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OMC for scalar multiples of unitaries
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Abstract

We establish the following case of the Determinantal Conjecture of Marcus [M. Marcus, Derivations,
Plücker relations and the numerical range, Indiana Univ. Math. J. 22 (1973) 1137–1149] and de Oliveira
[G.N. de Oliveira, Research problem: normal matrices, Linear and Multilinear Algebra 12 (1982) 153–154].
Let A and B be unitary n× nmatrices with prescribed eigenvalues a1, . . . , an and b1, . . . , bn, respectively.
Then for any scalars t and s

det(tA− sB) ∈ co

⎧⎨
⎩

n∏
j=1

(taj − sbσ(j)); σ ∈ Sn
⎫⎬
⎭ ,

where Sn denotes the group of all permutations of {1, . . . , n} and co the convex hull taken in the complex
plane.
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The celebrated Determinantal Conjecture of Marcus [5] and de Oliveira [6] can be stated as
follows.

Conjecture 1. Let A and B be normal n× n matrices with prescribed complex eigenvalues
a1, . . . , an and b1, . . . , bn, respectively. Let �0 be the subset of C given by �0 = co

{ ∏n
j=1(aj −

bσ(j)); σ ∈ Sn
}
. Then

det(A− B) ∈ �0,

where Sn denotes the group of all permutations of {1, . . . , n} and co the convex hull taken in the
complex plane.

The purpose of this paper is to establish the conjecture in case A and B are scalar multiples of
unitary matrices.

Theorem 2. Conjecture 1 holds in case A and B are scalar multiples of unitary matrices.

Conjecture 1 is known in a great many special cases. The case in which A and B are both
hermitian was settled by Fiedler [3]. The case in which A is positive definite and B is skew-
hermitian was settled by da Providência and Bebiano [7]. The proof of Theorem 2 borrows many
ideas from that paper. The case in which A and B are both unitary was settled by Bebiano and da
Providência [1], the key observation being that Conjecture 1 is unchanged under a simultaneous
application of a fractional linear (Möbius) transformation of the eigenvalues aj and bj , allowing
a reduction to the case in which A and B are hermitian. The same idea does not work in case that
the aj and bj lie in different concentric circles.

Theorem 2 has the following corollary.

Corollary 3. LetCA andCB be circles in the complex plane that do not intersect.Let a1, . . . , an ∈
CA and b1, . . . , bn ∈ CB, then Conjecture 1 holds.

Proof. Any pair of non-intersecting circles in C can be mapped by some Möbius transformation
ϕ to a pair of concentric circles centred at the origin. Using the invariance under Möbius trans-
formations [1, Theorem 2], it is equivalent to replace A and B with ϕ(A) and ϕ(B), respectively.
But ϕ(A) and ϕ(B) are scalar multiples of unitary matrices and Theorem 2 establishes the result
in that case. �

We start by stating some ideas extracted from [7,2].
Let � be a closed bounded subset of C. Let z be an extreme point of co(�) which therefore

necessarily lies in �. We will say that z is almost flat if there is a smooth curve segment passing
through z, lying entirely inside � and having zero curvature at z.

Lemma 4. The set � is contained in the closed convex hull of those extreme points of co(�) that
are not almost flat.

Proof. LetN be the set of extreme points of co(�) which are not almost flat. LetK be the closed
convex hull of N . We claim that co(�) ⊆ K . Suppose not, then there is a point z1 in co(�) not
in K . But now it is possible to find a closed disk B with z1 /∈ B but K ⊆ B see Valentine [8].
Let w be the centre of this disk. Let z be a furthest point of co(�) from w. Then certainly z /∈ B.
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There can be no line segment lying in co(�) and passing through z (for otherwise there would be
points of co(�) further from w than z). So z is an extreme point of co(�) and hence z ∈ � and
it does not lie in N ⊆ K ⊆ B. Therefore, z is an almost flat point of �. But then there is a curve
segment, passing through z lying in � and with zero curvature at z. This contradicts the definition
of z since then there must be points of co(�) further from w than z. �

Lemma 5. LetA andB be normal matrices and P skew-hermitian. Let T = A− B and consider
a variation T (t) = exp(tP )A exp(−tP )− B. Then the expansion

det(T (t))

det(T )
= 1 + u1t + u2t

2 + · · ·
is valid about t = 0 where u1 = tr(T −1[P,A]) = tr(T −1[P,B]) and

u2 = 1

2

(
tr(T −1[P,A])tr(T −1[P,B])− tr(T −1[P,A]T −1[P,B])

)

= tr(T −1[P,A] ∧ T −1[P,B]). (1)

We note that for S an operator on an inner product space E, the operator S ∧ S is defined
on the inner product space E ∧ E by extending (S ∧ S)(v1 ∧ v2) = Sv1 ∧ Sv2 by linearity. This
definition is further extended to S1 ∧ S2 for possibly different operators S1 and S2 on E either by
the polarization identity

S1 ∧ S2 = 1

4
(S1 + S2) ∧ ((S1 + S2)− (S1 − S2) ∧ (S1 − S2))

or by (S1 ∧ S2)(v1 ∧ v2) = 1
2 (S1v1 ∧ S2v2 + S2v1 ∧ S1v2). We remark in particular that if S is a

rank one operator, then S ∧ S is zero. We refer the reader to Lang [4] for issues relating to exterior
products.

Lemma 6. Let R be a non-zero n1 × n2 matrix. Then there exists a n1 × n2 matrix G such that
GR� + RG� and R�G+G�R are both rank one matrices with non-zero trace.

Proof. By an application of the singular value decomposition, it suffices to prove the result in the
special case that R is rectangular diagonal with non-negative diagonal entries. Let the diagonal
values be rj � 0 for j = 1, 2, . . . , m wherem = min(n1, n2). Now define gjk = 1/(rj + rk) for
1 � j, k � m and rj > 0 and rk > 0 and gjk = 0 in all other cases. Then G is non-zero and the
result is evident. �

We now specialize to the case

� = {det(U�diag(a1, . . . , an)U − V�diag(b1, . . . , bn)V );U,V unitary}
of interest in this article by proving the following.

Proposition 7. Let n � 2 and 0 < t < 1. LetA be an n× n unitary matrix andB an n× nmatrix
with t−1B unitary. Suppose that A and B have no common non-trivial invariant linear subspace
and that det(A− B) is an extreme point of co(�). Let X denote the unitary matrix t−1BA−1.

Then X has exactly two distinct eigenvalues ω1 and ω2 given by

ω1, ω2 = i(2 sin(θ)+ μ(1 + t2))± √
4t2 − (2 sin(θ)+ μ(1 − t2))2

2t (iμ+ ω)
, (2)
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where μ is a real constant and ω = eiθ is a complex number of absolute value 1 such that
|2 sin(θ)+ μ(1 − t2)| < 2t. Further, we may write X = ω1E1 + ω2E2 where E1 and E2 are
complementary orthogonal projections arising from the spectral decomposition of X.

Proof. If ξ ∈ ker(A− B), then Aξ = Bξ and ‖ξ‖ = ‖Aξ‖ = ‖Bξ‖ = t‖ξ‖ a contradiction. So
T = A− B is always invertible. Since det(A− B) is an extreme point of co(�), it possesses
a supporting hyperplane. We choose ω to be a complex number of unit modulus such that the
direction ω det(A− B) is normal to this hyperplane. It is now clear that for every choice of
skew-hermitian P the function

t �→ 	ω̄det(T (t))

det(T )

has a critical point at t = 0. Consequently, 	ω̄u1 = 0. Thus, for all P skew-hermitian, we have

	ω̄ tr(P [T −1, A]) = 0

or equivalently H = ω̄[T −1, A] is hermitian. Letting X = t−1BA−1, Y = X� = t−1A−1B =
A−1XA we may rewrite H = H� as

ω̄
(
(I − tX)−1 − (I − tY )−1) = ω

(
(I − tX−1)−1 − (I − tY−1)−1),

or

ω̄(I − tX)−1 − ω(I − tX−1)−1 = ω̄(I − tY )−1 − ω
(
I − tY−1)−1

= A−1(ω̄(I − tX)−1 − ω(I − tX−1)−1)A
so that,[

A, ω̄(I − tX)−1 − ω(I − tX−1)−1] = 0.

We see that the matrix ω̄(I − tX)−1 − ω(I − tX−1)−1 commutes withA and withX are therefore
also withB. Any eigenspace of this operator is necessarily invariant under bothA andB. It follows
that the skew-hermitian operator ω̄(I − tX)−1 − ω(I − tX−1)−1 = iμI for some suitable real
μ. Thus X satisfies the quadratic equation

ω̄(X − tI )− ω(X − tX2) = iμ
( − tI + (1 + t2)X − tX2) (3)

or equivalently

t (iμ+ ω)X2 − i(2 sin(θ)+ μ(1 + t2))X + t (iμ− ω̄)I = 0. (4)

Since X is a unitary, we can therefore write

X = ω1E1 + ω2E2,

whereE1 andE2 are complementary orthogonal projections and ω1 and ω2 are complex numbers
of absolute value 1 and the roots of the Eq. (3) are given by (2). The quantity under the square
root in (2) is non-negative if and only if the roots have equal absolute value. Thus we have

|2 sin(θ)+ μ(1 − t2)| < 2t.

Equal roots are not allowed since thenX is a scalar multiple of the identity, A and B commute
and possess a common non-trivial invariant subspace since n � 2. �

We now tackle the second-order term.
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Proposition 8. With the hypotheses and notations of Proposition 7, we obtain

	ω̄(
u2 − C1 tr((E1Z) ∧ (E1Z))− C2 tr((E2Z) ∧ (E2Z))

) = 0,

where Q = APA−1 and Z = P −Q are skew-hermitian matrices for suitable scalars C1 and
C2.

Proof. The first part of (1) involves

tr
(
T −1[P,A])tr

(
T −1[P,B])

= t tr
(
A−1(I − tX)−1(PA− AP)

)
tr
(
A−1(I − tX)−1(PXA−XAP)

)
= t tr((I − tX)−1Z)tr(X(I − tX)−1Z).

We write (I − tX)−1 = c1E1 + c2E2 where cj = (1 − tωj )
−1 are scalars and we obtain similarly

tX(I − tX)−1 = (c1 − 1)E1 + (c2 − 1)E2. Splitting into main and cross terms we get

tr
(
T −1[P,A])tr

(
T −1[P,B]) = α1 + β1,

where

α1 = c1(c1 − 1)(tr(E1Z))
2 + c2(c2 − 1)(tr(E2Z))

2

and

β1 = (c1(c2 − 1)+ c2(c1 − 1))tr(E1Z)tr(E2Z). (5)

For this term, the key point is that

c1(c2 − 1)+ c2(c1 − 1)= t (ω1 + ω2)

1 − t (ω1 + ω2)+ t2ω1ω2

= i(2 sin(θ)+ μ(1 + t2))

(iμ+ ω)− i(2 sin(θ)+ μ(1 + t2))+ t2(iμ− ω̄)

= iω
2 sin(θ)+ μ(1 + t2)

1 − t2

using expressions forω1 + ω2 andω1ω2 obtained from (4) and using 2i sin(θ) = ω − ω̄. It follows
that (c1(c2 − 1)+ c2(c1 − 1)) is a pure imaginary multiple of ω and since the two remaining
factors in (5) are pure imaginary, it follows that the term β1 is purely tangential (i.e. a real
multiple of u1).

The second part of (1) involves

tr
(
T −1[P,A]T −1[P,B])
= t tr

(
A−1(I − tX)−1(PA− AP)A−1(I − tX)−1(PXA−XAP)

)
= t tr(X(I − tX)−1P(I − tX)−1P)− 2t tr

(
X(I − tX)−1Q(I − tX)−1P

)
+ t tr

(
X(I − tX)−1Q(I − tX)−1Q

)
= α2 + β2,
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where

α2 = c1(c1 − 1)tr(E1PE1P − 2E1QE1P + E1QE1Q)

+ c2(c2 − 1)tr(E2PE2P − 2E2QE2P + E2QE2Q)

= c1(c1 − 1)tr((E1Z)
2)+ c2(c2 − 1)tr((E2Z)

2)

and

β2 = (c1(c2 − 1)+ c2(c1 − 1))(tr(E1PE2P)+ tr(E1QE2Q))

− 2c1(c2 − 1)tr(E2QE1P)− 2c2(c1 − 1)tr(E1QE2P)

and we claim that β2 is again purely tangential. First we remark that

tr(E1PE2P) = tr(E1P(I − E1)P ) = tr(E1P
2)− tr

(
(E1PE1)

2)
and similarly tr(E1QE2Q) are real, that tr(E2QE1P) and tr(E1QE2P) are complex conjugates
and that

c1(c2 − 1)− c2(c1 − 1) = ±ω
√

4t2 − (2 sin(θ)+ μ(1 − t2))2

t2 − 1
is aligned normally. Therefore, the second-order term can be written

c1(c1 − 1)tr((E1Z) ∧ (E1Z))+ c2(c2 − 1)tr((E2Z) ∧ (E2Z))+ 1

2
(β1 − β2)

with β1 − β2 purely tangential. Hence the result. �

Proposition 9. With the hypotheses and notations of Proposition 7 and the additional hypothesis
that −1 is not an eigenvalue of A, it follows that det(A− B) is an almost flat extreme point of �.

Proof. Let S be the skew-hermitian logarithm of A with eigenvalues iφj for j = 1, 2, . . . , n
where −� < φj < � for all j . We use the standard notation adS(Q) = SQ−QS to denote the
adjoint representation. We view adS as a linear operator on the space of n× nmatrices. Then adS
is also skew-hermitian and has eigenvalues i(φj − φk) for the n2 values given by 1 � j, k � n.
All of these eigenvalues lie within distance 2� from the origin.

We write S in terms of an orthonormal basis (ej )nj=1 of V which respects the orthogonal sum
V = V1 ⊕ V2 corresponding to the projections E1 and E2:

S =
(
S11 S12
S21 S22

)
,

where S11 and S22 are skew-hermitian and S21 = −S�
12. We have that S12 is non-zero for otherwise

S and X (and therefore also A and B) have a non-trivial invariant subspace which is impossible.
Applying Lemma 6 to R = S12 we construct the skew-hermitian matrix

W =
(

0 iG
iG� 0

)

and it follows that

[S,W ] = Z =
(
Z11 Z12

−Z�
12 Z22

)
,

where Z11 = E1ZE1 and Z22 = E2ZE2 are non-zero rank one skew-hermitian matrices.
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Now define P = ψ(adS)W , where ψ(z) = z
1−ez has a power series in z with radius of con-

vergence 2�. It follows that

P − APA−1 = P − eSP e−S = (
I − eadS

)
P = adSW = Z,

using the standard relation between the adjoint representations of GL(n,C) and its Lie algebra,
see Varadarajan [9, Theorem 2.13.2] for details. For this choice of P , the quadratic term is purely
tangential and the linear term is non-zero since

tr(T −1[P,A])= tr((I − tX)−1Z) = tr((c1E1 + c2E2)Z)

= (c1 − c2)tr(E1Z) = (c1 − c2)tr(Z11) /= 0

since c1 /= c2 and tr(Z11) /= 0. Thus there is a curve segment lying entirely in � with zero curvature
at det(A− B). �

Proof of Theorem 2. We prove the result by strong induction on n. For n = 1 and n = 2 the
result is easy to verify by direct calculation.

Let n � 3 and t, s � 0. We suppose that |a1| = |a2| = · · · = |an| = s and |b1| = |b2| = · · · =
|bn| = t . We consider Conjecture 1 in this case. If t = 0 or s = 0 the result is obvious. If t = s, then
the result of [1] applies (or we may perturb t and s and apply a limiting argument). Rescaling the
problem and interchanging A and B if necessary, we can suppose that s = 1 and that 0 < t < 1.
It suffices to suppose that the sets {−1, a1, . . . , an} and {b1, . . . , bn} have distinct elements since
the general case can be obtained from this one by perturbation and continuity.

Now suppose that � �⊆ �0. Then it follows from Lemma 4 that there is an extreme point
z of co(�) which is not almost flat and such that z /∈ �0. Let A and B be the corresponding
matrices. Applying Propositions 7–9, we can conclude that A and B possess a common non-
trivial invariant linear subspace. The orthogonal complement is also simultaneously invariant.
The fact that the eigenvalue sets consist of distinct elements allows the matrices (or rather the
corresponding operators) to be decomposed simultaneously on spaces of lower dimension. This
allows a contradiction to be established from the strong induction hypothesis. Hence � ⊆ �0 as
required. �
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