
Observable Behavior of Dynamic Systems:
Component Reasoning for Concurrent Objects �

Johan Dovland, Einar Broch Johnsen, and Olaf Owe1

Department of Informatics, University of Oslo, Norway

Abstract

Current object-oriented approaches to distributed programs may be criticized in several respects. First,
method calls are generally synchronous, which leads to much waiting in distributed and unstable networks.
Second, the common model of thread concurrency makes reasoning about program behavior very challenging.
Models based on concurrent objects communicating by asynchronous method calls, have been proposed to
combine object orientation and distribution in a more satisfactory way. In this paper, a high-level language
and proof system are developed for such a model, emphasizing simplicity and modularity. In particular,
the proof system is used to derive external specifications of observable behavior for objects, encapsulating
their state. A simple and compositional proof system is paramount to allow verification of real programs.
The proposed proof rules are derived from the Hoare rules of a standard sequential language by a semantic
encoding preserving soundness and relative completeness. Thus, the paper demonstrates that these models
not only address the first criticism above, but also the second.

Keywords: observable behavior, concurrent objects, dynamic systems, interaction histories

1 Introduction

In order to facilitate reasoning about interacting components in nonterminating
and distributed systems, specifications of component behavior should focus on the
potential observable interactions between a component and its environment, rather
than on internal, low-level implementation details such as the component’s internal
state variables. However for verification purposes it is then necessary to bridge the
gap between a component’s internal code and its observable behavior. This paper
presents a proof system for deriving specifications of observable behavior from the
internal code of components in the setting of distributed concurrent objects.

Object orientation is the leading framework for concurrent and distributed sys-
tems, recommended by the RM-ODP [17]. Object interaction is usually synchronous,

� This research is partially funded by the EU project IST-33826 CREDO: Modeling and analysis of evolu-
tionary structures for distributed services (http://credo.cwi.nl).
1 Email: johand@ifi.uio.no, einarj@ifi.uio.no, olaf@ifi.uio.no

Electronic Notes in Theoretical Computer Science 203 (2008) 19–34

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.084
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82705006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:johand@ifi.uio.no
mailto:einarj@ifi.uio.no
mailto:olaf@ifi.uio.no
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

through method calls and changes to shared state variables. Such interaction, de-
rived from sequential systems, is well-suited for tightly coupled systems. It is less
suitable in a distributed setting with loosely coupled or externally coordinated com-
ponents. Here synchronous communication results in undesired and uncontrolled
waiting, and possibly deadlock. In addition these interaction mechanisms severely
complicate reasoning. With the remote method invocation (RMI) model, control is
transferred with the call. There is a master-slave relationship between the caller
and the callee. Concurrency is achieved through multithreading. Shared variable
interference occurs when threads operate concurrently in an object, which happens
with, e.g., nonserialized methods in Java. Reasoning about programs in this setting
is a highly complex matter [1, 9]: Safety is by convention rather than by language
design [6]. Verification considerations suggest that all methods should be serialized.
However, when restricting to serialized methods, the caller must wait for the return
of a call, blocking all activity in the caller. In a distributed setting this limitation
is severe; delays and instabilities may cause much unnecessary waiting. A serial-
ized nonterminating method will even block other method invocations, which makes
it difficult to combine active and passive behavior in an object. Also, separating
execution threads from objects breaks the modularity and encapsulation of object
orientation, leading to a very low-level style of programming.

In order to better capture the setting of interacting distributed components we
work with the concurrency and communication model of the Creol language [18],
based on concurrent objects, asynchronous method calls, and so-called processor re-
lease points. There is no access to the internal state variables of other objects. A
concurrent object has its own execution thread. Processor release points influence
the implicit internal control flow in objects. This reduces the time spent waiting for
replies to method calls in a distributed environment and allows objects to dynami-
cally change between active and reactive behavior (client and server).

This paper presents a simple programming language and reasoning framework
based on Creol’s concurrency and communication model, and considers the problem
of formal reasoning about dynamic systems of concurrent objects communicating by
asynchronous method calls. A partial correctness proof system is derived from that
of a standard sequential language by means of a semantic encoding. This suggests
that reasoning is much simpler than for languages with thread concurrency. The
approach of this paper is modular, as invariants expressing observable behavior
may be established independently for each class and composed at need, resulting in
behavioral specifications of dynamic systems in an open environment.

Paper overview. Section 2 introduces and informally explains the language. Sec-
tion 3 describes class invariants for observable behavior, Section 4 the language
semantics, and Section 5 the derived proof rules. Section 6 gives an example, Sec-
tion 7 discusses related work, and Section 8 concludes the paper.

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–3420

Class ::= class C [(Param)]? Vdecl? Mdecl∗

Param ::= [v : T]+,
Vdecl ::= var [v : T [= e]?]+,
Mdecl ::= op m ([in Param]? [out Param]?) == [Vdecl;]? [s]+;

Figure 1. Syntax outline for classes, excluding expressions e and statements s. Here C is a class and
m a method name. M+

d denotes one or more repetitions of M with delimiter d, ∗ indicates zero or more
repetitions, and ? indicates an optional part.

2 The Programming Language

We introduce a programming language based on the communication and concur-
rency aspects of Creol [18], which are now briefly explained. Concurrent objects are
potentially active, encapsulating execution threads. Objects have explicit identifiers:
communication is between named objects and object identifiers may be exchanged
between objects. All object interaction is by means of method calls. We refer to
the method activations on an object as the object’s processes. At most one process
in an object may be active at a time; the other processes are suspended. Processor
release points influence the internal control flow in an object. These release points
are declared as guarded commands [12], but adapted to the following semantics:
When a guard evaluates to false during process execution, the continuation of the
process is suspended on the process queue and the processor is released. After a
processor release, an enabled and suspended processes is selected for execution.

A class declaration consists of a list of class parameters cp, class attributes w,
and method declarations, as described in Fig. 1. Objects are dynamically created
instances of classes. The state of an object is constructed from the parameters and
attributes of its class. There is read-only access to the class parameters, including the
implicit parameter this, used for self reference. The state of an object is encapsulated
and can only be externally accessed via the object’s methods. In particular, remote
access to attributes is not allowed. For simplicity, all methods are assumed to
be available to the environment, except the special methods init and run. The init
method is used for object initialization and is invoked immediately after the object is
created. After initialization, the run method, if provided, is invoked. The remaining
methods reflect passive, or reactive, object behavior, whereas run initiates active
behavior. Programs are assumed to be type-safe.

Methods are implemented by imperative statements, using the syntax of Fig. 2.
A processor release point is written await g, for a guard g. A Boolean guard is en-
abled when the Boolean expression evaluates to true. Execution of an asynchronous
method call await x.m(e;v) invokes the method m in x with the input values e.
The continuation of the calling process is then suspended and becomes enabled
when the call returns. Consequently, other processes may be evaluated while wait-
ing for the reply. Return values are assigned to the list v when the continuation
gets processor control. Execution of the statement await wait explicitly releases the
processor, similar to the method yield in Java. The syntax x.m(e;v) is adopted for
synchronous method calls (RPC), blocking the processor while waiting for the reply.
The syntax this.m(e;v) is used for local calls. Synchronous local calls are loaded

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–34 21

directly into the active code.
While the execution of a method activation is suspended, the object’s attributes

may be changed by other processes on the object, but not the local variables and
parameters of the method. There is read-only access to in-parameters of methods,
including the implicit parameter caller. Due to nondeterminism in the distributed
setting, overtaking of method calls is considered possible. If several invocations are
made by a caller to the same method of an object, with identical actual values for
the method’s formal parameters, the caller cannot precisely identify the return to
each of these method calls.

Object creation is written x := new C(e), where x is a variable and e a list
of values for the class parameters of a class C. A reference to the new object is
assigned to x and the init method is executed on the new object. Synchronous
remote method calls are allowed in the body of init, but no processor release points
nor local calls. Uniqueness of object identifiers is ensured by combining the identity
of the creating object with local uniqueness. For this purpose we use a function
parent : Obj → Obj such that parent(o) denotes the creator of o. We assume that
parent(null) = null and that parent chains are cycle free; i.e., o �∈ anc(o), where
the ancestor function anc : Obj → Set[Obj] is defined by anc(o) � if parent(o) =
null then ∅ else parent(o)∪anc(parent(o)) fi. Equality is the only executable basic
operation on object identifiers.

3 Class Invariants and Observable Behavior

The execution of a distributed system can be represented by its communication
history ; i.e., the sequence of observable communication between system components
[8, 15]. At any point in time the communication history abstractly captures the
system state. Therefore a system may be specified by the finite initial segments
of its communication histories. A history invariant holds for all finite sequences in
the prefix-closure of the set of histories, expressing safety properties [2]. To observe
and reason about object creation using histories, we let the history reveal relevant
information about object creation.

Notation. Sequences are constructed by the empty sequence ε and the right
append function _ � _ : Seq[T] × T → Seq[T] (where “_” indicates an argument
position). Let a, b : Seq[T], x, y : T , and s : Set[T]. The projection function
/ : Seq[T] × Set[T] → Seq[T] is defined inductively by ε/s � ε and (a �
x)/s � if x ∈ s then (a/s) � x else a/s fi. The “ends with” and “begins with”
predicates _ew_ : Seq[T] × T → Bool and _bw_ : Seq[T] × T → Bool are defined
inductively by ε ew x � false, (a � x) ew y � x = y, ε bw x � false, and
(a � x) bw y � y = first(a � x). Furthermore, let a is b|||c denote that a is an
arbitrary interleaving of b and c, let a �� b concatenate a with b, a ≤ b denote that a

is a prefix of b, and # a denote the length of a. Finally, define first((ε � x) �� a) � x

and rest((ε � x) �� a) � a.
A call to a method of an object o′ by an object o is modeled as passing an

invocation message from o to o′, and the reply as passing a completion message

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–3422

Syntactic categories Definitions
g in Guard s in Com
m in Mtd v in Var∗,
e in Expr∗, x in ObjExpr
b in Bool C in ClassName

g ::= wait | b | x.m(e;v)
s ::= skip | v := e | if b then s1 else s2 fi
| x := new C(e)
| x.m(e;v) | await g

Figure 2. An outline of the imperative language syntax, with typical terms for each category. We let
capitalized terms denote lists of a given category; for example, e denotes an expression list while e denotes
an expression.

from o′ to o. Similarly, object creation is captured by a message from the parent
object to the generated object. The communication history of a (sub)system up
to present time is a finite sequence of type Seq[Msg], where Msg are the messages
corresponding to method invocation, method completion, and object creation:

Definition 3.1 (Messages). Define the following sets of communication messages:

• the set IMsg of invocation messages 〈caller, callee,mtd, in〉,
• the set CMsg of completion messages 〈caller, callee,mtd, in, out〉,
• the set NMsg of object creation messages 〈caller, callee, class, in〉, and
• the set Msg consists of all messages; i.e., Msg = IMsg ∪ CMsg ∪ NMsg,

where caller, callee : Obj, mtd : Mtd, class : Cid, and in, out : List[Data]. Obj, Mtd,
and Cid are the types of object, method, and class names, respectively, and Data
the type of values occurring as actual parameters to method calls, including Obj.

Graphical representations of messages are given by caller→callee.mtd(in), caller←
callee.mtd(in; out), and caller→ callee.new class(in), where the arrow suggests the
direction of the message. When an object calls a method, the history h is extended
with a message of type IMsg. When a reply is emitted, h is extended with a message
of type CMsg. The message o → o′.new C(e) corresponds to the execution of a
new C statement in an object o, with e as the actual values of the class parameters
and o′ as the new object identity.

Messages may be decomposed by functions _.caller,_.callee : Msg → Obj; e.g.,
〈o, o′,m, e〉.callee � o′. The function _.in : Msg → List[Data] returns the list of in-
parameters. In addition, completion messages may be decomposed by the function
_.out, returning the list of out-parameters.

The messages potentially sent by an object o are defined as OUTo � {msg :
IMsg ∪ NMsg | msg.caller = o} ∪ {msg : CMsg | msg.callee = o}, and those po-
tentially received by o as INo � {msg : IMsg ∪ NMsg | msg.callee = o} ∪ {msg :
CMsg | msg.caller = o}. The intersection of OUTo and INo, with o as both caller
and callee, corresponds to internal messages. The local history h/(INo ∪ OUTo),
denoted h/o, contains the messages involving o and allows local reasoning about o.
The object creation message involves both the new object and its parent. It is the
first message in the new object’s history, and allows compositional reasoning about
dynamically created objects.

Functions may extract information from the history. In particular, we define

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–34 23

pending : Seq[Msg] × IMsg → Bool and oid : Msg → Set[Obj] as follows:

pending(h, o→o′.m(e)) � #(h/o→o′.m(e)) > #(h/o←o′.m(e; _))

oid(ε) � {null} oid(o→o′.m(e)) � {o, o′} ∪ oid(e)
oid(h � msg) � oid(h) ∪ oid(msg) oid(o←o′.m(e;e′)) � {o, o′} ∪ oid(e,e′)

oid(o→o′.new C(e)) � {o, o′} ∪ oid(e)

where msg : Msg, and oid(e) returns the set of object identifiers occurring in the
list e. The function ob : Seq[Msg] → Set[Obj × Cid × List[Data]] returns the set of
created objects in a history: ob(h � o→ o′.new C(e)) � ob(h) ∪ {o′ : C(e)}, and
ob(h � msg) � ob(h) for all other messages msg. For a local history h/o, the
projection ob(h/o) returns o and all objects created by o.

3.1 Well-formed histories

In the asynchronous setting, objects may send messages at any time. Type checking
ensures that only available methods are invoked for objects of given types. The
run-time system ensures that generated objects will have unique identifiers. Assum-
ing type correctness, well-formed histories satisfy a well-formedness predicate, as a
completion message may only occur after the corresponding invocation message in
the history:

Definition 3.2 (Well-formedness). Let h : Seq[Msg], e,e′ : List[Data], o, o′ :
Obj, and m : Mtd. The well-formedness predicate wf : Seq[Msg] → Bool is defined
by

wf (ε) � true
wf (h �o→o′.m(e)) � wf (h) ∧ o �= null ∧ o′ �= null
wf (h �o←o′.m(e;e′)) � wf (h) ∧ pending(h, o→o′.m(e))
wf (h �o→o′.new C(e)) � wf (h) ∧ parent(o′) = o ∧ o′ /∈ oid(h)

This definition ensures the local uniqueness of created identifiers, while null may
create objects. Whenever an object identifier o′ occurs in an output message in h/o,
o′ must either be a child of o, or occur in a previous input message to o. This leads
to a notion of closure for histories.

Definition 3.3 (Closed histories). Let h : Seq[Msg] and o : Obj. Define

closed(h � x, o) � oid((h � x)/OUTo) ⊆ oid(h/INo) ∪ (ob((h � x)/o)/Obj),

where _/Obj : Set[Obj × Cid × List[Data]] → Set[Obj] returns the identifiers of the
created objects.

The following lemma holds for well-formed histories.

Lemma 3.4 A history h is well-formed if the local projection h/o is well-formed
and closed for each object o ∈ oid(h), including null.

Proof By induction over h, with wf (h/o) and closed(h, o) for all o ∈ oid(h). �

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–3424

3.2 Compositional Reasoning about Concurrent Objects in Dynamic Systems

In interactive and nonterminating systems, it is difficult to specify and reason com-
positionally about object behavior in terms of pre- and postconditions. Instead,
pre- and postconditions to method declarations are used to establish a so-called
class invariant. The class invariant must hold after initialization in all the instances
of the class, be maintained by all methods, and hold at all processor release points.
The class invariant serves as a contract between the different processes of the object
instance: A method implements its part of the contract by ensuring that the in-
variant holds upon termination and when the method is suspended, assuming that
the invariant holds initially and after suspensions. To facilitate compositional and
component-based reasoning about programs, the class invariant is used to estab-
lish a relationship between the internal state and the observable behavior of class
instances. The internal state reflects the values of class attributes, whereas the
observable behavior is expressed as a set of potential communication histories.

A user-provided invariant I(w, h) for a class C ranges over the class variables
w of C and the local history h, as well as the class parameters cp and this, which
are constant (read-only) variables. The class invariant IC(w, h) is obtained by
strengthening I(w, h) with the well-formedness property and knowledge about the
initial object creation message on the local history:

IC(w, h) � I(w, h) ∧ wf (h) ∧ h bw (parent(this)→this.new C(cp)).

By organizing the state space in terms of only locally accessible variables, including
a local history variable recording local communication messages, we obtain a com-
positional reasoning system. Let P x

e denote the substitution of every free occurrence
of x in P by e, and let P x

e denote simultaneous substitution. By hiding the internal
state variables of an object o of class C, an external invariant Io:C(e) defining its
observable behavior may be obtained:

Io:C(e)(h) � ∃w | (IC(w, h))this,cp
o,e .

Substitutions replace free occurrences of this with o and instantiate class parameters
with actual values. The existential quantifier hides the local state variables.

To assert that objects compose we compare their local histories, adapting the
composition method of Soundarajan [23,24]: Local histories must agree on common
messages, expressed by projections from a common global history.

Consider a system with an initial object o created by an initial invocation message
of the form null→o.new C(...), such that all other objects are dynamically generated
by o or generated objects. The global invariant of such a system of dynamically
created objects may be constructed from the local invariants of the involved objects:
The global invariant I∗ of a system with global history H is

I∗(H) �
∧

(o:C(e))∈ob(H)

Io:C(e)(H/o).

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–34 25

The quantification ranges over all objects in the system, which is a finite number
at any execution point. The global invariant is obtained directly from the external
invariants of the composed objects, without any restrictions on the local reasoning.
This ensures compositional reasoning. Note that we consider dynamic systems; the
number and identifiers of the composed objects are nondeterministic. Lemma 4.2
below shows that I∗(H) ensures well-formedness of the global history H.

4 Semantics: An Encoding into a Sequential Language

The semantics is expressed as an encoding into a sequential language without shared
variables, but with a nondeterministic assignment operator [13]. Nondeterministic
history extensions capture arbitrary activity of environment objects. The semantics
describes a single object of a given class placed in an arbitrary environment. The
semantics of a dynamically created system with several concurrent objects is given
by the composition rule above. The compatibility requirement, implicit in the com-
position rule, reduces the amount of nondeterminism of the objects seen in isolation.
This semantics suffices for partial correctness reasoning, but it is not suited as an
operational semantics.

In order to simplify the semantics, we assume that an object may not control its
environment. This means that, for all objects o of class C and hin ∈ Seq[INo], the
class invariant IC(w, h) of C satisfies the following asynchronous input property :

∀h′ | (wf (h′) ∧ h′ is h|||hin ∧ IC(w, h)) ⇒ IC(w, h′).

In the asynchronous setting objects may independently decide to send messages and
these may arrive in a different order than sent, due to overtaking. The invariant
should therefore restrict messages seen by an object, but allow the existence of
additional unprocessed input. Therefore, we find the asynchronous input property
natural for asynchronous systems: Note that invariants on h/OUTthis are guaranteed
to have this property. Since completion messages give explicit information about the
corresponding invocation messages, such invariants are often sufficient.

4.1 The Encoding

Consider a simple sequential language with the syntax

skip | v := e | s; s | if b then s1 else s2 fi.

This language has a well-established semantics and proof system. In particular, Apt
shows that this proof system is sound and relative complete [3,4]. Let the language
SEQ additionally include a statement for nondeterministic assignment, assigning to
y some value x satisfying a predicate P :

y := some x | P (x).

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–3426

For partial correctness, we may assume that the statement does not terminate if no
such x can be found.

A process with release points and asynchronous method calls is interpreted as
a SEQ program without shared variables and release points, by the mapping 〈〈 〉〉.
Expressions and types are mapped by the identity function. For classes, the list
of class attributes is augmented with this : Obj and H : Seq[Msg], representing self
reference and the history, respectively. The implicit parameter caller : Obj is added
to each method. As before, there is read-only access to in-parameters and class
parameters, including the additional variables.

The semantics of a method is defined from the local perspective of processes.
A SEQ process executes on a state w ∪ {H} extended with local variables. The
local effect of executing an invocation or a release statement is that w and H may
be updated due to the execution of other processes. In the encoding, these up-
dates are captured by nondeterministic assignments to w and H. When the process
executes an invocation statement, the history is extended by an output message:
H := H � this→x.m(e). When a process is suspended, a nondeterministic exten-
sion of H captures execution by the environment and by other processes in the same
object. The termination of a local process extends H with a completion message:
H := H � caller← this.m(e;v). For partial correctness reasoning, we may assume
that processes are not suspended infinitely long. Consequently, nondeterministic
assignment abstractly captures the possible process interleaving.

When reasoning about a method m in a class C we may assume that it has been
invoked, which is reflected in the local history by a pending invocation message.
Thus, the method invariant Im strengthens the class invariant:

Im(w, h) � IC(w, h) ∧ pending(h, caller→this.m(x)),

where x are the formal in-parameters. A completion message is appended to the
history upon method termination, establishing IC . The interpretation of methods
is defined in Fig. 3.

In the encoding of object creation, nondeterministic assignments are used to
construct unique identifiers. The parent relationship is captured by updating the
history with a creation message, which also ensures that the values of the class
parameters are visible on the local history of the new object.

Synchronous invocations x.m(e;v) of a method in the environment block the
caller’s internal activity. Except for the invocation message, there is no output from
this. The execution of the method is modeled by a nondeterministic assignment
to the out-parameters v. Since v might overlap with the values of e,w, and x, a
list of fresh pseudo-variables v′ captures the execution of the remote method. The
completion message is appended to the history and the reply values assigned to v.

The statement this.m(e;v) synchronously invokes the local method m. We may
assume that the invariant is preserved by m. By adaptation, the execution of m is
captured by a nondeterministic assignment to w and H: if the invariant holds before
the assignment, then the invariant also holds for the extended history and the new
values of w. Since the invocation is synchronous, the extended history ends with

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–34 27

〈〈op m(in x out y) == var wm := e; bodym 〉〉 � op m(in x, caller out y) ==
var wm := e; 〈〈 bodym 〉〉; H := H � caller←this.m(x;y)

〈〈op init == bodyinit 〉〉 � op init == 〈〈 bodyinit 〉〉
〈〈 s; s 〉〉 � 〈〈 s 〉〉; 〈〈 s 〉〉
〈〈 skip 〉〉 � skip

〈〈x := e 〉〉 � x := e

〈〈x := new C(e) 〉〉 � x′ := some x′ | parent(x′) = this ∧ x′ /∈ oid(H);
H := H � this→x′.new C(e); x := x′

〈〈 if b then s1 else s2 fi 〉〉 � if b then 〈〈 s1 〉〉 else 〈〈 s2 〉〉 fi

〈〈x.m(e;v) 〉〉 � H := H � this→x.m(e);v′ := some v′ | true;
H := H � this←x.m(e;v′);v := v′, where x �= this

〈〈 this.m(e;v) 〉〉 � H := H � this→this.m(e); (w, h′,v′) := some (w′, h′,v′) |
(Im′(w,H) ⇒ Im′(w′,H �� h′)) ∧ h′ ew this←this.m(e;v′);H := H �� h′;

v := v′

〈〈 await wait 〉〉 � (w, h′) := some (w′, h′) | (Im′(w,H) ⇒ Im′(w′,H �� h′));
H := H �� h′

〈〈 await b 〉〉 � if b then skip else (w, h′) := some (w′, h′) |
(Im′(w,H) ⇒ Im′(w′,H �� h′)) ∧ bww′ ; H := H �� h′ fi

〈〈 await x.m(e;v) 〉〉 � H := H � this→x.m(e); (w, h′,v′) := some (w′, h′,v′) |
(Im′(w,H) ⇒ Im′(w′,H �� h′)) ∧ this←x.m(e;v′) ∈ h′;H := H �� h′;v := v′

Figure 3. The encoding of method declarations in SEQ, where m′ denotes the enclosing method of the
different statements.

(1) H = 〈parent(this)→this.new C(cp)〉 ⇒ wlp(bodyinit, wf (H) ⇒ IC)

(2) Im ⇒ wlp(var wm := e; bodym;H := H � caller←this.m(x;y), wf (H) ⇒ IC)

Figure 4. Verification conditions for Creol methods. Condition 1 is for init to establish the invariant. All
remaining methods must preserve the invariant as described by Condition 2.

the completion message of the call. For local calls, the encoding does not rely on
properties about the invoked method such as the absence of processor release points
or its call structure. (For local calls, use of pre/postconditions strengthens the proof
system. For further details, see the extended version of this paper [14].)

Release points are encoded using the same technique; the execution of other
processes is modeled by a nondeterministic assignment to w and H which maintains
the invariant. The implications Im′(w,H) ⇒ Im′(w′,H��h′) in Fig. 3 capture this
assumption on other processes. The invariant is assumed to hold after a suspension
provided that it holds at processor release. The encoding of await b has two cases; if

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–3428

b holds the statement is reduced to skip, otherwise the process is suspended. When
the process continues after a suspension, b must hold for the current values of w.
The encoding of await x.m(e;v) resembles that of synchronous invocations and
consists of several parts. The initiation message is appended to the history before
the processor is released. After the suspension, the actual parameter list is assigned
the values found in the completion message. Since there is no transfer of control
between caller and callee, the history need not end with the completion message
corresponding to the method activation, but this message must be somewhere on
the history extension. We end this section with two lemmas.

Lemma 4.1 The local histories of encoded objects are well-formed and closed.

Proof By induction over method bodies. �

Lemma 4.2 The global history is well-formed for dynamic systems initiated by a
creation message null→o.new C(e).

Proof By Lemmas 3.4 and 4.1, since the local histories are derived from a global
history H by projection, and since ob(H) includes all objects in H. �

5 Class Verification

Proof rules for the language are derived from those of Apt [3, 4] by translation into
SEQ. The weakest liberal precondition for nondeterministic assignment is

wlp(y := (some x | P (x)), Q) = ∀x | (P (x) ⇒ Qy
x),

assuming that x is disjoint from the free variables of Q other than {y}. The rule
maintains soundness and relative completeness of Apt’s proof system, and the side
condition is satisfied by variable renaming. The language has object pointers but
no dot notation for attribute access, so pointer reasoning follows standard rules [19].
Fig. 4 presents the verification conditions for methods, based on the weakest liberal
preconditions for the different statements. The invariant is assumed as a method
precondition and must hold at method termination as part of the contract between
processes, init is treated separately.

Figure 5 presents the weakest liberal preconditions for the language statements,
derived from the encoding in Fig. 3 by requiring that the invariant holds at processor
release. The postcondition Q of a statement may range over the local variables wm

of a method m, as well as w, cp, and H. For Boolean guards, {I} await b {I∧b} and
{P ∧ b} await b {P ∧ b} follow directly, where P need not imply the invariant. Thus,
await true is identical to skip. By backward construction, a sound and relative
complete proof system is obtained for method invocations, processor release points,
and object creation. For release points the proposed semantics depends on the given
invariant, which means that the invariant must be a sufficiently strong precondition
to ensure the invariant at the next suspension point (assuming well-formedness).

Theorem 5.1 The proof system (Fig. 5) for the concurrent object language is sound
and relative complete with respect to the semantic encoding (Fig. 3).

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–34 29

wlp(s; s, Q) � wlp(s, wlp(s, Q))

wlp(skip, Q) � Q

wlp(v := e, Q) � Qv
e

wlp(if b then s1 else s2 fi, Q) � if b then wlp(s1, Q) else wlp(s2, Q) fi

wlp(x := new C(e), Q) �
∀x′ | (parent(x′) = this ∧ x′ /∈ oid(H)) ⇒ Qx,H

x′,H�this→x′.new C(e)

wlp(x.m(e;v), Q) � ∀v′ | Qv,H
v′,H��this↔x.m(e;v′), where x �= this

wlp(this.m(e;v), Q) � ∀h′,w′,v′ | (h′ ew this←this.m(e;v′)
∧(Im′(w, h) ⇒ Im′(w′, h �� h′))) ⇒ Qv,w,H

v′,w′,h��h′ ,

where h � H � this→this.m(e)

wlp(await wait , Q) � Im′(w,H) ∧ ∀w′, h′ | Im′(w′,H �� h′) ⇒ Qw,H
w′,H��h′

wlp(await b, Q) � if b then Q

else Im′(w,H) ∧ ∀w′, h′ | (Im′(w′,H �� h′) ∧ bww′) ⇒ Qw,H
w′,H��h′ fi

wlp(await x.m(e;v), Q) � Im′(w, h) ∧
∀w′, h′,v′ | (Im′(w′, h �� h′) ∧ this←x.m(e;v′) ∈ h′) ⇒ Qv,w,H

v′,w′,h��h′ ,

where h � H � this→x.m(e)

Figure 5. Weakest liberal preconditions for the language. The syntax o ↔ o′.m(e;v) abbreviates
o→o′.m(e) � o←o′.m(e;v).

Proof Weakest liberal preconditions are derived via the encoding from the weakest
liberal preconditions for SEQ. Soundness and relative completeness then follow from
the soundness and relative completeness of the proof system for SEQ, as shown
in [11, 20]. �

6 Example

Consider a class Buffer with put and get methods, a single memory cell, and a link
to another buffer object, given in Fig 6. If the buffer receives a call to put with
argument e, it stores e in its cell if the buffer is empty. Otherwise, the put call
is passed on to the next buffer (which is dynamically created if nil). With this
behavior, a buffer instance as seen from the outside appears to be unbounded: there
is always room to store an additional element. Similarly, if the buffer receives a call
to get and there is an element in its cell, this element is returned. Otherwise, the
call is passed to the next buffer. With this behavior, a buffer instance as seen from
the outside implements a FIFO ordering. In order to let a Buffer object know the
total number of elements in the buffer, it contains an additional counter.

The variable cnt counts the elements stored in the linked Buffer list, correspond-
ing to the difference between the number of completed put and get operations. We

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–3430

class Buffer
begin var cell : Object = nil, cnt : Nat = 0, next : Buffer = nil
op put(in x : Object) == if cnt = 0 then cell := x

else (if next = nil then next := new Buffer fi); next.put(x) fi;
cnt := cnt + 1

op get(out x : Object) == await (cnt > 0); cnt := cnt – 1;
if cell = nil then next.get(;x) else x := cell; cell := nil fi

end
Figure 6. The code for the Buffer class.

get the invariant cnt = #(H/ ← this.put) − #(H/ ← this.get). The proof of the
invariant is straightforward; cnt only increases before a completion message of put
and decreases before a completion message of get.

Consider the communication order of Buffer instances. The get operation of a
Buffer object x will return elements in the same order as they where inserted by the
put operation. Using history projections we can denote this FIFO property by

fifo(x, h) � (h/←x.get).out ≤ (h/←x.put).in.

The FIFO property of this object relies on the FIFO property of the successor object
next. Thus, in order to verify the FIFO property for this, we need an assumption on
next. For this purpose, we reconstruct the buffer content of next from the history:

buf (x, ε) � ε

buf (x, h � this→x .put(in)) � buf (x, h) � in
buf (x, h � this←x .get(; out)) � rest(buf (x, h))
buf (x, h � msg) � buf (x, h) for other messages msg

We may now verify the following invariant for the Buffer class:

fifo(next ,H) ⇒ (H/←this.put).in = ((H/←this.get).out + cell)��buf (next ,H),

where h+x is h for x = nil otherwise h � x. The class is implemented using syn-
chronous call statements, which means that the correspondence between invocation
messages to and completion messages from the next object is tight. An implemen-
tation of the methods using asynchronous calls could break the FIFO structure of
the buffer. (A different example using asynchronous calls is given in [18].) Notice
that the next object can easily be identified from the history of a buffer object by a
function next(x, h). Focusing on this property, we express the external invariant of
an instance o of the class Buffer as follows:

fifo(next(o, h), h) ⇒ fifo(o, h).

For a dynamic buffer system, one may prove by induction that each buffer object
o satisfies the FIFO property fifo(o, H) where H is the global history, using the fact

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–34 31

that for finite H there may only be finitely many objects, and that cyclic buffer
structures are impossible due to the parent assumptions.

7 Related and Future Work

Related work. This paper adapts communication histories [8, 15] to model object
communication in a distributed setting. History sequences which reflect message
passing have been used to specify and reason about CSP-like languages [10, 23].
Recent papers have addressed reasoning for sequential object-oriented languages
[16, 21, 22], covering aspects such as inheritance, subtyping, and dynamic binding.
However, reasoning about multithreaded object-oriented languages is more chal-
lenging [1, 7, 9]. For example, the approach of [1] uses a global cooperation test to
deal with object communication. In addition, interference freedom must be proved
since several threads may execute concurrently in the same object. A sound and
complete compositional Hoare logic for asynchronously communicating processes
(objects) running in parallel is presented by de Boer [10]. The objects communicate
asynchronously by message passing, but in contrast to our work they communicate
through FIFO channels, disallowing message overtaking. Object creation in [10]
uses the sequence of previously created objects identifiers. In our framework, this
sequence is captured by restricting the local history to object creation messages.
Olderog and Apt consider transformation of program statements preserving seman-
tical equivalence [20]. This approach is extended in [11] to a general methodology for
transformation of language constructions resulting in sound and complete proof sys-
tems. The approach resembles our encoding into SEQ, but it is noncompositional in
contrast to our work. In particular, extending the transformational approach of [11]
to multithreaded systems seems to require interference freedom tests.

Compared to previous work on Creol reasoning [13], this paper considers dynamic
systems and presents a more general framework where class semantics and reasoning
are significantly simplified by using external invariants based on the observed part
of the local history, by label-free primitives for method interaction, and by capturing
object creation as part of the observable behavior. Whereas labeled messages provide
a unique correspondence between invocation and completion messages, relevant for
an operational semantics, it is not oriented towards abstract specification, as needed
for compositional component-based reasoning.

Future Work. Creol supports multiple inheritance. We intend to extend the
approach of this paper to combine processor release points, multiple inheritance, and
history-based compositionality. The combination of nondeterministic assignment
and inherited class invariants challenges the transformational approach. For larger
programs, tool supported proof systems are needed. For this purpose, we plan to
adapt the KeY tool [5] to proof systems for active objects communicating by means
of asynchronous method calls.

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–3432

8 Conclusion

The Creol language proposes programming constructs which aim to unite object
orientation and distribution in a high-level and natural way, by means of processor
release points and a notion of asynchronous method calls. In this paper, we consider
a small kernel of generalized Creol constructs, and develop Hoare rules for local rea-
soning about these constructs. The reasoning rules are derived in a transformational
manner from a standard sequential language with a well-known semantics and es-
tablished reasoning system. The language constructs for asynchronous method calls
and processor release points are encoded in the sequential sublanguage extended
with nondeterministic assignment. Combined with local communication histories,
this allows the highly nondeterministic nature of concurrent and distributed sys-
tems to be captured in the sequential language. Weakest liberal preconditions are
derived based on the encoding. Given sufficiently strong class invariants, the encod-
ing yields sound and relative complete Hoare rules for partial correctness reasoning
about Creol classes. The approach allows external specifications of observable be-
havior to be derived, expressing possible component interaction. In the approach
of this paper, compositional reasoning about dynamic systems can be performed
without imposing local compatibility restrictions. By making object creation vis-
ible in the local histories, compatibility is fully captured by the composition rule.
Global welldefinedness follows from local welldefinedness through the formalization
of the parent notion and local uniqueness of generated objects. The simplicity of the
reasoning rules depends on the asynchronous input property, the encapsulation of
the local state, process synchronization by guards, including guarded asynchronous
method calls, and the use of the local history for local reasoning purposes.

Acknowledgement

The authors gratefully acknowledge helpful comments by Willem-Paul de Roever,
Wolfgang Ahrendt, and Jasmin Blanchette on previous versions of this paper.

References

[1] E. Ábrahám, F. S. de Boer, W. P. de Roever, and M. Steffen. An assertion-based proof system for
multithreaded Java. Theoretical Computer Science, 331(2–3):251–290, 2005.

[2] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21(4):181–185, Oct.
1985.

[3] K. R. Apt. Ten years of Hoare’s logic: A survey — Part I. ACM Transactions on Programming
Languages and Systems, 3(4):431–483, Oct. 1981.

[4] K. R. Apt. Ten years of Hoare’s logic: A survey — Part II: Nondeterminism. Theoretical Computer
Science, 28(1–2):83–109, Jan. 1984.

[5] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software. The KeY
Approach, volume 4334 of Lecture Notes in Artificial Intelligence. Springer, 2007.

[6] P. Brinch Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices, 34(4):38–45, Apr. 1999.

[7] M. Broy. Distributed concurrent object-oriented software. In O. Owe, S. Krogdahl, and T. Lyche,
editors, From Object-Orientation to Formal Methods: Essays in Memory of Ole-Johan Dahl, volume
2635 of Lecture Notes in Computer Science, pages 83–96. Springer, 2004.

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–34 33

[8] M. Broy and K. Stølen. Specification and Development of Interactive Systems. Monographs in
Computer Science. Springer, 2001.

[9] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural operational semantics
of multi-threaded Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java, volume 1523
of Lecture Notes in Computer Science, pages 157–200. Springer, 1999.

[10] F. S. de Boer. A Hoare logic for dynamic networks of asynchronously communicating deterministic
processes. Theoretical Computer Science, 274:3–41, 2002.

[11] F. S. de Boer and C. Pierik. How to Cook a Complete Hoare Logic for Your Pet OO Language. In
Formal Methods for Components and Objects (FMCO’03), volume 3188 of Lecture Notes in Computer
Science, pages 111–133. Springer, 2004.

[12] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18(8):453–457, Aug. 1975.

[13] J. Dovland, E. B. Johnsen, and O. Owe. Verification of concurrent objects with asynchronous method
calls. In Proceedings of the IEEE International Conference on Software - Science, Technology &
Engineering (SwSTE’05), pages 141–150. IEEE Computer Society Press, Feb. 2005.

[14] J. Dovland, E. B. Johnsen, and O. Owe. A compositional proof system for dynamic object systems.
Research Report 351, Department of Informatics, University of Oslo, Norway, Feb. 2007.

[15] C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer Science.
Prentice Hall, Englewood Cliffs, NJ., 1985.

[16] M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt termination. In
T. S. E. Maibaum, editor, Fundamental Approaches to Software Engineering (FASE 2000), volume
1783 of Lecture Notes in Computer Science, pages 284–303. Springer, 2000.

[17] International Telecommunication Union. Open Distributed Processing - Reference Model parts 1–4.
Technical report, ISO/IEC, Geneva, July 1995.

[18] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed concurrent objects.
Software and Systems Modeling, 6(1):35–58, Mar. 2007.

[19] J. M. Morris. A general axiom of assigment. In M. Broy and G. Schmidt, editors, Theoretical
Foundations of Programming Methodology, pages 25–34. Reidel, 1982.

[20] E.-R. Olderog and K. R. Apt. Fairness in parallel programs: The transformational approach. ACM
Transactions on Programming Languages, 10(3):420–455, July 1988.

[21] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swierstra,
editor, European Symposium un Programming (ESOP ’99), volume 1576 of Lecture Notes in Computer
Science, pages 162–176. Springer, 1999.

[22] B. Reus, M. Wirsing, and R. Hennicker. A Hoare calculus for verifying Java realizations of OCL-
constrained design models. In H. Hussmann, editor, Fundamental Approaches to Software Engineering
(FASE 2001), volume 2029 of Lecture Notes in Computer Science, pages 300–317. Springer, 2001.

[23] N. Soundararajan. Axiomatic semantics of communicating sequential processes. ACM Transactions
on Programming Languages and Systems, 6(4):647–662, Oct. 1984.

[24] N. Soundararajan. A proof technique for parallel programs. Theoretical Computer Science, 31(1-2):13–
29, May 1984.

J. Dovland et al. / Electronic Notes in Theoretical Computer Science 203 (2008) 19–3434

	Introduction
	The Programming Language
	Class Invariants and Observable Behavior
	Well-formed histories
	Compositional Reasoning about Concurrent Objects in Dynamic Systems

	Semantics: An Encoding into a Sequential Language
	The Encoding

	Class Verification
	Example
	Related and Future Work
	Conclusion
	Acknowledgement
	References

