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Abstract Cell death in yeast (Saccharomyces cerevisiae) in-
volves several apoptotic processes. Here, we report the first evi-
dence of the following processes, which are also characteristic of
apoptosis, in ethanol-induced cell death in yeast: chromatin con-
densation and fragmentation, DNA cleavage, and a requirement
for de novo protein synthesis. Mitochondrial fission protein, Fis1,
appears to mediate ethanol-induced apoptosis and ethanol-in-
duced mitochondrial fragmentation. However, mitochondrial
fragmentation in response to elevated ethanol levels was not cor-
related with cell death. Further, in the presence of ethanol, gen-
eration of reactive oxygen species was elevated in mutant fis1D
cells. Our characterization of ethanol-induced cell death in yeast
as being Fis1-mediated apoptosis is likely to pave the way to
overcoming limitations in large-scale fermentation processes,
such as those employed in the production of alcoholic beverages
and ethanol-based biofuels.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Ethanol is the most important fermentation product on

earth. It is utilized in many aspects of human life, including

consumption of alcohol beverages and use of ethanol-based

biofuels. However, efficient ethanol production faces a bottle

neck in that the yeast Saccharomyces cerevisiae commonly

used for fermentation dies when ethanol levels exceed a certain

concentration. For these reasons, then, elucidation of ethanol-

induced cell death in yeast is likely to have a significant impact

on the fermentation industry.

Cell death can be divided into two main categories, necrosis

and apoptosis [35]. Whereas necrosis is a catastrophic ‘‘death

by assault’’, apoptosis can be thought of as an altruistic death,

in which a cell positively executes death. Multicellular organ-
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isms utilize apoptosis for a variety of biological programs,

including in development and disease prevention, and defects

in apoptotic programs in multicellular organisms can lead to

diseases like cancer. Although the yeast S. cerevisiae is an uni-

cellular organism, there are compelling evidences that yeast

can undergo altruistic programmed cell death similar to apop-

tosis [1–4,33,34]. To date, the stimuli reported to induce this

type of cell death in yeast include hydrogen peroxide, acetic

acid [5,6], high osmotic shock [7], viruses [8], pheromone

[9,40] and defects in N-glycosylation [10].

In yeast, ethanol has an effect on many different cellular

behaviors and processes related to cell death, including the

stress responses [11], changes in membrane fluidity [12], pro-

tein structure [13] and mRNA export from the nucleus [14].

Despite the importance of ethanol-induced death to the fer-

mentation industry, no previous report has explored possibility

that ethanol-induced cell death in yeast is carried out via apop-

tosis program. Here, we provide evidences that ethanol-in-

duced cell death exhibits features in common with apoptosis.

Moreover, we show that ethanol-induced yeast cell death is

mediated by mitochondrial fission protein Fis1.
2. Materials and methods

2.1. Yeast strains
S. cerevisiae strains BY4743 (MATa/a his3 D 1/his3 D 1 leu2 D 0/leu2

D 0 MET15/met15 D 0 LYS2/lys2 D 0 ura3 D 0/ura3 D 0) and its disrup-
tants were obtained from Euroscarf. Cells expressing mitochondria-
targeted GFP (mito-GFP) [15,16] were grown in SD-Leu. Other cells
were incubated in YPD containing 2% yeast peptone, 1% bactopep-
tone and 2% glucose. Unless otherwise indicated, cells were inoculated
from an overnight culture to a fresh medium at OD660 = 0.1, and then
incubated at 30 �C for 24 h with shaking before being harvested for
specific assays.

2.2. Survival assay
Yeast cells were incubated overnight in YPD, inoculated to a fresh

YPD medium at OD660 of 0.1, incubated at 30 �C for 24 h, treated with
21% or 23% of ethanol, diluted in sterile deionized water at 10�4,
spread onto YPD plates, and colony forming unit (cfu) was deter-
mined. Cfus of the ethanol-treated cells were compared with those just
before ethanol treatment and expressed as survival (cfu%). The sur-
vival ratios were expressed as mean values with standard error of mean
(S.E.M.) of at lease three independent experiments.

2.3. Microscopy
Digital fluorescence and differential interference contrast (DIC)

images of cells were acquired using a Nikon Eclipse E800 microscope
(Nikon) equipped with DIC optics with epifluorescence capabilities,
blished by Elsevier B.V. All rights reserved.
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and a Nikon Plan-Apo 100·/1.4D Oil DIC objective. Nikon filter sets
(excitation/beamsplitter/emission) were BP 460-500/FT 505/BP 510-
560 for GFP single imaging; and BP 340-380/FT 400/BP 435-485 for
4,6 0-diaminidino-2-phenylindole (DAPI, Wako) imaging, respectively.
Images were captured using a Hamamatsu ORCA-ER monochrome
digital camera and processed using the Hamamatsu Aqua Lite 1.2 pro-
cessing and analysis system. At least 200 cells were counted to deter-
mine the mitochondrial morphology.

2.4. Reactive oxygen species (ROS) detection
For ROS detection, ethanol-treated cells were harvested by centrifu-

gation at 5 krpm for 5 min, resuspended in sterile deionized water, cen-
trifuged at 5 krpm for 5 min, resuspended in 10 lg/ml 2 0,7 0-
dichlorodihydrofluorescein diacatate (H2DCF-DA, Molecular Probes)
dissolved in sterile deionized water from a stock solution of 2.5 mg/ml
in ethanol so that the cell concentration becomes approximately
5 · 106 cells in 1 ml and incubated for 2 h at room temperature (RT)
in the dark (modified from [5,39,40]). FACS analysis was performed
using a Becton Coulter Epics Elite ESP equipped with a 488 nm argon
laser, and emission signals were 525–550 nm.

2.5. Pulse field gel electrophoresis (PFGE)
Yeast cells were fixed with 3.7% (v/v) formaldehyde for 1 h and sus-

pended in 1 ml of 50 mM EDTA (pH 8.0) to 109 cells/ml. This suspen-
sion was mixed with 1 ml of 250–500 lg/ml zymolyase 100 T
(Seikagaku kogyo) and 0.5 M EDTA (pH 8.0) and 2 ml of 2% low
melting agarose (BMC InCert), 125 mM EDTA (pH 8.0) and 0.5 M
Tris–HCl (pH 7.5). The mixture was allowed to solidify in a Plug Mold
(BIO RAD). The gels were incubated in 3.7 ml of 0.5 M EDTA,
50 mM Tris–HCl (pH 7.5)and 0.3 ml of 7.5% (v/v) b-mercaptoethanol
for 3 h at 37 �C to turn to protoplast and successively in 4 ml of 0.5 M
EDTA, 50 mM Tris–HCl (pH 7.5) containing 1% N-lauroylsarconic
acid and 0.1 mg/ml Proteinase K at 50 �C for 3 h. The buffer was re-
placed with a fresh buffer and the sample was incubated at 50 �C for
another 12–16 h. The gel was incubated at 50 �C for 1 h in 50 volumes
of buffer containing 50 mM EDTA, 10 mM Tris–HCl (pH 7.6) and
40 lg/ml phenylmethylsulfonyl fluoride. The buffer was replaced and
the gel was incubated for another 1 h at 50 �C. The buffer was replaced
again and incubated at room temperature for 1 h. The gel was set in
the 1% agarose gel, and PFGE was performed with CHEF-DRII
(BIO RAD). The conditions for the electrophoresis was initial A time
– 60 s, final A time – 60 s, START RATIO – 1, RUN TIME – 15 h,
mode – 10, initial A time – 90 s, final A time – 90 s, RUN TIME –
8 h, mode – 10, 200 V, 23 h. The gel was stained with 50 lM ethidium
bromide for 30 min and visualized by UV.

2.6. Test of apoptotic markers
TdT-mediated dUTP-biotin Nick End Labeling (TUNEL) staining

was performed essentially as previously described [17]. Briefly, cells
were fixed with 3.7% (v/v) formaldehyde for 1 h, treated with Zymoly-
ase 20 T (650 lg/ml, Seikagaku kogyo) and 15 ll/200 ll b-glucuroni-
dase (Roche diagnostics) at 37 �C for 40 min in 200 ll sorbitol buffer
(1.2 M sorbitol, 0.5 mM MgCl2, 35 mM potassium phosphate buffer
(pH 7.3)), washed twice with PBS, applied to poly-lysin coated glass
slide, permeablized with 0.1% Triton X-100 and 0.1% citric acid on
ice for 15 min, washed with PBS three times, incubated with TUNEL
staining reaction mixture (in situ cell death detection kit, fluorescein,
Roche diagnostics) at 37 �C for 60 min in the dark, washed six times
with PBS and observed under fluorescent microscope. DAPI staining
was performed by staining cells with 0.3 lg/ml DAPI at RT in the dark
for 10 min, washing with PBS and observing under fluorescent micro-
scope. Propidium iodide (PI) staining was performed by staining cells
with 5 lg/ml PI for 10 min and observing under fluorescent micro-
scope.

2.7. Cycloheximide and caspase inhibitor experiments
Cycloheximide inhibition experiment was performed by incubating

cells with 21% ethanol in the presence or absence of cycloheximide
to a final concentration of 40 lg/ml from 20 mg/ml stock solution in
dimethylsulfoxide, incubated for 3 h, diluted, spread onto YPD plates
and incubated at 30 �C for 2 days. Numbers of colonies were counted
and expressed as cfu. Cfus of cells incubated with both ethanol and
cycloheximide and those incubated with ethanol but not with cyclohex-
imide were compared each time. Caspase inhibition experiment was
performed by incubating cells with 21% ethanol in the presence or ab-
sence of a caspase inhibitor DEVD (Calbiochem, Caspase-3 inhibitor
I, cell permeable) to a final 40 lM from 20 mM stock solution diluted
in 1:1 DMSO to ethanol for 3 h, diluted, spread onto YPD plates and
incubated at 30 �C for 2 days. Numbers of colonies were counted and
expressed as cfu. Cfus of cells incubated with both ethanol and caspase
inhibitor and those incubated with ethanol but not with caspase inhib-
itor were compared each time.
3. Results and discussion

3.1. Ethanol-induced yeast cell death has features common to

apoptosis

We first searched for the optimal condition to investigate

apoptotic features in ethanol-induced cell death of yeast. It

has been reported that apoptotic features in yeast become evi-

dent when the survival rate is 10–20% approximately 3 h after

the stimuli [5,6]. Therefore, we searched for the ethanol-induced

death condition that causes this outcome. Since mitochondrial

pathway plays the central pathway of apoptosis in mammalian

cells [33–37] and in pheromone [29,40], virus [30] and acetic acid

[6]-induced apoptosis in yeast, we adopted cells in the post-dia-

uxic phase to investigate apoptosis in yeast, at which point mito-

chondria are fully developed. As a result, we found that treating

yeast cells with 23% ethanol results in 19.8 ± 5.3% of survival

3 h after the treatment (Fig. 1A). Thus, these conditions were

deemed appropriate for our study and were used for all subse-

quent analyses unless otherwise indicated.

To ask if ethanol-induced cell death of yeast is consistent

with apoptosis, we looked at the morphology of the chromatin

after treatment with ethanol. As shown in Fig. 1B, we found

that like other cell types undergoing apoptosis, ethanol-treated

cells have chromatin condensation and fragmentation. Apop-

totic stimuli have also been reported to cause DNA cleavage

in the nucleus. Thus, we next asked if ethanol-induced yeast

cells are associated with DNA cleavage, which can be revealed

by TUNEL staining and PFGE. We observed TUNEL stain-

ing in 50.6 ± 2.0% of the nucleus of ethanol-treated cells,

which stands for apoptotic cells (Fig. 1C and D), while

33.2 ± 5.1% of the cells showed PI staining, which stands for

necrotic cells [7], indicating that apoptosis rather than necrosis

is the major event in this condition. Moreover, DNA break-

down was observed in ethanol-treated cells as visualized by

PFGE (Fig. 1E), similar to hydrogen peroxide, acetic acid

and glucose-induced apoptosis [18]. Together, these results

indicate that DNA cleavage has occurred in the nucleus of

these cells.

Another feature of apoptosis is that it requires de novo pro-

tein synthesis. To test this, we investigated the effect of inhibi-

tion of protein synthesis via cycloheximide on ethanol-induced

death. After incubating the cells from OD660 = 0.1 for 24 h at

30 �C, cells were incubated with 21% ethanol in the existence

or absence of 40 lg/ml cycloheximide for 3 h, and cfus were

determined. Cfus of cycloheximide-treated and untreated sam-

ples were compared each time. Consistent with the existence of

apoptotic programs [5,6], ethanol- and cycloheximide-treated

cells showed an increased number of cfu (123.5 ± 8.7%

(n = 5)) as compared to ethanol-treated but cycloheximide-un-

treated cells, suggesting that de novo protein synthesis partially

contributes to cell death in response to ethanol. Taken to-

gether, these results indicate that ethanol-induced death exhib-

its several features of apoptosis.



23%

ethanol

NT

DIC DAPI

DIC DAPI TUNEL

NT

23%

ethanol

A

B

C

NT 23%

WT
NT

WT
23%

ethanol

ethanol

Fig. 1. Ethanol-induced yeast cell death exhibits features of apoptosis.
(A) Survival curve of WT cells treated with 23% ethanol for various
time periods. (B) DAPI staining of WT cells incubated for 3 h in the
presence or absence of 23% ethanol. (C) TUNEL staining of WT cells
incubated for 3 h in the presence or absence of 23% ethanol. (D) The
ratio of dead, TUNEL- and PI-positive cells of WT cells cell incubated
for 3 h in the presence or absence of 23% ethanol. Dead cells were
determined by cfu. Mean values ± S.E.M., or representatives of at least
three independent experiments are shown. (E) PFGE analysis of the
chromosomes of cells treated with or without 23% ethanol for 3 h.
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3.2. Fis1 inhibits apoptotic cell death by ethanol

We next asked if factors known to be involved in apoptosis

caused by other death stimulus [1] are also involved in etha-

nol-induced cell death. To do this, we investigated the possi-

bility that mutations in the following genes affect ethanol-

induced cell death: YCA1, which encodes a mammalian cas-

pase homolog [19]: AIF1, which encodes a yeast homolog

of mammalian apoptosis-inducing factor [20]: CYC3, which

encodes cytochrome c heme-lyase. This protein is required

for the covalent binding of the heme group to isoforms 1

and 2 of apocytochrome c to form mature cytochrome c

[22], which is released from mitochondria to cause apoptosis

[6]. MDV1, DNM1 and FIS1, which encode mitochondrial

fission proteins [21,31,32]: NUC1, which encodes a yeast

homolog of endonuclease G responsible for execution of

apoptosis [41]. Cells were incubated in YPD for 24 h, treated

with 21% ethanol for 3 h, and cfus were determined. The ra-

tio of the cfu of cells after ethanol treatment relative to that

just before ethanol treatment was expressed as the survival

(cfu%). With a notable exception of fis1D and nuc1D, none

of the mutations had a significant effect on sensitivity to eth-

anol (Fig. 2A). For the exception, fis1D and nuc1D exhibited

significantly increased sensitivity to ethanol as compared to

WT. The survival rate of fis1D cells treated with 21% ethanol

after 3 h of incubation was 11.1 ± 2.6% (Fig. 2B), which is

consistent with the survival rate for apoptosis [5,6], suggesting

that fis1D dies from ethanol-induced apoptosis. Indeed, fis1D
cells treated with ethanol at 21% for 3 h exhibited several

apoptotic features, including chromatin condensation

(Fig. 2C) fragmentation and DNA cleavage (50.7 ± 4.8% TU-

NEL-positive) (Fig. 2D and E), and DNA breakdown (data

not shown). To determine if de novo protein synthesis is in-

volved in ethanol-induced death in fis1D cells, fis1D cells were

incubated from OD660 = 0.1 at 30 �C for 24 h, treated with

21% ethanol in the existence or absence of 40 lg/ml cyclohex-

imide for 3 h and cfus were determined. Cfus of cyclohexi-

mide-treated and untreated samples were compared each

time. Ethanol- and cycloheximide-treated cells showed higher

rate of survival relative to ethanol-treated but cycloheximide-

untreated cells (cycloheximide-treated cells exhibited

257.3 ± 93.4% (n = 4) increased colony formation relative to

cycloheximide-untreated cells), suggesting that de novo pro-

tein synthesis is involved in ethanol-induced death of fis1D
in this condition. To determine if caspase is involved in eth-

anol-induced death of fis1D, fis1D cells treated with 21% eth-

anol for 3 h in the existence or absence of the 40 lM caspase

inhibitor DEVD for mammalian effecter caspase and cfus

were determined. Cfus of DEVD-treated and untreated sam-

ples were determined and compared each time. Ethanol- and

DEVD-treated cells showed higher rate of survival relative to

ethanol-treated but DEVD-untreated cells (DEVD-treated

cells exhibited 186.5% ± 21.8% (n = 3) increased colony for-

mation relative to DEVD-untreated cells). These results sug-

gest that ethanol-induced death of fis1D requires caspase

activity. Taken together, these results indicate that Fis1 inhib-

its ethanol-induced apoptosis. nuc1D, which is deleted for

endonuclease G, was also sensitive to ethanol (Fig. 2A),

which is consistent with the reported sensitivity of nuc1D to

hydrogen peroxide, acetic acid and amiodarone [41], suggest-

ing that similar apoptotic programs involving endonuclease G

is shared among ethanol-, hydrogen peroxide-, acetic acid-

and amiodarone-induced apoptosis.
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Fig. 2. The Fis1 pathway is involved in ethanol-induced yeast apoptosis. (A) Ethanol sensitivity of mutant strains with deletions in known apoptosis-
related genes. Cells were treated with the 21% ethanol at RT for 3 h and the numbers of cfu were determined. The ratio of cfu after ethanol treatment
relative to that before treatment is expressed as survival (cfu%). (B) Survival curve of WT and fis1D treated with 21% ethanol for various time
periods. (C) DAPI staining of fis1D cells incubated for 3 h in the presence or absence of 21% ethanol. (D) TUNEL staining of fis1D cell incubated for
3 h in the presence or absence of 21% ethanol. (E) The ratio of TUNEL positive cells in fis1D incubated for 3 h in the presence or absence of 21%
ethanol. Mean values ± S.E.M., or representatives of at least three independent experiments are shown.
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3.3. Ethanol induces mitochondrial fragmentation

As Fis1 has been shown to be involved in mitochondrial frag-

mentation and mitochondrial fragmentation is an early maker of

apoptosis in mammalian cells [23], we hypothesized that Fis1

mediates apoptosis in ethanol-treated yeast cells via regulation

of mitochondrial fragmentation. To verify this hypothesis, mito-
chondria were visualized using a mitochondria-localized GFP

marker (mito-GFP) [15,16]. Yeast cells with mito-GFP were trea-

ted with various concentrations of ethanol for 30 min. Using the

marker, we observed that mitochondria were fragmented in re-

sponse to 6%, 10% and 15% ethanol (Fig. 3A), clearly indicating

that ethanol is a potent inducer of mitochondrial fragmentation.
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3.4. Fis1 is required for mitochondrial fragmentation in response

to ethanol

In order to help determine if Fis1 is required for mitochon-

drial fragmentation in response to ethanol, we next asked if

mitochondrial fragmentation in response to ethanol is different

from WT in the fis1D, or in mutant strains of other mitochon-

drial fission genes, dnm1D and mdv1D. In WT, dnm1D and

mdv1D, mitochondrial fragmentation is observed after ethanol

treatment (Fig. 3B). By contrast, treatment with ethanol does

not cause mitochondrial fragmentation in fis1D (Fig. 3B), indi-

cating that Fis1 is required for mitochondrial fragmentation in

response to ethanol.

To explore the potential link between mitochondrial frag-

mentation and ethanol-induced death, the relationship be-

tween these two phenomena in this condition was

investigated. Notably, treatment with 15% ethanol for

15 min is sufficient to induce mitochondrial fragmentation,
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Fig. 3. Fis1 is required for mitochondrial fragmentation in response to et
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but even after 60 min, 15% ethanol treatment does not result

in cell death in WT or fis1D cells (Fig. 3C and D). Thus, mito-

chondrial fragmentation in response to ethanol is mediated by

Fis1, but this mitochondrial fragmentation does not directly

correlate with cell death.

3.5. Fis1 decreases ethanol-induced generation of ROS

Next, we hypothesized that Fis1 inhibits ethanol-induced

apoptosis via a decrease in ROS generation, as the results of

previous studies indicate that ROS generation is coupled to

yeast apoptosis [6,7,29,39], Fis1 functions as a Bcl2-like pro-

tein in yeast [24,30], and Bcl2 functions to block generation

of ROS in mammalian neural cells [25]. To test this, cells were

treated with or without 21% or 23% ethanol for 3 h, mixed

with ROS indicator H2DCF-DA and subjected to FACS anal-

ysis (Fig. 4). The cells that were not treated with H2DCF-DA

showed background autofluorescence and thus, the difference
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in fluorescence between H2DCF-DA-treated and untreated

cells were used for intracellular ROS levels. Although etha-

nol-treated WT cells did not show a significant increase in

the amount of ROS, both 21% and 23% ethanol-treated fis1D
cells had significantly increased ROS amount. These results

suggest that Fis1 indeed decreases the amount of intracellular

ROS to inhibit apoptosis in response to ethanol. Consistent

with the role of ROS in ethanol-induced apoptosis, gene dis-

ruptants for SOD1, SOD2 and GSH1, which encode for pro-

teins required for molecular defence against ROS (cytosolic

superoxide dismutase [42], mitochondrial superoxide dismu-

tase [43] and gamma-glutamylcysteine synthetase [44], respec-

tively), exhibited decreased survival in response to treatment

with 21% ethanol for 3 h (9.9 ± 5.6%, 17.1 ± 1.1%, and

25.7 ± 1.6%, respectively, relative to 53.0 ± 6.6% of WT). To-

gether, these results suggest that Fis1 normally acts to reduce

the level of ROS generation induced in response to ethanol

and ROS generated in response to ethanol play significant

roles in apoptosis.

From the results obtained in this study, the following model

is proposed. As mitochondria sense the ethanol, they fragment

in a Fis1-dependent manner. Eventually, ethanol induces gen-

eration of ROS, which appears to be mitigated directly or indi-

rectly via the activity of Fis1. Finally, generated ROS induce
apoptotic programs, including protein synthesis-dependent

induction of chromatin condensation and fragmentation and

DNA cleavage.
3.6. The mechanism of mitochondrial fragmentation in different

situations

Several stimuli have been reported to cause mitochondrial

fragmentation in yeast including acetic acid [24] and phero-

mone treatment [38], and involvement of mitochondrial path-

way in yeast apoptotic program in response to these stimuli

have been reported [6,29]. However, there are several discrep-

ancies between the reported results and the results obtained in

this study. For example, while this report elucidated that Fis1

is required for mitochondrial fragmentation which occurs

upon treatment with 15% ethanol for 30 min, mitochondrial

fragmentation which occurs upon treatment with 100 mM ace-

tic acid for 3 h did not require Fis1 [24]. However, when we

treated the fis1D cells with 100 mM acetic acid for 30 min,

mitochondrial fragmentation was not observed (data not

shown). This result suggests that the mechanism by which

mitochondria fragment in response to apoptotic stimuli de-

pends on the time span of treatment, and indicates that Fis1

is indeed required for mitochondrial fragmentation which
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occurs within short time span (30 min) after treatment with

apoptotic stimuli. Moreover, while dnm1D and mdv1D were

resistant to acetic acid and heat shock in the previous report

[24], the ethanol sensitivities of these mutants were not signif-

icantly altered in this report. This difference suggests that the

roles of mitochondrial fragmentation machinery in apoptosis

depend on the forms of apoptosis, which should be clarified

in the future research.
3.7. The involvement of mitochondria in ethanol-tolerance

mechanism

The results of genome-scale screens have revealed roles for a

large numbers of mitochondrial genes in the ethanol tolerance

of yeast [11]. However, the concrete mechanism of the involve-

ment of mitochondria in ethanol tolerance has not previously

been elucidated. The results in this report may help elucidate

the involvement of mitochondrial function in ethanol toler-

ance. For example, one possible reason might be that mito-

chondrial membrane is differently affected by ethanol, as a

result of the fact that the mitochondria has membrane lipid

profiles that is quite different from the membranes of other

organelles [26].
3.8. The involvement of ROS in ethanol-induced apoptosis

ROS have been reported to be involved in many forms of

apoptosis in yeast [6,7,29,39], and our model that ROS are in-

volved in ethanol-induced apoptosis is consistent with the re-

sults from previous reports which studied the effect of

ethanol on yeast cells. For example, loss of superoxide dismu-

tase rendered yeast cells ethanol sensitive [27], suggesting that

antioxidative activity of superoxide dismutase protects cells

from ROS induced by ethanol. Moreover, a previous study re-

ported from microarray analysis that the genes involved in

antioxidant defense are upregulated in response to ethanol

[28]. Together with the data elucidated in this report, these evi-

dences strengthen our model that ROS are generated in re-

sponse to ethanol to cause apoptosis.

In summary, we characterized ethanol-induced cell death in

yeast in comparison with apoptosis in yeast and other cell

types and found that ethanol-induced apoptosis is mediated

by the mitochondrial fission pathway. It seems likely that these

results will provide insights into improving the fermentation

process that will be highly relevant to the large alcohol bever-

age and bio-ethanol industries, including strategies for molec-

ular genetic manipulation of yeast strains.
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Hyperosmotic stress induces metacaspase- and mitochondria-
dependent apoptosis in Saccharomyces cerevisiae. Mol. Microbiol.
58, 824–834.

[8] Ivanovska, I. and Hardwick, J.M. (2005) Viruses activate a
genetically conserved cell death pathway in a unicellular organ-
ism. J. Cell Biol. 170, 391–399.

[9] Severin, F.F. and Hyman, A.A. (2002) Pheromone induces
programmed cell death in S. cerevisiae. Curr. Biol. 12, R233–
R235.

[10] Hauptmann, P., Riel, C., Kunz-Schughart, L.A., Frohlich, K.U.,
Madeo, F. and Lehle, L. (2006) Defects in N-glycosylation induce
apoptosis in yeast. Mol. Microbiol. 59, 765–778.

[11] van Voorst, F., Houghton-Larsen, J., Jonson, L., Kielland-
Brandt, M.C. and Brandt, A. (2006) Genome-wide identification
of genes required for growth of Saccharomyces cerevisiae under
ethanol stress. Yeast 23, 351–359.

[12] You, K.M., Rosenfield, C.L. and Knipple, D.C. (2003) Ethanol
tolerance in the yeast Saccharomyces cerevisiae is dependent on
cellular oleic acid content. Appl. Environ. Microbiol. 69, 1499–
1503.

[13] Sanchez, Y., Taulien, J., Borkovich, K.A. and Lindquist, S. (1992)
Hsp104 is required for tolerance to many forms of stress. EMBO
J. 11, 2357–2364.

[14] Takemura, R., Inoue, Y. and Izawa, S. (2004) Stress response in
yeast mRNA export factor: reversible changes in Rat8p localiza-
tion are caused by ethanol stress but not heat shock. J. Cell Sci.
117, 4189–4197.

[15] Kondo-Okamoto, N., Ohkuni, K., Kitagawa, K., McCaffery,
J.M., Shaw, J.M. and Okamoto, K. (2006) The novel F-box
protein Mfb1p regulates mitochondrial connectivity and exhibits
asymmetric localization in yeast. Mol. Biol. Cell 17, 3756–3767.

[16] Westermann, B. and Neupert, W. (2000) Mitochondria-targeted
green fluorescent proteins: convenient tools for the study of
organelle biogenesis in Saccharomyces cerevisiae. Yeast 16, 1421–
1427.

[17] Madeo, F., Frohlich, E. and Frohlich, K.U. (1997) A yeast
mutant showing diagnostic markers of early and late apoptosis. J.
Cell Biol. 139, 729–734.

[18] Ribeiro, G.F., Corte-Real, M. and Johansson, B. (2006) Charac-
terization of DNA damage in yeast apoptosis induced by
hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol.
Biol. Cell 17, 4584–4591.

[19] Madeo, F., Herker, E., Maldener, C., Wissing, S., Lachelt, S.,
Herlan, M., Fehr, M., Lauber, K., Sigrist, S.J., Wesselborg, S.
and Frohlich, K.U. (2002) A caspase-related protease regulates
apoptosis in yeast. Mol. Cell 9, 911–917.

[20] Wissing, S. et al. (2004) An AIF orthologue regulates apoptosis
in yeast. J. Cell Biol. 166, 969–974.

[21] Cerveny, K.L. and Jensen, R.E. (2003) The WD-repeats of Net2p
interact with Dnm1p and Fis1p to regulate division of mitochon-
dria. Mol. Biol. Cell 14, 4126–4139.

[22] Dumont, M.E., Ernst, J.F., Hampsey, D.M. and Sherman, F.
(1987) Identification and sequence of the gene encoding cyto-
chrome c heme lyase in the yeast Saccharomyces cerevisiae.
EMBO J. 6, 235–241.

[23] Cereghetti, G.M. and Scorrano, L. (2006) The many shapes of
mitochondrial death. Oncogene 25, 4717–4724.

[24] Fannjiang, Y., Cheng, W.C., Lee, S.J., Qi, B., Pevsner, J.,
McCaffery, J.M., Hill, R.B., Basanez, G. and Hardwick, J.M.
(2004) Mitochondrial fission proteins regulate programmed cell
death in yeast. Genes Dev. 18, 2785–2797.



2942 H. Kitagaki et al. / FEBS Letters 581 (2007) 2935–2942
[25] Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B.,
Valentine, J.S., Ord, T. and Bredesen, D.E. (1993) Bcl-2 inhibition
of neural death: decreased generation of reactive oxygen species.
Science 262, 1274–1277.

[26] Chicco, A.J. and Sparagna, G.C. (2007) Role of cardiolipin
alterations in mitochondrial dysfunction and disease. Am. J.
Physiol. Cell Physiol. 292, C33–C44.

[27] Costa, V., Amorim, M.A., Reis, E., Quintanilha, A. and
Moradas-Ferreira, P. (1997) Mitochondrial superoxide dismutase
is essential for ethanol tolerance of Saccharomyces cerevisiae in
the post-diauxic phase. Microbiology 143, 1649–1656.

[28] Alexandre, H., Ansanay-Galeote, V., Dequin, S. and Blondin, B.
(2001) Global gene expression during short-term ethanol stress in
Saccharomyces cerevisiae. FEBS Lett. 498, 98–103.

[29] Pozniakovsky, A.I., Knorre, D.A., Markova, O.V., Hyman, A.A.,
Skulachev, V.P. and Severin, F.F. (2005) Role of mitochondria in
the pheromone- and amiodarone-induced programmed death of
yeast. J. Cell Biol. 168, 257–269.

[30] Reiter, J., Herker, E., Madeo, F. and Schmitt, M.J. (2005) Viral
killer toxins induce caspase-mediated apoptosis in yeast. J. Cell
Biol. 168, 353–358.

[31] Tieu, Q. and Nunnari, J. (2000) Mdv1p is a WD repeat protein
that interacts with the dynamin-related GTPase, Dnm1p, to
trigger mitochondrial division. J. Cell Biol. 151, 353–366.

[32] Tieu, Q., Okreglak, V., Naylor, K. and Nunnari, J. (2002) The
WD repeat protein, Mdv1p, functions as a molecular adaptor by
interacting with Dnm1p and Fis1p during mitochondrial fission.
J. Cell Biol. 158, 445–452.

[33] Skulachev, V.P. (2002) Programmed death phenomena: from
organelle to organism. Ann. NY Acad. Sci. 959, 214–237.

[34] Skulachev, V.P. (2002) Programmed death in yeast as adaptation?
FEBS Lett. 528, 23–26.

[35] Longo, V.D., Mitteldorf, J. and Skulachev, V.P. (2005) Pro-
grammed and altruistic ageing. Nat. Rev. Genet. 6, 866–872.
[36] Skulachev, V.P. (2005) How to clean the dirtiest place in the cell:
cationic antioxidants as intramitochondrial ROS scavengers.
IUBMB Life 57, 305–310.

[37] Skulachev, V.P. (2006) Bioenergetic aspects of apoptosis, necrosis
and mitoptosis. Apoptosis 11, 473–485.

[38] Neutzner, A. and Youle, R.J. (2005) Instability of the mitofusin
Fzo1 regulates mitochondrial morphology during the mating
response of the yeast Saccharomyces cerevisiae. J. Biol. Chem.
280, 18598–18603.

[39] Gourlay, C.W. and Ayscough, K.R. (2005) Identification of an
upstream regulatory pathway controlling actin-mediated apopto-
sis in yeast. J. Cell Sci. 118, 2119–2132.

[40] Zhang, N.N., Dudgeon, D.D., Paliwal, S., Levchenko, A., Grote,
E. and Cunningham, K.W. (2006) Multiple signaling pathways
regulate yeast cell death during the response to mating phero-
mones. Mol. Biol. Cell. 17, 3409–3422.

[41] Buttner, S., Eisenberg, T., Carmona-Gutierrez, D., Ruli, D.,
Knauer, H., Ruckenstuhl, C., Sigrist, C., Wissing, S., Kollroser,
M., Frohlich, K.U., Sigrist, S. and Madeo, F. (2007) Endonucle-
ase G regulates budding yeast life and death. Mol. Cell. 25, 233–
246.

[42] Sturtz, L.A., Diekert, K., Jensen, L.T., Lill, R. and Culotta, V.C.
(2001) A fraction of yeast Cu,Zn-superoxide dismutase and its
metallochaperone, CCS, localize to the intermembrane space of
mitochondria. A physiological role for SOD1 in guarding against
mitochondrial oxidative damage. J. Biol. Chem. 276, 38084–
38089.

[43] van Loon, A.P., Pesold-Hurt, B. and Schatz, G. (1986) A yeast
mutant lacking mitochondrial manganese-superoxide dismutase is
hypersensitive to oxygen. Proc. Natl. Acad. Sci. USA 83, 3820–
3824.

[44] Ohtake, Y. and Yabuuchi, S. (1991) Molecular cloning of the
gamma-glutamylcysteine synthetase gene of Saccharomyces cere-
visiae. Yeast 7, 953–961.


	Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway
	Introduction
	Materials and methods
	Yeast strains
	Survival assay
	Microscopy
	Reactive oxygen species (ROS) detection
	Pulse field gel electrophoresis (PFGE)
	Test of apoptotic markers
	Cycloheximide and caspase inhibitor experiments

	Results and discussion
	Ethanol-induced yeast cell death has features common to apoptosis
	Fis1 inhibits apoptotic cell death by ethanol
	Ethanol induces mitochondrial fragmentation
	Fis1 is required for mitochondrial fragmentation in response to ethanol
	Fis1 decreases ethanol-induced generation of ROS
	The mechanism of mitochondrial fragmentation in different situations
	The involvement of mitochondria in ethanol-tolerance mechanism
	The involvement of ROS in ethanol-induced apoptosis

	Acknowledgement
	References


