
Total Maps of Turing Categories

J.R.B. Cockett 1,2

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada, T2N 1N4

P.J.W. Hofstra3

Department of Mathematics and Statistics
University of Ottawa

Ottawa, Ontario, Canada, K1N 6N5

P. Hrubeš4

Department of Computer Science and Engineering
University of Washington

Seattle, WA, USA

Abstract

We give a complete characterization of those categories which can arise as the subcategory of total maps of
a Turing category. A Turing category provides an abstract categorical setting for studying computability:
its (partial) maps may be described, equivalently, as the computable maps of a partial combinatory algebra.
The characterization, thus, tells one what categories can be the total functions for partial combinatory
algebras. It also provides a particularly easy criterion for determining whether functions, belonging to a
given complexity class, can be viewed as the class of total computable functions for some abstract notion
of computability.

Keywords: Computability theory, Partial Combinatory Algebra, Turing Category, Complexity Theory.

1 Introduction

Turing categories [1,2,6], provide an abstract categorical setting for computability

theory which, unlike partial combinatory algebras (PCAs) and related structures,

are presentation-independent and purely formulated in terms of categorical proper-

ties. The standard example of a Turing category has objects powers of the natural

1 This work was partial supported by NSERC Canada
2 Email: robin@ucalgary.ca
3 Email: phofstra@uottawa.ca
4 Email: pahrubes@gmail.com

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 308 (2014) 129–146

1571-0661/© 2014 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2014.10.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82705005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:robin@ucalgary.ca
mailto:phofstra@uottawa.ca
mailto:pahrubes@gmail.com
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2014.10.008
http://dx.doi.org/10.1016/j.entcs.2014.10.008
http://www.sciencedirect.com

numbers and maps all the partial recursive functions. However, there are many

other less well-known examples deriving from the “computable maps” of PCAs (or

more generally relative PCAs) or from syntactical methods. Of special relevance for

the purposes of the present work are the Turing categories described in [3] which

have as total maps the programs belonging to various complexity classes (PTIME,

LOGSPACE, etc.). These examples naturally lead to the question of exactly what

categories can be the total maps of a Turing category. Intuitively, as in any Turing

category one can simulate all computable functions, it would seem reasonable to

suppose that the total maps would have to satisfy some fairly demanding closure

properties.

The question is of significance for various reasons. To start with, it is one

way to determine the limits of the applicability of Turing categories in studying

computability. If it where impossible for the total maps of a Turing category to be

exactly, say, the linear time functions, then one cannot hope to use Turing categories

as a basis for investigating feasible computation at very low complexity levels. On

the other hand, if one knows that the total maps of a Turing category can be

of such low complexity then Turing categories can be a tool for formally unifying

computability and complexity theory and allowing a fluid flow of ideas between the

subjects.

A second reason for considering this question in the abstract categorical setting

is that it leads to an interesting comparison with the more traditional view on these

matters, namely via logic. Given a logical theory, one may ask which functional

relations are provably total: the weaker the theory, the smaller the class of provably

total maps. One may also wish for the system to be strong enough to allow for the

representation of partial computable maps. It is well known that even relatively

weak fragments of arithmetic ensure this. For example, Robinson’s Arithmetic Q is

enough to ensure all the partial recursive functions are represented. The study of

complexity, using bounded and two sorted logics [5] for example, has further pushed

the limits of these methods. It is, thus, in its own right, an interesting question

to know exactly what an absolutely minimal logic for generating these settings

really is. Although, this paper does not attempt to answer this question directly,

the categorical framework we describe can certainly be backward engineered into

a logical form: even a brief perusal indicates that there is a significant difference

between these approaches, not least because a Turing category is not a priori based

on arithmetic.

The third point of interest lies not so much in the question itself as in the

methods used here to provide the answer. The proof that a cartesian category

satisfying certain conditions can be embedded as a category of total maps in a

Turing category makes use of two ideas: first, it uses the Yoneda embedding to

create a canonical category of partial maps into which the original category embeds.

Next, we use the concept of a stack machine in the presheaf category to create a

partial combinatory algebra which in turn will generate the desired Turing category.

A stack machine can be thought of as a categorical implementation of the canonical

rewrite system in combinatory logic (but augmented with additional data). As

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146130

such, this concept helps clarify the connection between syntactical approaches to

generating models of computation and categorical methods.

Below we develop necessary and sufficient conditions for a Cartesian category

to be the total maps of a Turing category. The conditions are perhaps a little

surprising as apparently very little is actually required: there must be a universal

object, U , which has a pair of “disjoint” elements, and which has an “abstract

retract” structure which allows coding of maps. A universal object is an object

into which every other object can be embedded as a subobject: to have such an

object is already a somewhat non-trivial requirement as this, in particular, implies

there is an embedding U ×U −→ U showing that U must be an infinite object. The

remaining conditions are somewhat more technical: they are explained in section 3

below. However, it should be noted that in most of the standard applications, as

described in section 5, these technical conditions can be by-passed.

We start the exposition by considering the much more general question of how

a category can arise as the subcategory of total maps of an arbitrary restriction

category. (For background on restriction categories we refer to [4].) This leads to

the notion of a totalizing extension of the given category, and we show that the

category of totalizing extensions of a particular category has a final object which

is naturally a restriction category. This insight allows us to transfer the general

question of finding a Turing category which extends a given cartesian category

into finding a partial combinatory algebra in this final extension whose total maps

include the given maps. This perspective allows us to propose necessary conditions

for a Cartesian category to be the total maps of a Turing category, see section 3.

To show that these are sufficient we demonstrate that one can build, using a simple

abstract machine, a combinatory algebra in the final totalizing extension (actually

of a slightly modified category) which has elements representing all the total maps:

this suffices in view of Theorem 4.12 of [2]. Finally we provide simpler sufficient

conditions to show the wide applicability of the theorem.

2 Totalizing map subcategories

When X is a restriction category, the inclusion of the subcategory of total maps

Total(X) −→ X satisfies various properties. This leads to the following definition:

Definition 2.1 [Totalizing functor] A functor T : X′ −→ X is totalizing when it

satisfies the following three conditions:

(i) T on objects, TObj : Obj(X
′) −→ Obj(X), is an isomorphism,

(ii) T is faithful,

(iii) T is left factor 5 closed, meaning that when Th = gf then there is a (neces-

sarily unique) k such that Tk = f .

The following observation indicates that this class of functors is reasonably well-

behaved.

5 Note that “left” factor refers to the diagrammatic order of composition: A
Th−−−→ B = A

f−−→ B
g−−→ C.

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146 131

Lemma 2.2 In the category of categories and functors, the class of totalizing func-

tors, T , form a stable system of monics:

(i) Every T ∈ T is monic,

(ii) T is closed to composition,

(iii) T contain all isomorphisms,

(iv) T is closed to pulling back along any functor.

Proof. Routine. �

Recall that given any (small) category X the Yoneda embedding, y : X −→ SetX
op
,

gives a full and faithful embedding of X into presheaves on X. This category of

presheaves is finitely complete and therefore one can form the partial map category

on all monics Par(SetX
op
). Notice that the total maps in this category are exactly

the morphisms of SetX
op
. Restricting this category to the representables gives a full

subcategory which we shall denote X̃. While this is in general no longer a partial

map category, it certainly is a restriction category. We then have the following

pullback:

X

y
��

η �� X̃

ỹ
��

SetX
op ��Par(SetX

op
)

This exhibits X as a subcategory of total maps of the restriction category X̃, whence

η is totalizing.

While there may be many other categories Y into which X embeds via a totalizing

functor, we shall now make precise the sense in which η : X −→ X̃ is the universal

such functor.

Consider the category of totalizing extensions of X, denoted ExtT (X), whose
objects are totalizing functors T : X −→ Y and whose morphisms are commuting

triangles below X

X

T ′

���
��

��
��

T

����
��
��
��

Y
F

��Y′

X

T
��

X

T ′
��

Y
F

��Y′

which reflect total maps in the sense that the square on the right is a pullback.

Proposition 2.3 ExtT (X) is a (finitely) complete category in which η : X −→ X̃ is

the final object.

Proof. The verification that pullback exist (and are constructed as in Cat is routine.
We shall show that η : X −→ X̃ is the final object in this category. To this end,

suppose T : X −→ Y is totalizing. Without loss of generality we may assume that Y

has the same collection of objects as X. It is then obvious how the functor E : Y

−→ X̃ should act on objects. For a morphism g : X −→ X ′ in Y, we need to define a

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146132

partial map y(X) −→ y(X ′). First consider the following sieve on X:

Sg = {h : Z −→ X|gh ∈ X}.

This sieve corresponds to a subobject of the representable y(X). Next, define a

natural transformation τ(g) : Sg −→ y(X ′) by

τ(g)Z : Sg(Z) −→ X(Z,X ′); τ(g)Z(h) = gh.

This data defines a partial map E(g) : y(X) −→ Y(X ′), which is total if and only if

g ∈ X
′. This in particular shows that E reflects total maps. The verification that

E is functorial is straightforward and left to the reader.

To show that E is unique suppose we are given an extension E′ : Y −→ X̃. Since

E′ must respect maps from X, we verify its action on a map g : X −→ X ′ which is

not in X. Then E′(g) is a span y(X) ⊇ S
σ−−→ y(X ′). Now if h ∈ Sg, the composite

gh is in X, and therefore h ∈ S, whence E′(gh) = E′(g)E′(h) = σ(h) must equal

y(gh). This means that E′(g) ≥ E(g). To show the converse, assume that h ∈ S but

h �∈ Sg. Then gh �∈ X. But then E′(gh) is a total map, contradicting the reflection

of total maps. �

We also note that in case Y is a restriction category and T : X −→ Y the inclusion

of total maps, then in fact E : Y −→ X̃ is a restriction functor. In addition, we have

the following result, which states that if X has products, then E preserves the

induced restriction products.

Lemma 2.4 Suppose that X has finite products. Then X̃ also has finite restriction

products, and η preserves them.

Proof. Finite products in a split restriction category are completely determined

by their counterparts in the total map subcategory. Thus, as the inclusion SetX
op

−→ Par(SetX
op
) preserves products and y : X −→ SetX

op
preserves products cutting

down to X̃ preserves products. �

With a view towards our aim of characterizing those categories which arise as

the total map subcategory of a Turing category, we can now observe the following.

When X −→ T is a totalizing extension with T a Turing category, then we have the

following situation:

X ��

η
����

���
���

���
�� T

E
��
X̃

Then by the above lemma, E is a Cartesian restriction functor; since any such

functor preserves partial combinatory algebras, we find that there is a PCA E(U),

the image of the Turing object U ∈ T. Thus we obtain:

Proposition 2.5 X is the total map category of a Turing category if and only if

there is a combinatory algebra in X̃ whose total computable maps include the maps

of X.

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146 133

Thus we may see our original problem as one of finding a suitable PCA in X̃

for which all the maps in X are computable. Indeed, if such a PCA exists, then we

may let T be the subcategory of X̃ on the computable maps. Notice one rather nice

aspect of this reformulation of the problem: since the maps of X already account

for all the total maps in X̃, the total maps represented by a PCA in X̃ necessarily

lie in X already; thus we don’t have to worry about having too many total maps

represented. Therefore, the only thing to verify when constructing a candidate PCA

is that it represents all the maps in X.

3 Properties of the total maps of a Turing category

We are now in a position to collect the necessary conditions for being the total maps

of a Turing category. Clearly the total map category has to be Cartesian (i.e. has

finite products), as Turing categories are Cartesian by definition. The remaining

conditions are somewhat more technical. However, it should be stressed that in

many cases of interest these conditions greatly simplify.

The purpose of the section is to prove:

Proposition 3.1 Every total map category of a Turing category has a universal

object which has a pair of disjoint elements and is equipped with an abstract retract

structure for which there exist codings.

Below we introduce the required notions of having a universal object , disjoint

elements, abstract retract structure, and codes, showing each is present in the total

map category of a Turing category.

3.1 A universal object

One of the properties of the Turing object U in a Turing category is that every

object is a retract of it. More explicitly, given any object A, there are morphisms

ιA : A −→ U and ρA : U −→ A for which ρAιA = 1A. This forces ιA to be a total map

(in fact, a monomorphism), but ρA can still be partial. We will typically denote the

situation by A ≺ U , or by (ιA, ρA) : A ≺ U if necessary.

We call an object U in a category universal if for every object A there exists a

monomorphism ιA : A −→ U . (Thus we don’t ask that every object is a retract of U ;

this is stronger, and will be analyzed in the section on abstract retract structures

below.)

Lemma 3.2 In any Cartesian category X with a universal object U :

(i) There is always an element ι1 : 1 −→ U of the universal object;

(ii) There is always an embedding ιU×U : U × U −→ U ;

(iii) The homset X(U,U) either has one element, in which case X is trivial, or is

infinite.

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146134

3.2 A pair of disjoint elements

A Turing object U in a Turing category admits the interpretation of all combinatory

logic terms. In particular, U has two global elements t = λ∗xy.x and f = λ∗xy.y.
We shall prove that these two elements have the property of being disjoint in the

sense that whenever th = fh for a map h, the domain h of h must be a strict initial

object in the idempotent splitting. For the subcategory of total maps, this simply

means that for any h with th = fh the domain of h is a strict initial object.

Proposition 3.3 In every Turing category the total maps have a universal object

U with a disjoint pair of elements.

Notice first that when the Turing category is trivial (in the sense that it is

equivalent to the terminal category) all objects are strict initial objects, and hence

all elements are disjoint. In general, in a Turing category, an element will be disjoint

from itself only when the category is trivial as this forces the initial and final object

to be the same.

We start by observing:

Lemma 3.4 Let X be a Cartesian category. A map h : H −→ 1 makes

H ×A
h× 1−−−−→ 1×A

π1−−→ A
f−−→−−→
g

B

commute for all f, g : A −→ B if and only if H is a strict preinitial object.

Recall that an object H is called preinitial if there is at most one map from

that object to any other object. It is strict preinitial if any object with a map to

H is itself (strict) preinitial. Preinitial objects are quite common: for example in

the category of (commutative) rings Z is the initial object, while Zn is preinitial for

each n. However, neither Z nor Zn are strict preinitial.

Proof. Suppose x, y : H −→ A. Then:

x = xπ1〈h, 1〉 = xπ1(h× 1)Δ = yπ1(h× 1)Δ = yπ1〈h, 1〉 = y.

So H is preinitial. To show that it is strict, suppose that q : Q −→ H; then the

above reasoning applies to qh, making Q preinitial. �

Notice that if H is strict preinitial then, as H × Y
π0−−→ H, it follows that

H × Y is always strict preinitial. This means in a Cartesian category once one has

one strict preinitial there must, for each object, be a preinitial with a map to that

object. This does not imply there will be an initial object, but it does force that an

initial object, if it exists, is automatically strict.

We are now ready to prove that the elements t and f in a Turing category are

disjoint.

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146 135

Lemma 3.5 In any Turing category, if h : H −→ 1 is a total map which equalizes t
and f (as chosen above) then H is a strict initial object in the total map category.

Thus the elements t and f are disjoint.

Proof. Suppose f, g : A −→ B are total maps. Without loss of generality we may

assume A = B = U . Note that the diagram

1× U π ��

t×〈f,g〉
��

f×〈f,g〉
��

U

f
��

g

��
U × U × U •(•×1)

��U

commutes serially. But then precomposing with h× 1 : H ×U −→ 1×U shows that

h satisfies the conditions of the lemma above and so is a strict preinitial object. It

remains only to show that there is a total map H −→ B for each object B. Each

B is a retract of the Turing object and so the composite ιBρB : U −→ U is a split

idempotent. As with any map in a Turing category, there is a code kB : 1 −→ U

such that •〈kB, 1〉 = ιBρB, as in

U

•〈kB ,1〉

		
ρB ��B

ιB ��U .

While ρB may be partial, we argue that ρBh is total:

•〈kB, 1〉h = •〈kBh, h〉 = •〈kh, h〉 = •(k× 1)Δh = π0Δh = h

so that ιBρBh is total, whence ρBh is total. �

It may be useful at this stage to provide an example of a total map category which

has a universal object and yet cannot be the total maps of a Turing category. The

simplest example, which also shows that such a category cannot consist entirely of

preinitial objects, is when the category is a meet-semilattice. Then the only element

is the identity on the top and this must be disjoint from itself, forcing the top to

also be the bottom thereby collapsing the lattice.

3.3 An abstract retract structure

Recall that each object A in a Turing category comes equipped with (ιA, ρA) : A ≺ U

exhibiting it as a retract of the (chosen) Turing object. There may be many choices

for this family of retractions although we shall assume that (ιU , ρU) = (1U , 1U).

Below we describe how this structure introduces an analogous structure on the

total map category.

First, consider a span between representable objects y(X) and y(X ′) in SetX
op
:

y(X)
s←−− A

t−→ y(X ′).

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146136

The apex A need not be representable, but we may consider the family of spans in

X arising by covering A by representables as follows:

S(s, t) = {X sh←−− B
th−−→ y(X ′)|h : Y(B) −→ A}.

This family is then clearly closed under precomposition with maps in X. In fact, we

may regard S(s, t) as a category whose objects are the spans in X factoring through

(s, t), and whose morphisms are morphisms of spans.

Conversely, consider a familyR of spans in X from X to X ′ which is closed under

precomposition. For the present purposes, we shall call such a family an abstract

span. Regarding R as a category, we may consider the functor

R −→ Span(y(X), y(X ′))
Apex−−−−→ SetX

op

which sends a span X
p←−− B

q−−→ X ′ to the y(B). The colimit of this diagram gives

a span y(X)←− R̂ −→ y(X ′) in SetX
op
. The proof of the following is now routine:

Lemma 3.6 The assignments (s, t) �→ S(s, t) and R �→ R̂ are mutually inverse

(up to isomorphism of spans).

Next, we wish to characterize when the left leg of a span between representables

is monic (so that it is a partial map). Call an abstract span R deterministic when

(p, q), (p, q′) ∈ R implies q = q′.

Lemma 3.7 Given an abstract span R corresponding to a span y(X)
s←−− R̂ t−→

y(X ′) between representables, s is monic if and only if the spans in R are deter-

ministic.

Of course, in this situation R̂ may be regarded as a sieve on X: it is precisely

the sieve

R̂(Z) = {h : Z −→ X|(h, k) ∈ R for some k : Z −→ X ′}.
So far, we have described partial maps between representables in terms of abstract

spans. Next, we wish to characterize when such a partial map is in fact a retraction

of a morphism ιA : A −→ U . So suppose that in SetX
op
, we have a span y(X) ⊇ S

t−→ y(X ′) which is a retraction of a map ι : X ′ −→ X. This of course means that

ι ∈ S and t(ι) = 1X′ . In terms of the corresponding abstract span S, this means

that (ι, 1) ∈ S and that for each (h, f) ∈ S and each diagram

X ′

ι
��

P

z
��

k

X M
h

f

��X ′

with the square commuting, we have fz = k. We shall refer to this condition by

saying that the abstract span S is retracting on ι. To summarize:

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146 137

Lemma 3.8 Given a morphism ι : X ′ −→ X in X and a span y(X) ⊇ S
t−→ y(X ′),

the span is a retraction of ι in Par(SetX
op
) if and only if the corresponding abstract

span contains (ι, 1) and is retracting on ι.

We are now ready for the main definition of this section:

Definition 3.9 An abstract retract structure on a Cartesian category with a

universal object U consists of a choice of embeddings ιA : A −→ U (with ιU = 1U)

and, in addition, for each object A an abstract retraction of ιA, meaning a family

of spans RA from U to A satisfying:

[RS.1] Each RA is closed under precomposition;

[RS.2] Each RA is deterministic;

[RS.3] U
ιA←−− A

1A−−−→ A ∈ RA;

[RS.4] Each RA is retracting on ιA.

We shall indicate an abstract retraction pair by (ιA,RA) : A ≺ U .

Here are some examples abstract retractions for a fixed morphism ιA : A −→ U .

Examples 3.1 (1) If R is an abstract retraction, then RU is always just the family

U
x←−− X

x−−→ U . Indeed suppose U
h←−− Y

f−−→ U ∈ RU then by [RS.4]

h1Y = ιUh, so f = f1X = h. Similarly, if ιA is an isomorphism then RA is

always just the family U
ιAx←−−− X

x−−→ A.

(2) The smallest retraction structure for each A is the one generated by the span

(ιA, 1A). Each span in the abstract retraction is of the form U
ιAx←−−− X

x−−→ A;

this means the set is deterministic and retracting on ιA.

(3) Suppose that ιA has a (total) retraction ρA. Then we may generate a retraction

structure {(x, xρA)|x : X −→ U}. Note that when x = ιA we obtain the span

U
ιA←−− A

1A−−−→ A. As all the spans have their right leg determined by the left

leg post-composed with ρA the set is deterministic.

(4) Finally, consider a totalizing extension T : X −→ Y, in which U is a universal

object. If, in Y, each object A is equipped with a retraction (ιA, ρA) : A ≺ U ,

then we may consider the abstract span in X given by RA = {U h←−− A
f−−→

A|ρAh = f}. This is readily seen to be an abstract retraction on ιA.

The last example shows in particular that whenever T is a Turing category with

total map subcategory X, there is an induced abstract retract structure on X. For

the record:

Lemma 3.10 Every Turing category induces, for any Turing object U and chosen

retractions (ιA, ρA) : A ≺ U , an abstract retract structure on its total map category.

3.4 Codes

A Turing object U in T is not only universal, but it also acts as a weak exponential

for every pair of objects in the category. In particular, given f : A −→ B, there

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146138

exists a code c[f] : 1 −→ U making

U × U • ��U

U

〈c[f],1〉
��

ρA
��A

f
��B

ιB

��

commute. Here, ρA and ιB are part of the chosen retractions A ≺ U and B ≺ U ,

and the morphism U × U
•−−→ U is the universal application map. The code c[f] is

required to be total, but not unique. Choosing a code c[f] for each f amounts to

giving a family of mappings

c = cA,B : T(A,B) −→ T(1, U). (1)

Since the inclusion ιB is total, it in fact suffices to specify codes only for the case

B = U , that is, for maps A −→ U .

We will now translate this existence of codes to structure on the total maps.

Since codes are formulated in terms of the retractions ρA, this involves dealing with

the abstract retract structure on the total maps. We may cut down the mapping (1)

to the total maps to obtain a mapping c = cA : X(A,U) −→ X(1, U), where X =

Total(T).

To motivate the coming definition, first we need a bit of notation. Given a span

U
h←−− X

k−−→ A we denote by Z∗(h, k) the span U
hπX←−−−− Z×X

kπX−−−−→ A, obtained

by precomposing each leg with the projection Z × X −→ X. When R is a family

of spans from U to A we will write Z∗R = {(Z∗(h, k)|(h, k) ∈ R}. Similarly, given

f : A −→ U , we write f∗R = {(h, fk)|(h, k) ∈ R}.
Now consider two maps f : A −→ U and g : B −→ U with codes c[f], c[g], and

suppose we have an object Z for which the unique total map Z
!−→ 1 equalizes c[f]

and c[g]. Then as per example 3.1 (4), the a typical span in RA is of the form

U
h←−− X

k−−→ A satisfying k = ρAh. Given such (h, k), we may then consider the

span

Z ×X

πX

��
U X

h

k
��A

f
��U

In the above notation, this is Z∗(fh, k) ∈ Z∗f∗R. Under the given condition on Z,

the composite fkπX factors as g ◦ (ρBhπX), as shown by the following calculation:

fkπX = fρAhπX = fρAπU (z × h) = •(cA[f]× U)(z × h)

= •(cA[f]z × h) = •(cB[g]z × h) = •(cB[g]× U)(z × h)

= gρBπU (z × h) = gρBhπX

Note that the statement that fkπX factors as indicated implies that Z∗(h, kf) ∈
Z∗f∗RA can be regarded as a span of the form Z∗(h, gq) for (h, q) ∈ RB. By

symmetry, this implies that Z∗f∗RA = Z∗g∗RB. Thus, informally speaking, when

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146 139

restricting the abstract retractions to Z, the operations of composing with f and

with g become equal.

This leads to the following:

Definition 3.11 A Cartesian category X with universal object U and retract struc-

ture (ιA,RA) : A ≺ U has codes when there are maps cA : X(A,U) −→ X(1, U)

such that whenever Z
!−→ 1 satisfies c[f]z = c[g]z for f : A −→ U, g : B −→ U then

Z∗f∗RA = Z∗g∗RB.

The preceding discussion shows:

Lemma 3.12 The total map subcategory of a Turing category always has codes.

4 Building a Turing category from total maps

We shall now construct a PCA in X̃ which has all the total maps computable.

We use the notion of a “stack object”, which is an object satisfying two domain

equations which allow for the implementation of a rewriting system. Using the fact

that X̃ admits a trace, we may then define a universal application morphism which

will equip the stack object with a PCA structure. From now on, assume X is a

Cartesian category satisfying the conditions explained in the previous section.

Before we start, however, it is convenient to modify X̃ a little. Recall that the

Yoneda embedding does not preserve initial objects (if these happen to be present),

but that there is always a subcanonical topology J on the category X which corrects

this. (Simply take the smallest topology containing the empty cover on each initial

object of X.) This gives an embedding X
y−−→ Sh(X, J) preserving any existing

initial object. For the rest of the paper, we will let X̃ denote the full subcategory

of the partial map category on Sh(X, J) on the representables. It will also be

useful to assume that we have access to the splittings of restriction idempotents

and to finite coproducts, thus it will be more convenient to work in Par(Sh(X, J)),
and to restricting to X̃ by observing that the structures we build are always on

representable objects.

Another important property of a partial map category of a (pre)sheaf category

(and hence also of X̃) is that it is traced on the coproduct: given f : X −→ X + Y

there is a map f † : X −→ Y which is the joint of all the finite partial iterates:

f † =
∨

i∈N f (i), where

f (1) = σ
(−1)
1 f : X −→ Y

f (2) = σ
(−1)
1 fσ

(−1)
0 f : X −→ Y

. . .

f (n+1) = σ
(−1)
1 f(σ

(−1)
0 f)n : X −→ Y

where σ
(−1)
i is the partial inverse of the ith coproduct injection. Intuitively, f † takes

an input x ∈ X, and computes the iterates f i(x) for as long as the output lies in

X. Once the output lies in Y , this is the value of f †(x).

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146140

4.1 Stack objects

An object A in a distributive restriction category is said to be a stack object in

case there are maps

put : 1 +A×A −→ A get : A −→ 1 +A×A with put get = 11+A×A.

Thus, a stack object can be indicated by (put, get) : 1 +A×A ≺ A.

Lemma 4.1 In any distributive restriction category the following are equivalent

conditions for an object:

(i) 1 + 1 ≺ A and A×A ≺ A;

(ii) 1 +A×A ≺ A (it is a stack object)

(iii) For any polynomial functor P , we have P (A) = n0.1+ n1.A+ ...+ nr.A
r ≺ A

The point is that in the universal extension X̃ of a category X satisfying the

requirements discussed above, we know the first condition for a stack object is

satisfied by the universal object U : indeed, U ×U ≺ U because U ×U is an object

of X, and 1 + 1 ≺ U because U has two disjoint elements t, f : 1 −→ U , giving

[t, f] : 1 + 1 −→ U . A partial retraction may be defined by letting S be the sieve

on U generated by {t, f}, and by defining a natural transformation S
σ−−→ 1 + 1 by

σX(m) = inL(∗) whenever m factors through t, and inR(∗) otherwise. Note that

this is well-defined precisely because t, f are disjoint, so that m factors through both

t and f only when its domain is 0; but then (1 + 1)(0) is a singleton since 1 + 1 is

assumed to be a sheaf.

4.2 A stack machine for partial combinatory algebras

We shall now use this trace to define a partial application A × A
•−−→ A making

A into a PCA. To this end, we will define a partial map step : A × A × A −→
A × A × A + A whose trace then is of the desired type. More precisely, we will

define x • y := step†(x, y, []). The intuition that should be kept in mind is that the

map step executes one step of a program/rewrite system, and that its trace runs

the entire computation/rewriting sequence. The components of A× A× A will be

regarded as a code stack, a value, and a dump stack, respectively. Only when the

code is end and the dump stack is empty does the computation halt.

To define step, we use the domain equations for A to fix three different repre-

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146 141

sentations of our stack object:

end, k, s : 1 −→ A k0, s0 : A −→ A s1 : A×A −→ A nam : A −→ A

(〈end|k|s|k0|s0|s1|nam〉, g0) : 1 + 1 + 1 +A+A+A×A+A ≺ A

c0 : A −→ A c1 : A×A −→ A

(〈c0|c1〉, g1) : A+A×A ≺ A

nil : 1 −→ A cons : A×A −→ A

(〈nil|cons〉, g2) : 1 +A×A ≺ A

Now we define step by the following case distinction:

Code Value Stack Code Value Stack

end x nil exit with x

k x S end k0(x) S

k0(x) y S end x S

s x S end s0(x) S

s0(x) y S end s1(x, y) S

s1(x, y) z S x z cons(c0(y, z), S)

nam(cA[f]) z S end f(ρA(z)) S

end v cons(c0(y, z), S) y z cons(c1(v), S)

end v′ cons(c1(v), S) v v′ S

The one aspect which needs explanation concerns how we use the names of

maps. The aim is to implement them as the composite of a retraction to the

idempotent and the map itself. (Recall that cA[f] is a name for f relative to the

embedding-retraction pair A ≺ U for which ρA : U −→ A is a retraction, as detailed

in Section 3.4.) Without these names, the stack machine can be thought of as

an implementation of the usual rewriting system on combinatory logic; adding the

names of maps from X together with the given rule essentially amounts to adding

rewrites cA[f] • a −→ f(a) to the system.

The step partial function is the join of all its individual components. For step
to be well-defined all these components must be compatible, in the sense that they

agree on overlaps of domains. Those which are in separate components of the

stack object by design are disjoint and so compatible. However, the names of maps

are all in the same component and, thus, we must establish compatibility of the

implementation of names.

Lemma 4.2 step is a well-defined partial map in X̃ on the stack object U .

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146142

Proof. A typical span corresponding to a partial map U × U × U −→ U × U × U

in the component of step which is defined on a tuple of the form (nam(cA[f]), h, S)

(for f : A −→ U , h : X −→ U) looks like

U × U × U
〈nam(cA[f])!X , h, S〉←−−−−−−−−−−−−− X

〈end, fk, S〉−−−−−−−−→ U × U × U

Here, (h, k) ∈ R(A). Given another such span

U × U × U
〈nam(cB [g])!X′ , h′, S′〉←−−−−−−−−−−−−−−− X ′ 〈end, gk′, S′〉−−−−−−−−−→ U × U × U

with g : B −→ U and (h′, k′) ∈ RB, we must show that these two spans are com-

patible. This is done by considering generalized elements of z : Z −→ X and z′ : Z
−→ X ′; we must verify that if 〈nam(cA[f]!X , h, S〉z = 〈nam(cB[g])!X′ , h′, S′〉z′, then
also 〈end!X , fk, S〉z = 〈end!X′ , gk′, S′〉z′ It is clear that this holds for the last com-

ponent. Thus we must show that if cA[f]!Xz = cB[g]!X′z′ and hz = h′z′ then

fkz = gk′z′.

The first condition means cA[f]!Z = cB[g]!Z which, by the requirement on codes,

implies (hz, fkz) is in RBg. This implies (hz, fkz) = (hz, gv). But hz = h′z′, as
RB is deterministic, now gives v = k′z′ and so fkz = gv = gk′z′ as required. �

We are now ready for the main result:

Theorem 4.3 Given a Cartesian category X with a universal object, a pair of dis-

joint elements and a retract structure with codes then the above definition of • in X̃

gives a partial combinatory algebra; the subcategory of X̃ on the computable maps is

then a Turing category whose total maps are exactly the maps of X.

The proof consists of a verification that the combinators k and s indeed perform

as required.

Proof. We first verify that k • x • y = x (where •, as usual, associates to the

left). Here step(k, x, []) = σ0(end, k(x), []) has step(end, k0(x), []) = σ1(k0(x)) so that

(k • x) = k0(x). But now

k0(x) • y= step†(k0(x), y, [])

=

⎧⎨
⎩

σ0(c, v, d) �→ step†(c, v, d)

σ1(x) �→ x

⎫⎬
⎭ step(k0(x), y, [])

=

⎧⎨
⎩

σ0(c, v, d) �→ step†(c, v, d)

σ1(x) �→ x

⎫⎬
⎭σ1(x)

= x

which verifies that (k • x) • y = x.

Next, we need s •x • y to be as defined as x and y. But clearly s •x = s0(x) and
s0(x) • y = s1(x, y) so, as s1 is total this requirement of the combinator is met.

Next, we calculate

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146 143

((s • x) • y) • z= s1(x, y) • z
= step†(s1(x, y), z, [])

=

⎧⎨
⎩

σ0(c, v, d) �→ step†(c, v, d)

σ1(x) �→ x

⎫⎬
⎭ step(s1(x, y), z, [])

= step†(x, z, cons(c1(y, z), []))

= step†(end, x • z, cons(c1(y, z), []))
= step†(y, z, cons(c0(x • z), []))
= step†(end, y • z, cons(c0(x • z), []))
= step†(x • z, y • z, [])
= (x • z) • (y • z)

Here we use repeatedly the identity:

step†(x, y, S) = step†(end, step†(x, y, []), S) = step†(end, x • y, S)

which is true by virtue of the fact that the trace is defined inductively. More

precisely, we have

step(n)(x, y, s) =
⊔

i+j=n+1

step(i)(end, step(j)(x, y, []), s).

The left hand expression is empty unless the iteration terminates in that number

of steps. If there is a (first) stage j at which the left hand iteration returns the

stack to its original state and the first coordinate is end then j + 1 can be used to

terminate the inner loop on the right hand side to bring the two iterations to the

same state. Subsequently the result will be the same. If there is no such j both

sides will be the empty map. �

5 Applications

For many of the obvious applications we have proven much more than is actually

needed. Here are two corollaries of our main theorem:

Proposition 5.1 Given a Cartesian category X in which

• Every object has at least one element;

• There is a universal object U ;

• There is a monic (set) map c :
∐

A∈X X(A,U) −→ X(1, U);

• There is a faithful product preserving functor into U : X −→ Set.

Then X occurs as the total maps of a Turing category.

These conditions include the PTIME maps between binary natural numbers:

Corollary 5.2 The PTIME maps between binary numbers occur as the total maps

of a Turing category.

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146144

In fact, one may use a linear time pairing operation on binary numbers by setting,

for example, the pairing of b1 · · · bk and c1 · · · cn to be b1b1 · · · bkbk01c1c1 · · · cncn.
This means we also have:

Corollary 5.3 The linear time maps between binary numbers occur as the total

maps of a Turing category.

Another class of examples is contained in the following:

Proposition 5.4 Any countable Cartesian category with a universal object and a

pair of disjoint elements is the total maps of a Turing category.

Here we observe that once one has two distinct elements the fact that one has

a stack object allows one to easily obtain countably many distinct and disjoint

elements. This means that there is a monic assignment of maps to elements and

one can use the smallest abstract retractions.

6 Conclusion

To unify the abstract notion of computability embodied in Turing categories with

the study of feasible computation (e.g. LINEAR, LOGSPACE, PTIME, ...) min-

imally one must know whether these functional complexity classes can form the

total maps of a Turing category. In [3] it was shown that both LOGSPACE and

PTIME functions had a natural description as the total maps of Turing categories.

However, in order to obtain those results, it was necessary to use the well-known

facts from complexity theory that transducers and Turing machines can universally

simulate themselves with an overhead which can be accommodated within (respec-

tively) LOGSPACE and PTIME. This meant the argument that these complexity

classes could be modelled by Turing categories relied heavily on the details of the

machine models and the way in which resources were measured. In particular, as

there is no widely accepted machine model which can simulate itself with a lin-

ear time overhead, the linear time maps could not be so readily included in this

approach.

The power of the results outlined in this paper is, precisely, that they are ab-

stract. That is, they do not depend on the peculiarities of machine models or on

the way resources are counted.

By describing necessary and sufficient conditions for a Cartesian category to be

the total maps of a Turing category we have demonstrated that, perhaps somewhat

counterintuitively, Turing categories are applicable beyond the traditional confines

of combinatorial completeness into feasible computation and the domain of complex-

ity theory. In this regard Turing categories, therefore, provide – by more than mere

analogy – a medium for the transfer of ideas between computability and complexity

theory and thus for a potential economy of presentation which may be beneficial to

the further development of the subject. Finally, we believe the methods employed

in establishing the results in this paper are yet another strong indication that a

complete understanding of the categorical aspects of computability and complexity

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146 145

necessarily involves the study of partial combinatory algebras in categories other

than Set.

References

[1] J.R.B. Cockett, Categories and computability. Lecture notes available at
http://pages.cpsc.ucalgary.ca/ robin.

[2] J.R.B. Cockett and P.J.W. Hofstra, Introduction to Turing categories Annals of Pure and Applied
Logic, Volume 156, Issues 2-3, December 2008, Pages 183-209.

[3] J.R.B. Cockett, J. Diaz-Böıls, J. Gallagher and Pavel Hrubeš Timed Sets, Functional Complexity, and
Computability. Electronic Notes in Theoretical Computer Science, Volume 286, September 2012, Pages
117137.

[4] J. R. B. Cockett and S. Lack, Restriction categories I: categories of partial maps. Theoretical Computer
Science 270(1-2): 223-259, 2002.

[5] S. Cook and P. Nguyen, Logical Foundations of Proof Complexity. In: Perspectives in Logic, Cambridge
University Press, 2010.

[6] R. Di Paola and A. Heller, Dominical categories: recursion theory without elements. Journal of Symbolic
Logic, Volume 56,1987.

J.R.B. Cockett et al. / Electronic Notes in Theoretical Computer Science 308 (2014) 129–146146

	Introduction
	Totalizing map subcategories
	Properties of the total maps of a Turing category
	A universal object
	A pair of disjoint elements
	An abstract retract structure
	Codes

	Building a Turing category from total maps
	Stack objects
	A stack machine for partial combinatory algebras

	Applications
	Conclusion
	References

