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Professor Collatz was one of the pioneers in the development of numeri- 
cal analysis in this century and did fundamental work in all branches of 
this field, such as differential equations, integral equations, eigenvatue 
problems, bifurcation problems, functional analytic methods, optimization, 
and approximation theory. His great talent coupled with an enormous 
energy made him an outstanding figure in applied mathematics with a far- 
reaching and lasting influence. 

The aim of this article is to describe some of his basic contributions an 
ideas in approximation theory including applications to partial differentia 
equations. While the total number of his papers is about 230, a selection 
of 82 publications on approximation can be found in the reference 

There are two striking characteristics in the work of Collatz. e was 
convinced that mathematics should be motivated by the study of real world 
phenomena, and that it is an important aim to develop methods which can 
be used to explain such phenomena. Moreover, efficient algorithms should 
be developed for computing approximate solutions of the problems that 
arise All his life he never wearied of fighting for this conviction. He fulfilled 
this task by attacking a wide range of problems from various domains and 
by describing basic principles and ideas which have strongly stimulated 
research in numerical analysis. 

Collatz published his first paper on classical approximation theory in 
1938 jointly with W. Quade [l]. The authors investigate the problem of 
computing the Fourier coefficients of a given periodic function f on 
CO, 27r], where the asymptotic behavior of these coefficients, depending on 
smoothness properties off, is included in the approximation process. It 
turns out that under some simple assumptions on the process there exist 
so-called attenuation factors, independent of f; which may improve the 
accuracy of the approximation considerably. These factors are constructed 
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a priori by interpolation at the knots x, = 2nv/k, v = 0, . . . . k, with functions 
from 

s= (sECm-1[0,27r] :S/~xp,Xp+l,Ez7m,p=o, . ..) k-l, 
s’“)(O) = s(“)(27c), v = 0, . . . . m - 1 }, 

where ZZ, denotes the space of polynomials of degree m. Therefore, this 
paper is the first place in which periodic polynomial spline functions 
belonging to an equidistant set of knots are used. The full procedure for 
interpolation of the knots is developed, provided m is an odd integer, 
including the discussion of the Euler-Frobenius polynomials. In fact, 
Collatz and Quade are the inventors of the periodic splines. 

Later in 1956, still before the enormous development of approximation 
theory in the sixties, Collatz began to study problems of best approxima- 
tion [4]. Again, his aim was of a constructive nature, namely to develop 
criteria which in practice allow the estimation of the error of a given 
approximation. He examines best approximation of functions from C(T) 
-the space of continuous real-valued functions on a compact subset T of 
P-by elements of a finite-dimensional subspace V of C(T) in the uniform 
norm (1 f 11 = supte T If(t In his general approach, he considers two dis- 
joint subsets T, and T2 of T which satisfy the assumption that there does 
not exist a function u E I/ with u(t) > 0, t E T, , and v(t) < 0, t E Tz. For a 
function _fe C(T) and an approximation u0 E V such that f(t) - u,(t) > 0, 
t E T, , and f( t) - vO( t) < 0, t E T,, he obtains the error bounds 

for the minimal deviation a’(f, V) = inf,, y I( f - 011. This shows that the 
approximation a0 is nearly optimal if the computable values Z and I( f - vOll 
are close. 

In addition, Collatz describes a reduction method for verifying the above 
assumption in the case of finite sets T1 and T2 which is similar to the 
elimination method of C. F. Gauss. He applies this algorithm to multi- 
variate approximation by linear and quadratic polynomials, i.e., to the 
cases 

v= 17,(x,, . ..) x,) = span{ 1, x1, . . . . x,> 

and 

Without knowing A. N. Kolmogorov’s paper on approximation, he also 
derives a characterization of best approximations urn V of f (i.e., 
II f - UJ = d(f, I’)) by the condition 

min (f(t)-vf(t)) v(t) ~0, v E v, 
f E Wf- U/j 
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where E(f - u,~) denotes the set of extremal points off- ur. By using this 
result, Collatz shows that differentiable functions in two variables have a 
unique best approximation from I’= L?,(x,, x2) for strictly convex 
domains T> although by Haar’s theorem global unicity fails. 

Even in this early paper, he goes a step further by applying his methods 
to partial differential equations and obtains concrete error bounds for 
approximate solutions with the aid of the maximum principle. 

Later in 1965-approximation theory was rapidly growing-Collatz 
adapted his concept to nonlinear approximation [12]. For this reason, he 
introduced the notation of H-sets for an arbitrary class of approximating 
functions V in C(T). 

A set F in T is called an H-set if it is the union of nonempty disjoint sub- 
sets T, and T2 such that there do not exist vl, zj2 E I/ with v,(l) - ~~(1) > 0, 
t E T, , and ui( t) - v2( t) < 0, t E T2. Similarly to the linear case, for fE C(T) 
and o0 E I/ with the property f(t) - u,(t) > 0, t E T,, and f(l) - v,(i) < 0, 
tE Tz> e obtains the inclusions 

Moreover, Collatz develops a procedure for verifying the H-set property 
and constructs this type of set for bivariate approximations of the form 

with variable exponents, and for multivariate rational approximations 
which are quotients of polynomials from 

n&l > . . . . x,) = span xi’ 
i 

..x$O<j,,..., j,, i jiGWe 
i=l 1 

He also applies this approach to multivariate segment approximation 
Clll. 

The importance of multivariate approximation as well as the difficulties 
in solving the corresponding numerical problems was often emphasized by 
Collatz (see e.g., [SS]). In his opinion, the development of a general theory 
which can be applied to concrete problems seems not to be possible and, 
therefore, special function classes should be investigated. 

In most of this papers on approximation problems, Collatz goes beyon 
the classical theory by applying his methods to partial differential equa- 
tions. 

The first article on this subject was published in 1952, when he intro- 
duced the concept of monotonicity [Z]. In the literature, most of the 
results on error analysis are of a qualitative nature. These estimates 
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guarantee the existence of a constant K> 0 such that the error is less than 
K .hq, where the step size h and the exponent q are known. However, in 
general, no information about the size of K is available. 

The aim of Collatz is to obtain concrete error bounds. One method is 
based on operators L: U--f W (U, W being real function spaces) of 
monotonic type; i.e., L(u,) <L(Q) implies ui d u2 for ui, u2 E U [a]. (More 
general, “ < ” denotes a certain semi-order in the space U or W.) For 
solving associated operator equations L(u) = f numerically, he defines a 
suitable set V of approximating functions in U and computes approximate 
solutions vi and v2 of the one-sided approximation problems 

Then the inclusion 2)i d u d v2 yields a quantitative error estimate 

for the approximation v = i(vi + v2). In order to minimize the right side of 
the above inequality, the approximation problems can be replaced by the 
following optimization problem: 

Minimize d, subject to 

O<v--i?dd, L(v) <j-G L(v”), v, CE v. 

In particular, Collatz suggests the use of functions which depend on 
finitely many parameters, the choice of a discrete subset of the considered 
domain, and that the resulting finite optimization problem be solved [52]. 

A large class of operators L = (R, S) which correspond to elliptic 
differential equations 

i b.*+cu=f 
i,j=l %,axj i=l laxi 

on T, 

S(u) = g on bd T 

is of monotonic type if c > 0 and the matrix (au) is uniformly positive 
definite, where ati, bi, and c are bounded continuous functions on a 
bounded region T of IR” l-52, 76, 771. 

Actually, Collatz was mainly interested in methods for solving boundary 
value problems for partial differential equations 

R(u)=fon T and S(u) = g on bd T. 

For certain classes of problems he considers a set V which satisfies R(v) =f 
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for all u E V. He describes methods for computing approximations zi E V’ 
such that llzc - v/j < E holds for the error on the boundary of the considere 
region. Under the assumption of the maximum principle, he obtains the 
same estimate on the whole domain. 

A standard example is given by the heat equation 

and the space 

I/= span(e-V.$kl~r . cos L,x: p = 0, . ..) n >. 

The method is to determine for t = 0 an approximation d of g(x, 0) from 
the space 

of generalized trigonometric sums. Computation of the basis coefficients of 
5 simultaneously yields a function v E V with the same coefficients, and for 
this approximation an error estimate on Tu bd T via the maximum 
principle [82]. 

A different approach-the concept of monotonicity-will be illustrated 
by an example associated to a torsion problem: 

T= {(x, Y)E ~2: /xl < 1, 1.14 < 11, 

and S(u) = u = g. 

Collatz uses the space 

V= span{Re(x + QJ)““: p = 0, . . . . n) 

which satisfies R(v) = 0, v E V, and is led to a univariate approximation 
problem on the boundary (x = 1, - 1 d y < 1). Since the operator 
L = (I?, S) is of monotonic type, he obtains concrete error boun 
Tu bd T [52]. 

In a further approach, Collatz uses sets V satisfying the boundary condi- 
tion S(v) = g, v E V. For example, plate problems can be expressed in terms 
of a biharmonic differential equation 

T= ((x, y) E R*: x2 + y2 < 11, 

a% R(u)=$+2- +/lU_J 
aX2ay2 af 
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and the boundary condition u = au/an = 0. A suitable choice is the polyno- 
mial space 

V=span{(l-x2--*)x’yj:O<i,j;i+j<2}. 

Since u = au/an = 0 for all v E V and the operator R is of monotonic type, 
one-sided approximation off by functions from R(V) yields the desired 
error bounds [82]. 

It is not always possible to choose approximating functions which satisfy 
either the partial differential equation or the boundary condition. There- 
fore, Collatz studies the more complex problem of simultaneous 
approximation [38, 821. 

In addition, Collatz documents the efficiency of his methods by applying 
them to nonlinear equations which are of particular relevance for applica- 
tions such as 

$+$+f(u)= 1: 

or 
au au a% dt+Ux-CdXZ=O, 

the so-called Burger’s equation. 
He also applies his concept to partial differential equations with (hidden) 

singularities by choosing appropriate functions which depend on the 
singularities [Sl, 64, 66-691 to free boundary value problems [47-501 and 
to delay equations [61,62]. 

A further principle of monotonicity is used for solving fixed point 
problems. Differential equations can be transformed into fixed point equa- 
tions L(u) = u for integral operators, with the aid of Green’s functions. 

Iteration methods of the type 

V n+ 1= L(un) + L*(wn) 

wn+ 1 = -b(w,) + L*(%J 

are applied for computing an approximate solution of fixed point equations 
L(U) = u if L is compact and monotonically decomposable, i.e., L = L, + L2 
and u<E implies L,(u)<L,(O), L2(u)>L2(z2). 

Since in this situation 
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the question arises of how to determine starting elements u. and w. such 
that the difference w1 - v1 is as small as possible. Therefore, Collatz is le 
to field approximation problems which can be formulated as optimization 
problems: 

[29, 34, 37-j. 

Minimize d, subject to 

Odwl-v&d, uo~vl,wl~w~ 

An important class of nonlinear operators that are monotonically 
decomposable is given by Hammerstein’s integral operators: 

Finally, the following statement of Collatz [45] summarizes the convic- 
tion which had a forming influence on his work: 

Idee und Erfahrung sollen im allgemeinen in standiger Wechselwirkung mitein- 
ander stehen. [In general, ideas and experience shall interact permanently.] 
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