\lambda}(\Omega) \mid\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle>0\right\}, \\
& \mathbf{M}_{\lambda}^{0}(\Omega)=\left\{u \in \mathbf{M}_{\lambda}(\Omega) \mid\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=0\right\}, \\
& \mathbf{M}_{\lambda}^{-}(\Omega)=\left\{u \in \mathbf{M}_{\lambda}(\Omega) \mid\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle<0\right\} .
\end{aligned}
$$

Then, we have the following results.
Lemma 2. There exists $\lambda_{1}>0$ such that for each $\lambda \in\left(0, \lambda_{1}\right)$ we have $\mathbf{M}_{\lambda}^{0}(\Omega)=\emptyset$.
Proof. We consider the following two cases.
Case (I). $\quad u \in \mathbf{M}_{\lambda}(\Omega)$ and $\int_{\Omega} f(x)|u|^{q+1} d x=0$. We have

$$
\|u\|_{H^{1}}^{2}-\int_{\Omega}|u|^{p+1} d x=0
$$

Thus,

$$
\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=2\|u\|_{H^{1}}^{2}-(p+1) \int_{\Omega}|u|^{p+1} d x=(1-p)\|u\|_{H^{1}}^{2}<0
$$

and so $u \notin \mathbf{M}_{\lambda}^{0}(\Omega)$.
Case (II). $\quad u \in \mathbf{M}_{\lambda}(\Omega)$ and $\int_{\Omega} f(x)|u|^{q+1} d x \neq 0$.
Suppose that $\mathbf{M}_{\lambda}^{0}(\Omega) \neq \emptyset$ for all $\lambda>0$. If $u \in \mathbf{M}_{\lambda}^{0}(\Omega)$, then we have

$$
\begin{aligned}
0 & =\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=2\|u\|_{H^{1}}^{2}-(p+1) \int_{\Omega}|u|^{p+1} d x-(q+1) \lambda \int_{\Omega} f(x)|u|^{q+1} d x \\
& =(1-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\Omega}|u|^{p+1} d x
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\|u\|_{H^{1}}^{2}=\frac{p-q}{1-q} \int_{\Omega}|u|^{p+1} d x \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \int_{\Omega} f(x)|u|^{q+1} d x=\|u\|_{H^{1}}^{2}-\int_{\Omega}|u|^{p+1} d x=\frac{p-1}{1-q} \int_{\Omega}|u|^{p+1} d x . \tag{2}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\left(\frac{p-1}{p-q}\right)\|u\|_{H^{1}}^{2} & =\|u\|_{H^{1}}^{2}-\int_{\Omega}|u|^{p+1} d x=\lambda \int_{\Omega} f(x)|u|^{q+1} d x \\
& \leqslant \lambda\|f\|_{L^{p^{*}}}\|u\|_{L^{p+1}}^{q+1} \leqslant \lambda\|f\|_{L^{p^{*}}} S^{q+1}\|u\|_{H^{1}}^{q+1}
\end{aligned}
$$

where $p^{*}=\frac{p+1}{p-q}$. This implies

$$
\begin{equation*}
\|u\|_{H^{1}} \leqslant\left[\lambda\left(\frac{p-q}{p-1}\right)\|f\|_{L^{p^{*}}} S^{q+1}\right]^{\frac{1}{1-q}} \tag{3}
\end{equation*}
$$

Let $I_{\lambda}: \mathbf{M}_{\lambda}(\Omega) \rightarrow \mathbb{R}$ be given by

$$
I_{\lambda}(u)=K(p, q)\left(\frac{|u|_{H^{1}}^{2 p}}{\int_{\Omega}|u|^{p+1} d x}\right)^{\frac{1}{p-1}}-\lambda \int_{\Omega} f(x)|u|^{q+1} d x
$$

where $K(p, q)=\left(\frac{1-q}{p-q}\right)^{\frac{p}{p-1}}\left(\frac{p-1}{1-q}\right)$. Then $I_{\lambda}(u)=0$ for all $u \in \mathbf{M}_{\lambda}^{0}(\Omega)$. Indeed, from (1) and (2) it follows that for $u \in \mathbf{M}_{\lambda}^{0}(\Omega)$ we have

$$
\begin{align*}
I_{\lambda}(u)= & K(p, q)\left(\frac{\|u\|_{H^{1}}^{2 p}}{\int_{\Omega}|u|^{p+1} d x}\right)^{\frac{1}{p-1}}-\lambda \int_{\Omega} f(x)|u|^{q+1} d x \\
= & \left(\frac{1-q}{p-q}\right)^{\frac{p}{p-1}}\left(\frac{p-1}{1-q}\right)\left(\frac{\left(\frac{p-q}{1-q}\right)^{p}\left(\int_{\Omega}|u|^{p+1} d x\right)^{p}}{\int_{\Omega}|u|^{p+1} d x}\right)^{\frac{1}{p-1}} \\
& -\frac{p-1}{1-q} \int_{\Omega}|u|^{p+1} d x \\
= & 0 . \tag{4}
\end{align*}
$$

However, by (3), the Hölder and Sobolev inequality, for $u \in \mathbf{M}_{\lambda}^{0}(\Omega)$,

$$
\begin{aligned}
I_{\lambda}(u) & \geqslant K(p, q)\left(\frac{|u|_{H^{1}}^{2 p}}{\int_{\Omega}|u|^{p+1} d x}\right)^{\frac{1}{p-1}}-\lambda\|f\|_{L^{p^{*}}}\|u\|_{L^{p+1}}^{q+1} \\
& \geqslant\|u\|_{L^{p+1}}^{q+1}\left(K(p, q)\left(\frac{\|u\|_{H^{1}}^{2 p}}{S^{q(p-1)+2 p}\|u\|_{H^{1}}^{q(p-1)+2 p}}\right)^{\frac{1}{p-1}}-\lambda\|f\|_{L^{p^{*}}}\right) \\
& =\|u\|_{L^{p+1}}^{q+1}\left(K(p, q)\left(\frac{1}{S^{q(p-1)+2 p}}\right)^{\frac{1}{p-1}} \frac{1}{\|u\|_{H^{1}}^{q}}-\lambda\|f\|_{L^{p^{*}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\geqslant & \|u\|_{L^{p+1}}^{q+1}\left\{K(p, q)\left(\frac{1}{S^{q(p-1)+2 p}}\right)^{\frac{1}{p-1}} \lambda^{\frac{-q}{1-q}}\left[\left(\frac{p-q}{p-1}\right)|f|_{L^{p^{*}}} S^{q+1}\right]^{\frac{-q}{1-q}}\right. \\
& \left.-\lambda\|f\|_{L^{p^{*}}}\right\} .
\end{aligned}
$$

This implies that for λ sufficiently small we have $I_{\lambda}(u)>0$ for all $u \in \mathbf{M}_{\lambda}^{0}(\Omega)$, this contradicts (4). Thus, we can conclude that there exists $\lambda_{1}>0$ such that for $\lambda \in\left(0, \lambda_{1}\right)$, we have $\mathbf{M}_{\lambda}^{0}(\Omega)=\emptyset$.

Lemma 3. If $u \in \mathbf{M}_{\lambda}^{+}(\Omega)$, then $\int_{\Omega} f(x)|u|^{q+1} d x>0$.
Proof. We have

$$
\|u\|_{H^{1}}^{2}-\int_{\Omega}|u|^{p+1} d x-\lambda \int_{\Omega} f(x)|u|^{q+1} d x=0
$$

and

$$
\|u\|_{H^{1}}^{2}>\frac{p-q}{1-q} \int_{\Omega}|u|^{p+1} d x
$$

Thus,

$$
\lambda \int_{\Omega} f(x)|u|^{q+1} d x=\|u\|_{H^{1}}^{2}-\int_{\Omega}|u|^{p+1} d x>\frac{p-1}{1-q} \int_{\Omega}|u|^{p+1} d x>0 .
$$

This completes the proof.
By Lemma 2, for $\lambda \in\left(0, \lambda_{1}\right)$ we write $\mathbf{M}_{\lambda}(\Omega)=\mathbf{M}_{\lambda}^{+}(\Omega) \cup \mathbf{M}_{\lambda}^{-}(\Omega)$ and define

$$
\alpha_{\lambda}^{+}(\Omega)=\inf _{u \in \mathbf{M}_{\lambda}^{+}(\Omega)} J_{\lambda}(u), \quad \alpha_{\lambda}^{-}(\Omega)=\inf _{u \in \mathbf{M}_{\lambda}^{-}(\Omega)} J_{\lambda}(u) .
$$

The following lemma shows that the minimizers on $\mathbf{M}_{\lambda}(\Omega)$ are "usually" critical points for J_{λ}.

Lemma 4. For $\lambda \in\left(0, \lambda_{1}\right)$. If u_{0} is a local minimizer for J_{λ} on $\mathbf{M}_{\lambda}(\Omega)$, then $J_{\lambda}^{\prime}\left(u_{0}\right)=0$ in $H^{-1}(\Omega)$.

Proof. If u_{0} is a local minimizer for J_{λ} on $\mathbf{M}_{\lambda}(\Omega)$, then u_{0} is a solution of the optimization problem

$$
\text { minimize } \quad J_{\lambda}(u) \text { subject to } \quad \psi_{\lambda}(u)=0 .
$$

Hence, by the theory of Lagrange multipliers, there exists $\theta \in \mathbb{R}$ such that

$$
J_{\lambda}^{\prime}\left(u_{0}\right)=\theta \psi_{\lambda}^{\prime}\left(u_{0}\right) \quad \text { in } H^{-1}(\Omega)
$$

Thus,

$$
\begin{equation*}
\left\langle J_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{H^{1}}=\theta\left\langle\psi_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{H^{1}} . \tag{5}
\end{equation*}
$$

Since $u_{0} \in \mathbf{M}_{\lambda}(\Omega)$, we have $\left\|u_{0}\right\|_{H^{1}}^{2}-\int_{\Omega}\left|u_{0}\right|^{p+1} d x-\lambda \int_{\Omega} f(x)\left|u_{0}\right|^{q+1} d x=0$. Hence,

$$
\left\langle\psi_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{H^{1}}=(1-q)\left\|u_{0}\right\|_{H^{1}}^{2}-(p-q) \int_{\Omega}\left|u_{0}\right|^{p+1} d x
$$

Moreover, $\left\langle\psi_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{H^{1}} \neq 0$ and so by (5) $\theta=0$. This completes the proof.
For each $u \in H_{0}^{1}(\Omega) \backslash\{0\}$, we write

$$
t_{\max }=\left(\frac{(1-q)\|u\|_{H^{1}}^{2}}{(p-q) \int_{\Omega}|u|^{p+1} d x}\right)^{\frac{1}{p-1}}>0
$$

Then, we have the following lemma.
Lemma 5. Let $p^{*}=\frac{p+1}{p-q}$ and $\lambda_{2}=\left(\frac{p-1}{p-q}\right)\left(\frac{1-q}{p-q}\right)^{\frac{1-q}{p-1}} S^{\frac{2(q-p)}{p-1}}\|f\|_{L^{p^{*}}}^{-1}$. Then for each $u \in$ $H_{0}^{1}(\Omega) \backslash\{0\}$ and $\lambda \in\left(0, \lambda_{2}\right)$, we have
(i) there is a unique $t^{-}=t^{-}(u)>t_{\max }>0$ such that $t^{-} u \in \mathbf{M}_{\lambda}^{-}(\Omega)$ and $J_{\lambda}\left(t^{-} u\right)=$ $\max _{t \geqslant t_{\text {max }}} J_{\lambda}(t u)$;
(ii) $t^{-}(u)$ is a continuous function for nonzero u;
(iii) $\mathbf{M}_{\lambda}^{-}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \left\lvert\, \frac{1}{\|u\|_{H^{1}}} t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right)=1\right.\right\}$;
(iv) if $\int_{\Omega} f(x)|u|^{q+1} d x>0$, then there is a unique $0<t^{+}=t^{+}(u)<t_{\max }$ such that $t^{+} u \in \mathbf{M}_{\lambda}^{+}(\Omega)$ and $J_{\lambda}\left(t^{+} u\right)=\min _{0 \leqslant t \leqslant t^{-}} J_{\lambda}(t u)$.

Proof. (i) Fix $u \in H_{0}^{1}(\Omega) \backslash\{0\}$. Let

$$
s(t)=t^{1-q}\|u\|_{H^{1}}^{2}-t^{p-q} \int_{\Omega}|u|^{p+1} d x \quad \text { for } t \geqslant 0
$$

We have $s(0)=0, s(t) \rightarrow-\infty$ as $t \rightarrow \infty, s(t)$ is concave and achieves its maximum at $t_{\text {max }}$. Moreover,

$$
\begin{aligned}
& s\left(t_{\max }\right) \\
&=\left(\frac{(1-q)\|u\|_{H^{1}}^{2}}{(p-q) \int_{\Omega}|u|^{p+1} d x}\right)^{\frac{1-q}{p-1}}\|u\|_{H^{1}}^{2} \\
&-\left(\frac{(1-q)\|u\|_{H^{1}}^{2}}{(p-q) \int_{\Omega}|u|^{p+1} d x}\right)^{\frac{p-q}{p-1}} \int_{\Omega}|u|^{p+1} d x \\
&=\|u\|_{H^{1}}^{q+1}\left[\left(\frac{(1-q)\|u\|_{H^{1}}^{p+1}}{(p-q) \int_{\Omega}|u|^{p+1} d x}\right)^{\frac{1-q}{p-1}}-\left(\frac{(1-q)\|u\|_{H^{1}}^{\frac{(p+1)(1-q)}{p-q}}}{(p-q)\left(\int_{\Omega}|u|^{p+1} d x\right)^{\frac{1-q}{p-q}}}\right)^{\frac{p-q}{p-1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\|u\|_{H^{1}}^{q+1}\left[\left(\frac{1-q}{p-q}\right)^{\frac{1-q}{p-1}}-\left(\frac{1-q}{p-q}\right)^{\frac{p-q}{p-1}}\right]\left(\frac{\|u\|_{H^{1}}^{p+1}}{\int_{\Omega}|u|^{p+1} d x}\right)^{\frac{1-q}{p-1}} \\
& \geqslant\|u\|_{H^{1}}^{q+1}\left(\frac{p-1}{p-q}\right)\left(\frac{1-q}{p-q}\right)^{\frac{1-q}{p-1}}\left(\frac{1}{S^{p+1}}\right)^{\frac{1-q}{p-1}}
\end{aligned}
$$

or

$$
\begin{equation*}
s\left(t_{\max }\right) \geqslant\|u\|_{H^{1}}^{q+1}\left(\frac{p-1}{p-q}\right)\left(\frac{1-q}{p-q}\right)^{\frac{1-q}{p-1}}\left(\frac{1}{S^{p+1}}\right)^{\frac{1-q}{p-1}} \tag{6}
\end{equation*}
$$

Case (I). $\quad \int_{\Omega} f(x)|u|^{q+1} d x \leqslant 0$.
There is a unique $t^{-}>t_{\text {max }}$ such that $s\left(t^{-}\right)=\int_{\Omega} f(x)|u|^{q+1} d x$ and $s^{\prime}\left(t^{-}\right)<0$. Now,

$$
\begin{aligned}
& (1-q)\left\|t^{-} u\right\|_{H^{1}}^{2}-(p-q) \int_{\Omega}\left|t^{-} u\right|^{p+1} d x \\
& \quad=\left(t^{-}\right)^{2+q}\left[(1-q)\left(t^{-}\right)^{-q}\|u\|_{H^{1}}^{2}-(p-q)\left(t^{-}\right)^{p-q-1} \int_{\Omega}\left|t^{-} u\right|^{p+1} d x\right] \\
& \quad=\left(t^{-}\right)^{2+q} s^{\prime}\left(t^{-}\right)<0
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle J_{\lambda}^{\prime}\left(t^{-} u\right), t^{-} u\right\rangle \\
& \quad=\left(t^{-}\right)^{2}\|u\|_{H^{1}}^{2}-\left(t^{-}\right)^{p+1} \int_{\Omega}|u|^{p+1} d x-\left(t^{-}\right)^{q+1} \lambda \int_{\Omega} f(x)|u|^{q+1} d x \\
& \quad=\left(t^{-}\right)^{q+1}\left[s\left(t^{-}\right)-\lambda \int_{\Omega} f(x)|u|^{q+1} d x\right]=0 .
\end{aligned}
$$

Thus, $t^{-} u \in \mathbf{M}_{\lambda}^{-}(\Omega)$. Since for $t>t_{\text {max }}$, we have

$$
(1-q)\|t u\|_{H^{1}}^{2}-(p-q) \int_{\Omega}|t u|^{p+1} d x<0, \quad \frac{d^{2}}{d t^{2}} J_{\lambda}(t u)<0
$$

and

$$
\frac{d}{d t} J_{\lambda}(t u)=t\|u\|_{H^{1}}^{2}-t^{p} \int_{\Omega}|u|^{p+1} d x-t^{q} \lambda \int_{\Omega} f(x)|u|^{q+1} d x=0 \quad \text { for } t=t^{-}
$$

Therefore, $J_{\lambda}\left(t^{-} u\right)=\max _{t \geqslant t_{\text {max }}} J_{\lambda}(t u)$.
Case (II). $\quad \int_{\Omega} f(x)|u|^{q+1} d x>0$.
By (6) and

$$
\begin{aligned}
s(0) & =0<\lambda \int_{\Omega} f(x)|u|^{q+1} d x \leqslant \lambda\|f\|_{L^{p^{*}}} S^{q+1}\|u\|_{H^{1}}^{q+1} \\
& <\|u\|_{H^{1}}^{q+1}\left(\frac{p-1}{p-q}\right)\left(\frac{1-q}{p-q}\right)^{\frac{1-q}{p-1}}\left(\frac{1}{S^{p+1}}\right)^{\frac{1-q}{p-1}} \leqslant s\left(t_{\max }\right) \quad \text { for } \lambda \in\left(0, \lambda_{2}\right),
\end{aligned}
$$

there are unique t^{+}and t^{-}such that $0<t^{+}<t_{\text {max }}<t^{-}$,

$$
s\left(t^{+}\right)=\lambda \int_{\Omega} f(x)|u|^{q+1} d x=s\left(t^{-}\right)
$$

and

$$
s^{\prime}\left(t^{+}\right)>0>s^{\prime}\left(t^{-}\right)
$$

We have $t^{+} u \in \mathbf{M}_{\lambda}^{+}(\Omega), t^{-} u \in \mathbf{M}_{\lambda}^{-}(\Omega)$, and $J_{\lambda}\left(t^{-} u\right) \geqslant J_{\lambda}(t u) \geqslant J_{\lambda}\left(t^{+} u\right)$ for each $t \in$ $\left[t^{+}, t^{-}\right]$and $J_{\lambda}\left(t^{+} u\right) \leqslant J_{\lambda}(t u)$ for each $t \in\left[0, t^{+}\right]$. Thus,

$$
J_{\lambda}\left(t^{-} u\right)=\max _{t \geqslant t_{\max }} J_{\lambda}(t u), \quad J_{\lambda}\left(t^{+} u\right)=\min _{0 \leqslant t \leqslant t^{-}} J_{\lambda}(t u)
$$

(ii) By the uniqueness of $t^{-}(u)$ and the external property of $t^{-}(u)$, we have that $t^{-}(u)$ is a continuous function of $u \neq 0$.
(iii) For $u \in \mathbf{M}_{\lambda}^{-}(\Omega)$, let $v=\frac{u}{\|u\|_{H^{1}}}$. By part (i), there is a unique $t^{-}(v)>0$ such that $t^{-}(v) v \in \mathbf{M}_{\lambda}^{-}(\Omega)$, that is $t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right) \frac{1}{\|u\|_{H^{1}}} u \in \mathbf{M}_{\lambda}^{-}(\Omega)$. Since $u \in \mathbf{M}_{\lambda}^{-}(\Omega)$, we have $t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right) \frac{1}{\|u\|_{H^{1}}}=1$, which implies

$$
\mathbf{M}_{\lambda}^{-}(\Omega) \subset\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \left\lvert\, \frac{1}{\|u\|_{H^{1}}} t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right)=1\right.\right\} .
$$

Conversely, let $u \in H_{0}^{1}(\Omega) \backslash\{0\}$ such that $\frac{1}{\|u\|_{H^{1}}} t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right)=1$. Then

$$
t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right) \frac{u}{\|u\|_{H^{1}}} \in \mathbf{M}_{\lambda}^{-}(\Omega)
$$

Thus,

$$
\mathbf{M}_{\lambda}^{-}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \left\lvert\, \frac{1}{\|u\|_{H^{1}}} t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right)=1\right.\right\} .
$$

(iv) By Case (II) of part (i).

By $f: \Omega \rightarrow \mathbb{R}$ is a continuous function which change sign in Ω, we have $\Theta=$ $\{x \in \Omega \mid f(x)>0\}$ is a open set in \mathbb{R}^{N}. Without loss of generality, we may assume that Θ is a domain in \mathbb{R}^{N}. Consider the following elliptic equation:

$$
\left\{\begin{array}{l}
-\Delta u=u^{p} \quad \text { in } \Theta, \tag{7}\\
0 \leqslant u \in H_{0}^{1}(\Theta)
\end{array}\right.
$$

Associated with Eq. (7), we consider the energy functional

$$
K(u)=\frac{1}{2} \int_{\Theta}|\nabla u|^{2} d x-\frac{1}{p+1} \int_{\Theta}|u|^{p+1} d x
$$

and the minimization problem

$$
\beta_{\lambda}(\Theta)=\inf \left\{K_{\lambda}(u) \mid u \in \mathbf{N}_{\lambda}(\Theta)\right\}
$$

where $\mathbf{N}_{\lambda}(\Theta)=\left\{u \in H_{0}^{1}(\Theta) \backslash\{0\} \mid\left\langle K^{\prime}(u), u\right\rangle=0\right\}$. It is known that Eq. (7) has a positive solution w_{0} such that $K\left(w_{0}\right)=\beta_{\lambda}(\Theta)>0$. Then we have the following results.

Lemma 6.

(i) There exists $t_{\lambda}>0$ such that

$$
\alpha_{\lambda}(\Omega) \leqslant \alpha_{\lambda}^{+}(\Omega)<-\frac{1-q}{q+1} t_{\lambda}^{2} \beta_{\lambda}(\Theta)<0
$$

(ii) J_{λ} is coercive and bounded below on $\mathbf{M}_{\lambda}(\Omega)$ for all $\lambda \in\left(0, \frac{p-1}{p-q}\right]$.

Proof. (i) Let w_{0} be a positive solution of Eq. (7) such that $K\left(w_{0}\right)=\beta_{\lambda}(\Theta)$. Then

$$
\int_{\Omega} f(x) w_{0}^{q+1} d x=\int_{\Theta} f(x) w_{0}^{q+1} d x>0
$$

Set $t_{\lambda}=t^{+}\left(w_{0}\right)$ as defined by Lemma 5(iv). Hence $t_{\lambda} w_{0} \in \mathbf{M}_{\lambda}^{+}(\Omega)$ and

$$
\begin{aligned}
J_{\lambda}\left(t_{\lambda} w_{0}\right) & =\frac{t_{\lambda}^{2}}{2}\left\|w_{0}\right\|_{H^{1}}^{2}-\frac{t_{\lambda}^{p+1}}{p+1} \int_{\Omega}\left|w_{0}\right|^{p+1} d x-\frac{\lambda t_{\lambda}^{q+1}}{q+1} \int_{\Omega} f(x)\left|w_{0}\right|^{q+1} d x \\
& =\left(\frac{1}{2}-\frac{1}{q+1}\right) \frac{t_{\lambda}^{2}}{2}\left\|w_{0}\right\|_{H^{1}}^{2}+\left(\frac{1}{q+1}-\frac{1}{p+1}\right) t_{\lambda}^{p+1} \int_{\Omega}\left|w_{0}\right|^{p+1} d x \\
& <-\frac{1-q}{q+1} t_{\lambda}^{2} \beta_{\lambda}(\Theta)<0
\end{aligned}
$$

This yields

$$
\alpha_{\lambda}(\Omega) \leqslant \alpha_{\lambda}^{+}(\Omega)<-\frac{1-q}{q+1} t_{\lambda}^{2} \beta_{\lambda}(\Theta)<0
$$

(ii) For $u \in \mathbf{M}_{\lambda}(\Omega)$, we have $\|u\|_{H^{1}}^{2}=\int_{\Omega}|u|^{p+1} d x+\lambda \int_{\Omega} f(x)|u|^{q+1} d x$. Then by the Hölder and Young inequality,

$$
\begin{aligned}
J_{\lambda}(u)= & \frac{p-1}{2(p+1)}\|u\|_{H^{1}}^{2}-\lambda\left(\frac{p-q}{(p+1)(q+1)}\right) \int_{\Omega} f(x)|u|^{q+1} d x \\
\geqslant & \frac{p-1}{2(p+1)}\|u\|_{H^{1}}^{2}-\lambda\left(\frac{p-q}{(p+1)(q+1)}\right)\|f\|_{L^{p^{*}}} S^{q+1}\|u\|_{H^{1}}^{q+1} \\
\geqslant & {\left[\frac{p-1}{2(p+1)}-\lambda\left(\frac{p-q}{2(p+1)}\right)\right]\|u\|_{H^{1}}^{2} } \\
& -\lambda\left(\frac{(p-q)(1-q)}{2(p+1)(q+1)}\right)\left(\|f\|_{L^{p^{*}}} S^{q+1}\right)^{\frac{2}{1-q}}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2(p+1)}[(p-1)-\lambda(p-q)]\|u\|_{H^{1}}^{2} \\
& -\lambda\left(\frac{(p-q)(1-q)}{2(p+1)(q+1)}\right)\left(\|f\|_{L^{p^{*}}} S^{q+1}\right)^{\frac{2}{1-q}} .
\end{aligned}
$$

Thus, J_{λ} is coercive on $\mathbf{M}_{\lambda}(\Omega)$ and

$$
J_{\lambda}(u) \geqslant-\lambda\left(\frac{(p-q)(1-q)}{2(p+1)(q+1)}\right)\left(\|f\|_{L^{p^{*}}} S^{q+1}\right)^{\frac{2}{1-q}}
$$

for all $\lambda \in\left(0, \frac{p-1}{p-q}\right]$.

3. Proof of Theorem 1

First, we will use the idea of Tarantello [14] to get the following results.
Lemma 7. For each $u \in \mathbf{M}_{\lambda}(\Omega)$, there exist $\epsilon>0$ and a differentiable function $\xi: B(0 ; \epsilon) \subset H_{0}^{1}(\Omega) \rightarrow \mathbb{R}^{+}$such that $\xi(0)=1$, the function $\xi(v)(u-v) \in \mathbf{M}_{\lambda}(\Omega)$ and

$$
\begin{equation*}
\left\langle\xi^{\prime}(0), v\right\rangle=\frac{2 \int_{\Omega} \nabla u \nabla v d x-(p+1) \int_{\Omega}|u|^{p-1} u v d x-(q+1) \lambda \int_{\Omega} f|u|^{q-1} u v d x}{(1-q) \int_{\Omega}|\nabla u|^{2} d x-(p-q) \int_{\Omega}|u|^{p+1} d x} \tag{8}
\end{equation*}
$$

for all $v \in H_{0}^{1}(\Omega)$.
Proof. For $u \in \mathbf{M}_{\lambda}(\Omega)$, define a function $F: \mathbb{R} \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
F_{u}(\xi, w)= & \left\langle J_{\lambda}^{\prime}(\xi(u-w)), \xi(u-w)\right\rangle \\
= & \xi^{2} \int_{\Omega}|\nabla(u-w)|^{2} d x-\xi^{p+1} \int_{\Omega}|u-w|^{p+1} d x \\
& -\xi^{q+1} \lambda \int_{\Omega} f(x)|u-w|^{q+1} d x .
\end{aligned}
$$

Then $F_{u}(1,0)=\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=0$ and

$$
\begin{aligned}
\frac{d}{d t} F_{u}(1,0) & =2 \int_{\Omega}|\nabla u|^{2} d x-(p+1) \int_{\Omega}|u|^{p+1} d x-(q+1) \lambda \int_{\Omega} f(x)|u|^{q+1} d x \\
& =(1-q) \int_{\Omega}|\nabla u|^{2} d x-(p-q) \int_{\Omega}|u|^{p+1} d x \neq 0
\end{aligned}
$$

According to the implicit function theorem, there exist $\epsilon>0$ and a differentiable function $\xi: B(0 ; \epsilon) \subset H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ such that $\xi(0)=1$,

$$
\left\langle\xi^{\prime}(0), v\right\rangle=\frac{2 \int_{\Omega} \nabla u \nabla v d x-(p+1) \int_{\Omega}|u|^{p-1} u v d x-(q+1) \lambda \int_{\Omega} f|u|^{q-1} u v d x}{(1-q) \int_{\Omega}|\nabla u|^{2} d x-(p-q) \int_{\Omega}|u|^{p+1} d x}
$$

and

$$
F_{u}(\xi(v), v)=0 \quad \text { for all } v \in B(0 ; \epsilon),
$$

which is equivalent to

$$
\left\langle J_{\lambda}^{\prime}(\xi(v)(u-v)), \xi(v)(u-v)\right\rangle=0 \quad \text { for all } v \in B(0 ; \epsilon)
$$

that is $\xi(v)(u-v) \in \mathbf{M}_{\lambda}(\Omega)$.
Lemma 8. For each $u \in \mathbf{M}_{\lambda}^{-}(\Omega)$, there exist $\epsilon>0$ and a differentiable function $\xi^{-}: B(0 ; \epsilon) \subset H_{0}^{1}(\Omega) \rightarrow \mathbb{R}^{+}$such that $\xi^{-}(0)=1$, the function $\xi^{-}(v)(u-v) \in \mathbf{M}_{\lambda}^{-}(\Omega)$ and

$$
\begin{align*}
& \left\langle\left(\xi^{-}\right)^{\prime}(0), v\right\rangle \\
& \quad=\frac{2 \int_{\Omega} \nabla u \nabla v d x-(p+1) \int_{\Omega}|u|^{p-1} u v d x-(q+1) \lambda \int_{\Omega} f|u|^{q-1} u v d x}{(1-q) \int_{\Omega}|\nabla u|^{2} d x-(p-q) \int_{\Omega}|u|^{p+1} d x} \tag{9}
\end{align*}
$$

for all $v \in H_{0}^{1}(\Omega)$.
Proof. Similar to the argument in Lemma 7, there exist $\epsilon>0$ and a differentiable function $\xi^{-}: B(0 ; \epsilon) \subset H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ such that $\xi^{-}(0)=1$ and $\xi^{-}(v)(u-v) \in \mathbf{M}_{\lambda}(\Omega)$ for all $v \in$ $B(0 ; \epsilon)$. Since

$$
\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=(1-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\Omega}|u|^{p+1} d x<0 .
$$

Thus, by the continuity of the functions ψ_{λ}^{\prime} and ξ^{-}, we have

$$
\begin{aligned}
& \left\langle\psi_{\lambda}^{\prime}\left(\xi^{-}(v)(u-v)\right), \xi^{-}(v)(u-v)\right\rangle \\
& \quad=(1-q)\left\|\xi^{-}(v)(u-v)\right\|_{H^{1}}^{2}-(p-q) \int_{\Omega}\left|\xi^{-}(v)(u-v)\right|^{p+1} d x<0
\end{aligned}
$$

if ϵ sufficiently small, this implies that $\xi^{-}(v)(u-v) \in \mathbf{M}_{\lambda}^{-}(\Omega)$.
Proposition 9. Let $\lambda_{0}=\min \left\{\lambda_{1}, \lambda_{2}, \frac{p-1}{p-q}\right\}$, then for $\lambda \in\left(0, \lambda_{0}\right)$,
(i) there exists a minimizing sequence $\left\{u_{n}\right\} \subset \mathbf{M}_{\lambda}(\Omega)$ such that

$$
\begin{aligned}
& J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}(\Omega)+o(1) \\
& J_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{-1}(\Omega)
\end{aligned}
$$

(ii) there exists a minimizing sequence $\left\{u_{n}\right\} \subset \mathbf{M}_{\lambda}^{-}(\Omega)$ such that

$$
\begin{aligned}
& J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}^{-}(\Omega)+o(1) \\
& J_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{-1}(\Omega) .
\end{aligned}
$$

Proof. (i) By Lemma 6(ii) and the Ekeland variational principle [9], there exists a minimizing sequence $\left\{u_{n}\right\} \subset \mathbf{M}_{\lambda}(\Omega)$ such that

$$
\begin{equation*}
J_{\lambda}\left(u_{n}\right)<\alpha_{\lambda}(\Omega)+\frac{1}{n} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{\lambda}\left(u_{n}\right)<J_{\lambda}(w)+\frac{1}{n}\left\|w-u_{n}\right\|_{H^{1}} \quad \text { for each } w \in \mathbf{M}_{\lambda}(\Omega) \tag{11}
\end{equation*}
$$

By taking n large, from Lemma 6(i), we have

$$
\begin{align*}
J_{\lambda}\left(u_{n}\right) & =\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u_{n}\right\|_{H^{1}}^{2}-\left(\frac{1}{q+1}-\frac{1}{p+1}\right) \lambda \int_{\Omega} f(x)\left|u_{n}\right|^{q+1} d x \\
& <\alpha_{\lambda}(\Omega)+\frac{1}{n}<-\frac{1-q}{q+1} t_{\lambda}^{2} \beta_{\lambda}(\Theta) \tag{12}
\end{align*}
$$

This implies

$$
\begin{equation*}
\|f\|_{L^{p^{*}}} S^{q+1}\left\|u_{n}\right\|_{H^{1}}^{q+1} \geqslant \int_{\Omega} f(x)\left|u_{n}\right|^{q+1} d x>\frac{(p+1)(1-q)}{\lambda(p-q)} t_{\lambda}^{2} \beta_{\lambda}(\Omega)>0 . \tag{13}
\end{equation*}
$$

Consequently $u_{n} \neq 0$ and putting together (12), (13) and the Hölder inequality, we obtain

$$
\begin{equation*}
\left\|u_{n}\right\|_{H^{1}}>\left[\frac{(p+1)(1-q)}{\lambda(p-q)} t_{\lambda}^{2} \beta_{\lambda}(\Theta) S^{-(q+1)}\|f\|_{L^{p^{*}}}^{-1}\right]^{\frac{1}{q+1}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{n}\right\|_{H^{1}}<\left[\frac{2(p-q)}{(p-1)(q+1)}\|f\|_{L^{p^{*}}} S^{q+1}\right]^{\frac{1}{1-q}} \tag{15}
\end{equation*}
$$

Now, we will show that

$$
\left\|J_{\lambda}^{\prime}\left(u_{n}\right)\right\|_{H^{-1}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Applying Lemma 7 with u_{n} to obtain the functions $\xi_{n}: B\left(0 ; \epsilon_{n}\right) \rightarrow \mathbb{R}^{+}$for some $\epsilon_{n}>0$, such that $\xi_{n}(w)\left(u_{n}-w\right) \in \mathbf{M}_{\lambda}(\Omega)$. Choose $0<\rho<\epsilon_{n}$. Let $u \in H_{0}^{1}(\Omega)$ with $u \not \equiv 0$ and let $w_{\rho}=\frac{\rho u}{\|u\|_{H^{1}}}$. We set $\eta_{\rho}=\xi_{n}\left(w_{\rho}\right)\left(u_{n}-w_{\rho}\right)$. Since $\eta_{\rho} \in \mathbf{M}_{\lambda}(\Omega)$, we deduce from (11) that

$$
J_{\lambda}\left(\eta_{\rho}\right)-J_{\lambda}\left(u_{n}\right) \geqslant-\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}
$$

and by the mean value theorem, we have

$$
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \eta_{\rho}-u_{n}\right\rangle+o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right) \geqslant-\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}
$$

Thus,

$$
\begin{align*}
& \left\langle J_{\lambda}^{\prime}\left(u_{n}\right),-w_{\rho}\right\rangle+\left(\xi_{n}\left(w_{\rho}\right)-1\right)\left\langle J_{\lambda}^{\prime}\left(u_{n}\right),\left(u_{n}-w_{\rho}\right)\right\rangle \\
& \quad \geqslant-\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}+o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right) \tag{16}
\end{align*}
$$

From $\xi_{n}\left(w_{\rho}\right)\left(u_{n}-w_{\rho}\right) \in \mathbf{M}_{\lambda}(\Omega)$ and (16) it follows that

$$
\begin{aligned}
& -\rho\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{H^{1}}}\right\rangle+\left(\xi_{n}\left(w_{\rho}\right)-1\right)\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}\left(\eta_{\rho}\right),\left(u_{n}-w_{\rho}\right)\right\rangle \\
& \quad \geqslant-\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}+o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right) .
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{H^{1}}}\right\rangle \leqslant & \frac{\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}}{n \rho}+\frac{o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right)}{\rho} \\
& +\frac{\left(\xi_{n}\left(w_{\rho}\right)-1\right)}{\rho}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}\left(\eta_{\rho}\right),\left(u_{n}-w_{\rho}\right)\right\rangle . \tag{17}
\end{align*}
$$

Since

$$
\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}} \leqslant \rho\left|\xi_{n}\left(w_{\rho}\right)\right|+\left|\xi_{n}\left(w_{\rho}\right)-1\right|\left\|u_{n}\right\|_{H^{1}}
$$

and

$$
\lim _{\rho \rightarrow 0} \frac{\left|\xi_{n}\left(w_{\rho}\right)-1\right|}{\rho} \leqslant\left\|\xi_{n}^{\prime}(0)\right\|
$$

If we let $\rho \rightarrow 0$ in (17) for a fixed n, then by (15) we can find a constant $C>0$, independent of ρ, such that

$$
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{H^{1}}}\right\rangle \leqslant \frac{C}{n}\left(1+\left\|\xi_{n}^{\prime}(0)\right\|\right) .
$$

We are done once we show that $\left\|\xi_{n}^{\prime}(0)\right\|$ is uniformly bounded in n. By (8), (15) and the Hölder inequality, we have

$$
\left\langle\xi_{n}^{\prime}(0), v\right\rangle \leqslant \frac{b\|v\|_{H^{1}}}{\left.\left|(1-q) \int_{\Omega}\right| \nabla u_{n}\right|^{2} d x-(p-q) \int_{\Omega}\left|u_{n}\right|^{p+1} d x \mid} \quad \text { for some } b>0
$$

We only need to show that

$$
\begin{equation*}
\left.\left|(1-q) \int_{\Omega}\right| \nabla u_{n}\right|^{2} d x-(p-q) \int_{\Omega}\left|u_{n}\right|^{p+1} d x \mid>c \tag{18}
\end{equation*}
$$

for some $c>0$ and n large enough. We argue by contradiction. Assume that there exists a subsequence $\left\{u_{n}\right\}$ such that

$$
\begin{equation*}
(1-q) \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x-(p-q) \int_{\Omega}\left|u_{n}\right|^{p+1} d x=o(1) \tag{19}
\end{equation*}
$$

Combining (19) with (14), we can find a suitable constant $d>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|u_{n}\right|^{p+1} d x \geqslant d \quad \text { for } n \text { sufficiently large. } \tag{20}
\end{equation*}
$$

In addition (19), and the fact that $u_{n} \in \mathbf{M}_{\lambda}(\Omega)$ also give

$$
\lambda \int_{\Omega} f(x)\left|u_{n}\right|^{q+1} d x=\left\|u_{n}\right\|_{H^{1}}^{2}-\int_{\Omega}\left|u_{n}\right|^{p+1} d x=\frac{p-1}{1-q} \int_{\Omega}\left|u_{n}\right|^{p+1} d x+o(1)
$$

and

$$
\begin{equation*}
\left\|u_{n}\right\|_{H^{1}} \leqslant\left[\lambda\left(\frac{p-q}{p-1}\right)\|f\|_{L^{p^{*}}} S^{q+1}\right]^{\frac{1}{1-q}}+o(1) \tag{21}
\end{equation*}
$$

This implies

$$
\begin{align*}
I_{\lambda}(u)= & K(p, q)\left(\frac{\left\|u_{n}\right\|_{H^{1}}^{2 p}}{\int_{\Omega}\left|u_{n}\right|^{p+1} d x}\right)^{\frac{1}{p-1}}-\lambda \int_{\Omega} f(x)\left|u_{n}\right|^{q+1} d x \\
= & \left(\frac{1-q}{p-q}\right)^{\frac{p}{p-1}}\left(\frac{p-1}{1-q}\right)\left(\frac{\left(\frac{p-q}{1-q}\right)^{p}\left(\int_{\Omega}\left|u_{n}\right|^{p+1} d x\right)^{p}}{\int_{\Omega}\left|u_{n}\right|^{p+1} d x}\right)^{\frac{1}{p-1}} \\
& -\frac{p-1}{1-q} \int_{\Omega}\left|u_{n}\right|^{p+1} d x \\
= & o(1) \tag{22}
\end{align*}
$$

However, by (20), (21) and $\lambda \in\left(0, \lambda_{0}\right)$,

$$
\begin{aligned}
I_{\lambda}(u) \geqslant & K(p, q)\left(\frac{\left\|u_{n}\right\|_{H^{1}}^{2 p}}{\int_{\Omega}\left|u_{n}\right|^{p+1} d x}\right)^{\frac{1}{p-1}}-\lambda\|f\|_{L^{p^{*}}}\left\|u_{n}\right\|_{L^{p+1}}^{q+1} \\
\geqslant & \left\|u_{n}\right\|_{L^{p+1}}^{q+1}\left(K(p, q)\left(\frac{\left\|u_{n}\right\|_{H^{1}}^{2 p}}{S^{q(p-1)+2 p}\left\|u_{n}\right\|_{H^{1}}^{q(p-1)+2 p}}\right)^{\frac{1}{p-1}}-\lambda\|f\|_{L^{p^{*}}}\right) \\
\geqslant & \left\|u_{n}\right\|_{L^{p+1}}^{q+1}\left\{K(p, q)\left(\frac{1}{S^{q(p-1)+2 p}}\right)^{\frac{1}{p-1}} \lambda^{\frac{-q}{1-q}}\left[\left(\frac{p-q}{p-1}\right)\|f\|_{L^{p^{*}}} S^{q+1}\right]^{\frac{-q}{1-q}}\right. \\
& \left.-\lambda\|f\|_{L^{p^{*}}}\right\}
\end{aligned}
$$

this contradicts (22). We get

$$
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{H^{1}}}\right\rangle \leqslant \frac{C}{n} .
$$

This completes the proof of (i).
(ii) Similarly, by using Lemma 8, we can prove (ii). We will omit the details here.

Now, we establish the existence of a local minimum for J_{λ} on $\mathbf{M}_{\lambda}^{+}(\Omega)$.
Theorem 10. Let $\lambda_{0}>0$ as in Proposition 9, then for $\lambda \in\left(0, \lambda_{0}\right)$ the functional J_{λ} has a minimizer u_{0}^{+}in $\mathbf{M}_{\lambda}^{+}(\Omega)$ and it satisfies
(i) $J_{\lambda}\left(u_{0}^{+}\right)=\alpha_{\lambda}(\Omega)=\alpha_{\lambda}^{+}(\Omega)$;
(ii) u_{0}^{+}is a positive solution of $E q$. $\left(E_{\lambda, f}\right)$;
(iii) $J_{\lambda}\left(u_{0}^{+}\right) \rightarrow 0$ as $\lambda \rightarrow 0$.

Proof. Let $\left\{u_{n}\right\} \subset \mathbf{M}_{\lambda}(\Omega)$ be a minimizing sequence for J_{λ} on $\mathbf{M}_{\lambda}(\Omega)$ such that

$$
J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}(\Omega)+o(1) \quad \text { and } \quad J_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{-1}(\Omega) .
$$

Then by Lemma 6 and the compact imbedding theorem, there exist a subsequence $\left\{u_{n}\right\}$ and $u_{0}^{+} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u_{0}^{+} & \text {weakly in } H_{0}^{1}(\Omega) \\
u_{n} \rightarrow u_{0}^{+} & \text {strongly in } L^{p+1}(\Omega)
\end{array}
$$

and

$$
\begin{equation*}
u_{n} \rightarrow u_{0}^{+} \quad \text { strongly in } L^{q+1}(\Omega) . \tag{23}
\end{equation*}
$$

First, we claim that $\int_{\Omega} f(x)\left|u_{0}^{+}\right|^{q+1} d x \neq 0$. If not, by (23) we can conclude that

$$
\int_{\Omega} f(x)\left|u_{0}^{+}\right|^{q+1} d x=0
$$

and

$$
\int_{\Omega} f(x)\left|u_{n}\right|^{q+1} d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Thus,

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x=\int_{\Omega}\left|u_{n}\right|^{p+1} d x+o(1)
$$

and

$$
\begin{aligned}
J_{\lambda}\left(u_{n}\right) & =\frac{1}{2} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x-\frac{1}{p+1} \int_{\Omega}\left|u_{n}\right|^{p+1} d x-\frac{\lambda}{q+1} \int_{\Omega} f(x)\left|u_{n}\right|^{q+1} d x \\
& =\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\Omega}\left|u_{n}\right|^{p+1} d x+o(1) \\
& =\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\Omega}\left|u_{0}^{+}\right|^{p+1} d x \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

this contradicts $J_{\lambda}\left(u_{n}\right) \rightarrow \alpha_{\lambda}(\Omega)<0$ as $n \rightarrow \infty$. In particular, $u_{0}^{+} \in \mathbf{M}_{\lambda}(\Omega)$ is a nonzero solution of Eq. $\left(E_{\lambda, f}\right)$ and $J_{\lambda}\left(u_{0}^{+}\right) \geqslant \alpha_{\lambda}(\Omega)$. We now prove that $u_{n} \rightarrow u_{0}^{+}$strongly in $H_{0}^{1}(\Omega)$. Supposing the contrary, then $\left\|u_{0}^{+}\right\|_{H^{1}}<\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{H^{1}}$ and so

$$
\begin{aligned}
& \left\|u_{0}^{+}\right\|_{H^{1}}^{2}-\int_{\Omega}\left|u_{0}^{+}\right|^{p+1} d x-\lambda \int_{\Omega} f(x)\left|u_{0}^{+}\right|^{q+1} d x \\
& \quad<\liminf _{n \rightarrow \infty}\left(\left\|u_{n}\right\|_{H^{1}}^{2}-\int_{\Omega}\left|u_{n}\right|^{p+1} d x-\lambda \int_{\Omega} f(x)\left|u_{n}\right|^{q+1} d x\right)=0
\end{aligned}
$$

this contradicts $u_{0}^{+} \in \mathbf{M}_{\lambda}(\Omega)$. Hence $u_{n} \rightarrow u_{0}^{+}$strongly in $H_{0}^{1}(\Omega)$. This implies

$$
J_{\lambda}\left(u_{n}\right) \rightarrow J_{\lambda}\left(u_{0}^{+}\right)=\alpha_{\lambda}(\Omega) \quad \text { as } n \rightarrow \infty
$$

Moreover, we have $u_{0}^{+} \in \mathbf{M}_{\lambda}^{+}(\Omega)$. In fact, if $u_{0}^{+} \in \mathbf{M}_{\lambda}^{-}(\Omega)$, by Lemma 5, there are unique t_{0}^{+}and t_{0}^{-}such that $t_{0}^{+} u_{0}^{+} \in \mathbf{M}_{\lambda}^{+}(\Omega)$ and $t_{0}^{-} u_{0}^{+} \in \mathbf{M}_{\lambda}^{-}(\Omega)$, we have $t_{0}^{+}<t_{0}^{-}=1$. Since

$$
\frac{d}{d t} J_{\lambda}\left(t_{0}^{+} u_{0}^{+}\right)=0 \quad \text { and } \quad \frac{d^{2}}{d t^{2}} J_{\lambda}\left(t_{0}^{+} u_{0}^{+}\right)>0
$$

there exists $t_{0}^{+}<\bar{t} \leqslant t_{0}^{-}$such that $J_{\lambda}\left(t_{0}^{+} u_{0}^{+}\right)<J_{\lambda}\left(\bar{t} u_{0}^{+}\right)$. By Lemma 5,

$$
J_{\lambda}\left(t_{0}^{+} u_{0}^{+}\right)<J_{\lambda}\left(\bar{t} u_{0}^{+}\right) \leqslant J_{\lambda}\left(t_{0}^{-} u_{0}^{+}\right)=J_{\lambda}\left(u_{0}^{+}\right),
$$

which is a contradiction. Since $J_{\lambda}\left(u_{0}^{+}\right)=J_{\lambda}\left(\left|u_{0}^{+}\right|\right)$and $\left|u_{0}^{+}\right| \in \mathbf{M}_{\lambda}^{+}(\Omega)$, by Lemma 4 we may assume that u_{0}^{+}is nonnegative solution. By Drábek et al. [8, Lemma 2.1], we have $u_{0}^{+} \in L^{\infty}(\Omega)$. Then we can apply the Harnack inequality due to Trudinger [15] in order to get that u_{0}^{+}is positive in Ω. Moreover, by Lemma 6,

$$
0>J_{\lambda}\left(u_{0}^{+}\right) \geqslant-\lambda\left(\frac{(p-q)(1-q)}{2(p+1)(q+1)}\right)\left(\|f\|_{L^{p^{*}}} S^{q+1}\right)^{\frac{2}{1-q}}
$$

We obtain $J_{\lambda}\left(u_{0}^{+}\right) \rightarrow 0$ as $\lambda \rightarrow 0$.
Next, we establish the existence of a local minimum for J_{λ} on $\mathbf{M}_{\lambda}^{-}(\Omega)$.
Theorem 11. Let $\lambda_{0}>0$ as in Proposition 9, then for $\lambda \in\left(0, \lambda_{0}\right)$ the functional J_{λ} has a minimizer u_{0}^{-}in $\mathbf{M}_{\lambda}^{-}(\Omega)$ and it satisfies
(i) $J_{\lambda}\left(u_{0}^{-}\right)=\alpha_{\lambda}^{-}(\Omega)$;
(ii) u_{0}^{-}is a positive solution of $E q$. $\left(E_{\lambda, f}\right)$.

Proof. By Proposition 9(ii), there exists a minimizing sequence $\left\{u_{n}\right\}$ for J_{λ} on $\mathbf{M}_{\lambda}^{-}(\Omega)$ such that

$$
J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}^{-}(\Omega)+o(1) \quad \text { and } \quad J_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{-1}(\Omega)
$$

By Lemma 6 and the compact imbedding theorem, there exist a subsequence $\left\{u_{n}\right\}$ and $u_{0}^{-} \in \mathbf{M}_{\lambda}^{-}(\Omega)$ is a nonzero solution of Eq. ($E_{\lambda, f}$) such that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u_{0}^{-} & \text {weakly in } H_{0}^{1}(\Omega) \\
u_{n} \rightarrow u_{0}^{-} & \text {strongly in } L^{p+1}(\Omega)
\end{array}
$$

and

$$
u_{n} \rightarrow u_{0}^{-} \quad \text { strongly in } L^{q+1}(\Omega)
$$

We now prove that $u_{n} \rightarrow u_{0}^{-}$strongly in $H_{0}^{1}(\Omega)$. Suppose otherwise, then $\left\|u_{0}^{-}\right\|_{H^{1}}<$ $\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{H^{1}}$ and so

$$
\begin{aligned}
& \left\|u_{0}^{-}\right\|_{H^{1}}^{2}-\int_{\Omega}\left|u_{0}^{-}\right|^{p+1} d x-\lambda \int_{\Omega} f(x)\left|u_{0}^{-}\right|^{q+1} d x \\
& \quad<\liminf _{n \rightarrow \infty}\left(\left\|u_{n}\right\|_{H^{1}}^{2}-\int_{\Omega}\left|u_{n}\right|^{p+1} d x-\lambda \int_{\Omega} f(x)\left|u_{n}\right|^{q+1} d x\right)=0 .
\end{aligned}
$$

This contradicts $u_{0}^{-} \in \mathbf{M}_{\lambda}^{-}(\Omega)$. Hence $u_{n} \rightarrow u_{0}^{-}$strongly in $H_{0}^{1}(\Omega)$. This implies

$$
J_{\lambda}\left(u_{n}\right) \rightarrow J_{\lambda}\left(u_{0}^{-}\right)=\alpha_{\lambda}^{-}(\Omega) \quad \text { as } n \rightarrow \infty
$$

Since $J_{\lambda}\left(u_{0}^{-}\right)=J_{\lambda}\left(\left|u_{0}^{-}\right|\right)$and $\left|u_{0}^{-}\right| \in \mathbf{M}_{\lambda}^{-}(\Omega)$ by Lemma 4 we may assume that u_{0}^{-}is nonnegative solution. By Drábek et al. [8, Lemma 2.1], we have $u_{0}^{-} \in L^{\infty}(\Omega)$. Then we can apply the Harnack inequality due to Trudinger [15] in order to get that u_{0}^{-}is positive in Ω.

Now, we complete the proof of Theorem 1.
By Theorems 10,11 , for Eq. ($E_{\lambda, f}$) there exist two positive solutions u_{0}^{+}and u_{0}^{-}such that $u_{0}^{+} \in \mathbf{M}_{\lambda}^{+}(\Omega), u_{0}^{-} \in \mathbf{M}_{\lambda}^{-}(\Omega)$. Since $\mathbf{M}_{\lambda}^{+}(\Omega) \cap \mathbf{M}_{\lambda}^{-}(\Omega)=\emptyset$, this implies that u_{0}^{+}and u_{0}^{-}are different.

Acknowledgment

The author is grateful for the referee's valuable suggestions and helps.

References

[1] Adimurthy, F. Pacella, L. Yadava, On the number of positive solutions of some semilinear Dirichlet problems in a ball, Differential Integral Equations 10 (1997) 1157-1170.
[2] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519-543.
[3] A. Bahri, Topological results on a certain class of functionals and applications, J. Funct. Anal. 41 (1981) 397-427.
[4] A. Bahri, H. Berestycki, A perturbation method in critical point theory and application, Trans. Amer. Math. Soc. 267 (1981) 1-32.
[5] F.S. Cîrstea, V. Rădulescu, Multiple solutions of degenerate perturbed elliptic problems involving a subcritical Sobolev exponent, Topol. Methods Nonlinear Anal. 15 (2000) 285-300.
[6] D.M. Cao, H.S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in \mathbb{R}^{N}, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 443-463.
[7] L. Damascelli, M. Grossi, F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 631-652.
[8] P. Drábek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, de Gruyter Ser. Nonlinear Anal. Appl., vol. 5, de Gruyter, New York, 1997.
[9] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 17 (1974) 324-353.
[10] M. Ghergu, V. Rădulescu, Singular elliptic problems with lack of compactness, Ann. Mat. Pura Appl., in press.
[11] T. Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem II, J. Differential Equations 158 (1999) 94-151.
[12] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conf. Ser. in Math., Amer. Math. Soc., 1986.
[13] M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980) 335-364.
[14] G. Tarantello, On nonhomogeneous elliptic involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 281-304.
[15] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967) 721-747.
[16] M. Tang, Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 705-717.

[^0]: E-mail address: tfwu@mail.stut.edu.tw.
 ${ }^{1}$ Partially supported by the National Science Council of Republic of China.
 0022-247X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jmaa.2005.05.057

