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SUMMARY

Gene regulatory networks (GRNs) comprising inter-
actions between transcription factors (TFs) and reg-
ulatory loci control development and physiology.
Numerous disease-associated mutations have been
identified, the vast majority residing in non-coding
regions of the genome. As current GRN mapping
methods test one TF at a time and require the use
of cells harboring the mutation(s) of interest, they
are not suitable to identify TFs that bind to wild-
type and mutant loci. Here, we use gene-centered
yeast one-hybrid (eY1H) assays to interrogate bind-
ing of 1,086 human TFs to 246 enhancers, as well
as to 109 non-coding disease mutations. We detect
both loss and gain of TF interactions with mutant
loci that are concordant with target gene expression
changes. This work establishes eY1H assays as a
powerful addition to the toolkit of mapping human
GRNs and for the high-throughput characterization
of genomic variants that are rapidly being identified
by genome-wide association studies.

INTRODUCTION

Gene regulatory networks (GRNs) comprising physical and

functional interactions between transcription factors (TFs) and

regulatory elements play a critical role in development and phys-

iology (Davidson et al., 2002; Walhout, 2006). Consequently,

inappropriate gene regulation underlies a variety of human dis-

eases. A broad variety of disease-associated mutations have

been uncovered, including mutations in TF-encoding genes as

well as mutations in non-coding sequences such as enhancers

and promoters. Importantly, �90% of disease-associated vari-

ants identified by genome-wide association studies (GWAS)

reside in the non-coding part of the genome (Hindorff et al.,

2009;Maurano et al., 2012), and amain challenge is to determine

the interactions with TFs that may be perturbed as a conse-

quence of such mutations.

TF-DNA interactions can be mapped with either ‘‘TF-

centered’’ (protein-to-DNA) or ‘‘gene-centered’’ (DNA-to-pro-

tein) methods (Figure 1A) (Arda and Walhout, 2009; Deplancke
et al., 2006). Chromatin immunoprecipitation (ChIP) is the most

widely used TF-centered method to identify the DNA regions

with which a TF interacts in vivo. The last decade has seen an

explosion of ChIP data. While progress has been impressive,

several challenges remain. First, even for large consortia such

as ENCODE, ChIP data have been generated for only �150 of

the �1,500 human TFs (Gerstein et al., 2012). This is because

ChIP critically depends on suitable anti-TF antibodies, which

are only available for a minority of human TFs. Second, each

TF has been assayed only in a limited number of cell lines and

conditions. Third, ChIP may work better for some TFs than for

others. For instance, TFs with restricted expression patterns

and/or expressed at low levels may be less amenable to ChIP

compared to highly and broadly expressed TFs. Fourth, ChIP

is not optimal for characterizing disease-associated mutations

in large-scale, high-throughput settings, because it requires dis-

ease cells or tissues that harbor the relevant mutation, which

may be difficult to obtain. Finally, ChIP cannot be used to identify

TFs with altered binding to mutant regulatory regions ab initio

because the method is TF-centered and as a result one needs

to first identify candidate TFs and then test these one at a time.

Enhanced yeast one-hybrid (eY1H) assays provide a gene-

centered method for the detection and identification of TF-

DNA interactions (Reece-Hoyes et al., 2011b, 2013; Arda et al.,

2010; Brady et al., 2011; Fuxman Bass et al., 2014; Martinez

et al., 2008). Briefly, eY1H assays measure TF-DNA interactions

in the milieu of the yeast nucleus. DNA regions to be assayed

(DNA baits) are fused upstream of two reporter genes, LacZ

and HIS3, and integrated into the yeast genome, enabling their

incorporation into chromatin. TFs (preys) are introduced into

the DNA bait strains by mating using a robotic platform and

are tested in quadruplicate, providing an inherent interaction

retest (Figure 1B).

Here, we test our human eY1H platform (Reece-Hoyes et al.,

2011a) to identify TFs interacting with human enhancers and to

determine protein-DNA interaction changes caused by mutant

TFs as well as non-coding disease-associated mutations. We

find that eY1H assays more effectively retrieve TFs with limited

expression patterns or levels when compared to ChIP. We

provide examples of functional models of target sharing by

TFs, including redundancy, which may provide robustness and

opposing function (activation versus repression), which can

ascertain proper timing of enhancer activity during development.

Finally, we demonstrate that eY1H assays can be effectively
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Figure 1. Gene-Centered Yeast One-Hybrid Assays

(A) Gene-centered versus TF-centered approaches for mapping protein-DNA interactions. Rectangles, regulatory regions; ellipses, TFs.

(B) Cartoon of eY1H assays. A DNA sequence of interest is cloned upstream of two reporter genes (HIS3 and LacZ) and integrated into the yeast genome (i.e.,

each DNA bait is tested in duplicate by activation of each reporter in the same yeast nucleus). The resulting yeast DNA bait strain is mated to a collection of yeast

strains harboring TFs fused to the Gal4 activation domain (AD). Positive interactions are determined by the ability of the diploid yeast to grow in the absence of

histidine and overcome the addition of 3AT a competitive inhibitor of the HIS3 enzyme and turn blue in the presence of X-gal. Each TF is tested in quadruplicate.

Red boxes show positive interactions.
used to identify changes in TF binding conferred by disease-

associated coding or non-coding mutations.

RESULTS

A Gene-Centered Human TF-Enhancer Interaction
Network
We first focused on a set of human developmental enhancers

that were previously tested for embryonic activity in mouse

transgenic assays at day E11.5 (Table S1) (Visel et al., 2007).

We expanded the human eY1H platform to 1,086 full-length hu-

man TFs (76% of all 1,434) and examined interactions for 360

enhancers. Thus, in total we tested 390,960 putative TF-DNA in-

teractions. To ensure the technical quality of the data, we only

considered interactions in which both eY1H reporters and at

least two of the four colonies of a TF quadrant tested positively.

For themajority of cases, all four colonies scored positively. Lim-

itations and advantages of eY1H data are discussed extensively

below. The resulting TF-enhancer interaction network contains

2,230 interactions between 246 enhancers and 283 TFs (Fig-

ure 2A; Table S2).

We ascertained the quality of the network using several

different metrics. First, we observed a statistically significant

overlap between eY1H interactions and the presence of TF bind-

ing sites, which indicates that most interactions are likely direct

(Figure 2B, p < 0.0001). Second, we found a statistically signifi-

cant overlap between eY1H and ENCODE ChIP interactions

(Gerstein et al., 2012) (Figure 2C, p < 0.0001). Third, TFs that

interact with developmental enhancers are enriched for those

expressed early in development, which is consistent with the

timing of enhancer activity (Figure 2D). Finally, the network is en-

riched for homeodomain TFs, well-known regulators of develop-

mental gene expression (Chi, 2005) (Figure S1). This enrichment
662 Cell 161, 661–673, April 23, 2015 ª2015 Elsevier Inc.
is specific for the developmental enhancers because we did not

observe it with the eY1H data set related to disease mutations

that is discussed below (Figures 2E and S1). The network is

depleted for interactions involving ZF-C2H2 TFs (Figures 2F

and S1), and consistently, these TFs are overall expressed at

later stages in development. Importantly, however, ZF-C2H2

TFs that do interact with the developmental enhancers are ex-

pressed at earlier stages than those that do not (Figure 2D).

To further assess the quality of the network, we reasoned that

if a TF truly binds an enhancer in vivo, the TFwould be expressed

at the same time and place where the enhancer is active. Indeed,

we found a modest but significant overlap between enhancer

activity and spatiotemporal TF expression (Figure 2G). We

wondered if the enrichment was relatively modest because the

TFs identified in eY1H assays are a collection of transcriptional

activators and repressors. We observed a more striking enrich-

ment for known transcriptional activators, while repressors are

not enriched (Figure 2G; Table S3). Altogether, these findings

provide general support for the quality of the human TF-

enhancer interaction network.

eY1H Assays Provide a Powerful Addition to the GRN
Mapping Toolkit
Several of our findings demonstrate that eY1H assays are com-

plementary to other TF-DNA interaction mapping methods. For

instance, we found that the fraction of eY1H interactions also de-

tected byChIP is larger for TFs that have been assayed byChIP in

multiple cell lines (Figure 2H). This underscores that ChIP in a

given tissue/cell line only uncovers a subset of interactions in

which the relevant TF engages, while eY1H assays interrogate

the available repertoire of TFs for a given enhancer in a single

experiment. Further, TFs that interact with developmental en-

hancers in eY1H assays exhibit more tissue-specific expression
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compared toall TFs testedor toTFsassayedbyChIP (Figure2I). In

addition, TFs assayedbyChIPare expressed at higher levels than

those detected in eY1H assays (Figure 2J). These observations

indicate that each method has particular strengths of detecting

certain types of TFs. Indeed, we detected interactions for 82

TFs that had not been detected by any other high-throughput

method (Figure 2K) (Badis et al., 2009; Jolma et al., 2013).

The TF-Enhancer Network Reveals Functional
Relationships between TFs
In eY1H assays, DNA baits often interact with multiple members

of the same TF family (Reece-Hoyes et al., 2013). This is likely

because such TFs have similar DNA binding domains and recog-

nize similar DNA sequences (Badis et al., 2009; Grove et al.,

2009; Weirauch et al., 2014). To visualize enhancer sharing by

TFs, we calculated the target profile similarity for each pair of

TFs: i.e., the number of overlapping enhancer targets relative

to the number of targets that interact with either TF (Fuxman

Bass et al., 2013). We delineated a TF association network in

which TFs with target profile similarity R0.2 are connected (Fig-

ures 3A and S2). As expected, TFs generally cluster by family.

Further, there is a significant correlation between DNA binding

domain identity, DNA motif similarity, and target profile similarity

(Figures 3B, 3C, and S3). However, similar to our observations in

C. elegans, there are many examples of TF pairs with high DNA

binding motif similarity but low target profile similarity (Figure 3C)

(Reece-Hoyes et al., 2013).

The sharing of enhancers by paralogous TFs begs the ques-

tion of whether only one of these actually interacts with that

DNA fragment in vivo, or if there could be a biological explana-

tion for enhancer sharing between TFs. Conceptually, there are

several possibilities. First, two TFs may share enhancers in the

same tissue at the same time to provide redundancy that can

lead to robustness of enhancer function when one TF is geneti-
Figure 2. A Human Gene-Centered TF-Enhancer Interaction Network

(A) The TF-enhancer interaction network comprises 2,230 interactions between 24

single tissue at day E11.5 (top nodes) or multiple tissues (bottom nodes) are con

(B and C) eY1H interactions significantly overlap with the occurrence of known T

number of overlapping interactions. The eY1H network was randomized 20,000

domized network was calculated (bottom panel). The numbers under the histog

arrows indicate the observed overlap in the real network.

(D) Timing of expression during mouse development for homeodomain (HD) and

particular Theiler Stage during development is shown. *p < 0.01 versus eY1H-ne

(E and F) Percentage of TFs or interactions involving homeodomains (E) or ZF-C2

comparison test.

(G) Overlap between enhancer activity and TF expression pattern. The fraction o

acting and non-interacting pairs. The same analysis was performed for known ac

exact test.

(H) The fraction of eY1H interactions that were also detected by ChIP were partit

ChIP. p = 0.041 by Mann-Whitney’s U test. Error bars represent SEM.

(I) Tissue specificity score for TFs detected by eY1H (n = 266), ChIP (n = 96) or all T

34 tissues (Ravasi et al., 2010). This score quantifies the departure of the observed

tissues, using relative entropy. Each box spans from the first to the third quartile, t

indicate minimum and maximum values. Statistical significance determined by M

(J) The maximum expression level across 34 tissues were obtained from Ravasi

present in the eY1H array (n = 896) are plotted. Each box spans from the first to th

and the whiskers indicate minimum and maximum values. Statistical significance

(K) Venn diagram depicting the overlap between TFs detected by eY1H and th

binding microarrays (PMBs).

See also Figure S1 and Tables S1, S2, and S3.
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cally or environmentally perturbed (Macneil and Walhout,

2011). Second, TFs may bind the same enhancer, but in different

tissues, or at different developmental times. Finally, TFs that

share enhancers could have opposing regulatory effects where

one activates and the other represses transcription, for instance

at different developmental stages.

There are several examples of redundancy between TF paral-

ogs. For instance, three ETS TFs share targets in human T cells

and function redundantly (Hollenhorst et al., 2007). If redundancy

is prevalent in human GRNs, one would expect that TFs that

share targets would also tend to be co-expressed. Indeed, TFs

that bind to highly overlapping sets of enhancers are generally

more co-expressed than TFs that bind different enhancers (Fig-

ure 3D). An example is a group of six redundant Abdominal-B

(Abd-B) HOX TFs (Maconochie et al., 1996) that bind a highly

overlapping set of enhancers in eY1H assays (Figure 3A, blue

box). These TFs are also highly co-expressed and neither of

them is essential for viability, although overall 60% of TFs in

the network confer lethality when knocked out in mouse. Impor-

tantly, TF pairs with both high target profile similarity and high co-

expression similarity are overall enriched for pairs in which both

TFs are non-essential (Figure 3E). Altogether, these results sug-

gest a potentially widespread redundancy between TFs.

TFs that share a large proportion of targets could have

opposing functions if one is an activator and the other is a

repressor. For instance, the activator LHX4 and two repressors,

LHX6 and HESX1, share a large proportion of enhancers (Fig-

ure 3F). HESX1 and LHX6 can both repress activation by LHX4

in transient transfection assays (Figures 3G and 3H). LHX4 is ex-

pressed after HESX1 in the developing pituitary and before LHX6

in the developing CNS (Figure 3F), suggesting that HESX1 may

prevent precocious activation by LHX4 in the developing pitui-

tary, while LHX6 repression prevents prolonged activation by

LHX4 in the developing CNS. Thus, the network can identify TF
6 human developmental enhancers and 283 TFs. Enhancers that are active in a

nected to the TFs (middle yellow nodes) with which they interact.

F binding sites (B) and ChIP peaks (C). The Venn diagrams (top) illustrate the

times by edge switching (Martinez et al., 2008) and the overlap in each ran-

ram peaks indicate the average overlap in the randomized networks. The red

ZF-C2H2 families. The fraction of TFs whose expression was detected at a

gative TFs by Fisher’s exact test.

H2 TFs (F) for two data sets. Statistical significance determined by proportion

f TF-enhancer pairs that overlap in expression was compared between inter-

tivators and repressors. Statistical significance was determined using Fisher’s

ioned based on the number of cell lines in which a particular TF was tested by

Fs present in the eY1H array (n = 896), based on their expression levels across

TF expression pattern from the null distribution of uniform expression across all

he horizontal lines inside the boxes indicate the median value and the whiskers

ann-Whitney’s U tests.

et al. (2010) for each TF detected by eY1H (n = 266), ChIP (n = 96), or all TFs

e third quartile, the horizontal lines inside the boxes indicate the median value

determined by Mann-Whitney’s U tests.

ose detected by high-throughput SELEX (HT-SELEX), ChIP-seq, and protein
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pairs that bind to similar targets but that may have opposing

functions in target gene regulation. This may be crucial to tightly

control the expression of particular programs during develop-

ment. Altogether, these data indicate that multiple TFs from

the same family found to interact with overlapping sets of en-

hancers in eY1H assays may be relevant in vivo and can provide

different gene regulatory functionality.

Human Disease and TF Network Connectivity
Mutations in TF coding sequences can cause a variety of dis-

eases that could impact GRNs in different ways. Some muta-

tions may abrogate DNA binding completely while others affect

binding to only a subset of targets. We hypothesized that muta-

tions in TFs that bind a large set of targets aremore likely to affect

an important biological function. It has been shown previously

that TFs that bind to many promoters in C. elegans are more

frequently essential for viability than TFs that only bind a few pro-

moters (Deplancke et al., 2006). Similarly, protein-protein inter-

action hubs are more frequently essential (Goh et al., 2007).

Interestingly, a combined protein-protein and protein-DNA inter-

action degree was more strongly associated with phenotypic

output for human TFs than either degree alone. Essential and

disease-associated TFs have a higher combined degree than

non-essential TFs (Figures 4A and 4B). In addition, there is a sig-

nificant correlation between combined TF degree and the den-

sity of somatic mutations in cancer (Figure 4C). This is specific

to somatic mutations as no correlation was observed between

TF degree and the density of protein altering variants in healthy

individuals from the 1000 Genomes Project (Abecasis et al.,

2010) (Figure 4D). In sum, mutations in highly connected TFs

more frequently affect phenotypic outcomes leading to disease.

Disease-Associated TF Coding Mutations
Both coding (in TFs) and non-coding (in regulatory DNA ele-

ments) mutations can cause human disease, likely by changing
Figure 3. TF Redundancy and Opposing Functions
(A) TF association network. Each node represents a TF and edges connect T

homeodomains). TFs with degree R3 in the eY1H network are shown. Node co

discussed in the main text. AP2, activating protein 2; bZIP, Basic Leucine Zipper D

Group; MH1, Mad homology 1; WH, Winged Helix; ZF-C2H2, Zinc Finger C2H2;

(B) Target profile similarity between TFs according to DNA binding domain identi

identity their target profile similarity was determined. Each box spans from the firs

and thewhiskers indicate minimum andmaximum values. All pairwise comparison

(C) Correlation between motif similarity and target profile similarity. For each T

determined as the Pearson correlation coefficient of the Z scores obtained for al

(D) Histogram of spatiotemporal co-expression for TF pairs according to their ta

U tests.

(E) Redundancy between TFs. Each pair of TF paralogs was binned accordin

expression. The percentage of TF-pairs for which both TF knockouts are viable

comparison test.

(F) Top: overlap between enhancers bound by LHX4, LHX6 and HESX1. Bottom

transcriptional repressor.

(G) HESX1 represses LHX4-induced enhancer activity. HEK293T cells were co-

reporter vector and the indicated TF expression vectors. After 48 hr, cells were har

plotted as fold change compared to cells co-transfected with control vector expre

Average relative luminescence activity ± SEM is plotted. *p < 0.05 by Student’s

(H) LHX6 represses LHX4-induced enhancer activity. Experiments were performe

SEM is plotted. *p < 0.05 by Student’s t test.

See also Figures S2 and S3.
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target gene expression in trans or cis, respectively. Such dis-

ease-associated mutations can potentially affect GRNs by: (1)

complete loss of all TF-DNA interactions, (2) loss of a subset of

interactions, (3) gain of interactions, or (4) a combination of inter-

action loss and gain. However, because no suitable methods

were available to discriminate between these possibilities it

remains unclear, in the vast majority of cases, which TF-DNA in-

teractions are lost or gained as a result of specific mutations.

We hypothesized that eY1H assays would be highly suitable to

interrogate differential TF binding caused by disease-associated

mutations because: (1) mutations can readily be introduced in

DNA baits or TF preys by molecular cloning, circumventing the

need for patient samples harboring mutant TFs or mutant

regulatory sequences; (2) eY1H assays enable direct, unbiased

comparisons between wild-type and mutant TFs, and (3) eY1H

assays test all available TFs in parallel in one experiment,

enabling the direct determination of differential TF binding to

mutant regulatory DNA sequences.

To determine the impact of TF coding mutations on enhancer

binding, we first focused on four mutant LHX4 TFs that confer

pituitary hormone deficiency (Pfaeffle et al., 2008; Tajima et al.,

2007) (Figure 5A). The P389T mutation is located outside the

DNA binding domain and this mutant retains most (18 of 19) pro-

tein-DNA interactions (Table S4). However, two mutations in the

homeodomain (L190R and A210P) result in complete loss of in-

teractions, which is consistent with previous in vitro experiments

(Pfaeffle et al., 2008) (Figures 5A and 5B; Table S4). Interestingly,

we detected partial loss and gain of weak interactions caused by

the R84C mutation, which is located in the LIM domain and is

known to modulate DNA binding (Pfaeffle et al., 2008). These

results were further confirmed with luciferase assays in which

we found changes in the transcriptional activation capacity

that correlate with changes in DNA binding (Figure 5C).

We also evaluated two missense mutations in the homeo-

domain of HESX1: the R160C mutation leads to septo-optic
Fs with a target profile similarity R0.2 (left, all TF families) or R0.45 (right,

lor indicates TF families. The blue square highlights a set of HOX Abd-B TFs

omain; bHLH, basic helix-loop-helix; HD, homeodomain; HMG, High-Mobility

ZF-DHHC, Zinc Finger DHHC; ZF-NHR, Nuclear Hormone Receptor.

ty. For each pair of TF paralogs with different DNA binding domain amino acid

t to the third quartile, the horizontal lines inside the boxes indicate median value

s between groups are significant (p < 0.01) by Dunn’smultiple comparison test.

F pair, target profile similarity was plotted against their DNA motif similarity

l possible 8-mers in protein binding microarrays.

rget profile similarity. Statistical significance determined by Mann-Whitney’s

g to their target profile similarity and according to their spatiotemporal co-

was determined. Statistical significance was determined using the proportion

: cartoon of developmental expression. Red, transcriptional activator; green,

transfected with enhancer constructs cloned upstream of a Firefly luciferase

vested and luciferase assays were performed. Relative luminescence activity is

ssing GFP. Experiments were performed three times in three to six replicates.

t test.

d three times in three to six replicates. Average relative luminescence activity ±



Figure 4. Relationship between TF Connec-

tivity and Human Disease

(A) Cumulative distribution of TF protein-DNA

interaction (PDI), protein-protein interaction (PPI),

and combined degrees for essential and non-

essential TFs. Combined TF degree is defined as

the product of PPI and PDI degrees and repre-

sents the number of paths connecting the protein

interactors of a TF with its DNA targets. Statistical

significance determined by Mann-Whitney’s

U tests.

(B) Cumulative distribution of TF degrees for TFs

reported as disease-associated genes in the Hu-

man Gene Mutation Database (HGMD) and genes

not reported in HGMD. Statistical significance

determined by Mann-Whitney’s U tests.

(C) Correlation between TF degree and the

number of protein-altering SNPs and short indel

variants per 100 amino acids in cancer samples

obtained from the Catalogue of Somaticmutations

in Cancer (COSMIC). Statistical significance was

determined using Pearson correlation coefficient.

(D) Correlation between TF degree and the num-

ber of protein-altering SNPs and short indel vari-

ants per 100 amino acids in the 1000 genomes

project. Statistical significance was determined

using Pearson correlation coefficient.
dysplasia (Dattani et al., 1998), whereas the N125S variant is a

natural polymorphism in the Afro-Caribbean population (Brick-

man et al., 2001) that is not associated with disease. Interest-

ingly, the R160C mutation completely abolishes all interactions,

while the N125S variant has a wild-type target profile (Figures 5D

and 5E; Table S4). Wild-type and the N125S variant of HESX1

repressed reporter gene expression in transient transfection

assays while the R160C mutant did not, further confirming our

findings (Figure 5F). Altogether, these data show that eY1H as-

says can be effectively used to determine the consequences of

TF-coding mutations on DNA target binding.

Non-Coding Mutations Associated with Human Disease
To determine the effect of non-coding mutations on TF binding,

we selected 227 disease-associated mutations, affecting the

expression of 137 genes. We identified interacting TFs for both

wild-type and mutant clones of each regulatory element with
Cell 161, 661–6
eY1H assays and detected differential

TF binding for 109 mutations (75 genes)

associated with a variety of diseases (Fig-

ures 6A and 6B; Table S5). Literature

searches indicate that 66 of these muta-

tions result in an increase while 39 confer

a decrease in expression of the associ-

ated target gene (for four mutations the

effect on gene expression is not known;

Table S5). The majority of mutations re-

sulted in interaction loss (64 of 109, or

59%). Remarkably, however, 32 muta-

tions resulted in gain of interactions

(29%) and 13 caused both interaction
loss and gain (12%) (Figure 6C). Thus, gain of TF interactions

may be a pervasive disease-causing mechanism. Overall, these

mutations affect interactions with 111 TFs from all major families

(Table S5). Strikingly, TFs involved in differential interactions are

more frequently essential for viability and/or annotated as dis-

ease-associated in HGMDcompared to TFs that are not involved

in differential interactions (Figure 6D).

To validate the differential eY1H interactions, we first

compared them to published differential interactions. Out of

227 mutations tested, 54 had reported differential interac-

tions that were experimentally supported by reporter assays,

in vitro binding assays and/or by ChIP. For 34 of these the re-

ported TF was either absent from our collection (19 mutations)

or was never detected in eY1H assays (15 mutations). We de-

tected the reported differential interaction for four of the remain-

ing 20 mutations and differential interaction with a close TF

paralog for three additional mutations (Table S6). Importantly,
73, April 23, 2015 ª2015 Elsevier Inc. 667



Figure 5. Disease-Associated Coding Mutations in TFs

(A) Four missense mutations in LHX4 were tested for loss or gain of protein-DNA interactions in eY1H assays against 152 enhancers. The top panel depicts a

cartoon of LHX4, including the location of the mutations and the homeodomain (HD) and LIM domains. The bottom panel shows the number of interactions

retained (black bar), lost (red bar) or gained (blue bar) for each mutant compared to wild-type interactions.

(B) Examples of interactions lost and gained for LHX4missensemutations. Each TF-enhancer combination was tested in quadruplicate three times. One random

quadruplicate test is shown corresponding to four enhancers. Red squares, interaction lost with TF mutant; blue square, gained interaction with TF mutant; AD

vector, empty prey vector.

(C) Transcriptional activation mediated by wild-type andmutant LHX4 alleles. HEK293T cells were co-transfected with enhancer constructs cloned upstream of a

Firefly luciferase reporter vector and the indicated TF expression vectors. Relative luminescence activity is plotted as fold change compared to cells co-

transfected with empty expression vector. Experiments were performed four times with three replicates each. Average relative luminescence activity ± SEM is

plotted. *p < 0.05 versus empty expression vector by Student’s t test.

(D) Two missense mutations in HESX1 were tested for changes in protein-DNA interactions as in (A).

(E) Examples of interactions lost for HESX1 missense mutations.

(F) Repression of LHX4-induced enhancer activity by wild-type and mutant HESX1 alleles. HEK293T cells were co-transfected with enhancer constructs cloned

upstreamof a Firefly luciferase reporter vector and the indicated TF expression vectors. Relative luminescence activity is plotted as fold change compared to cells

co-transfected with control vector expressing GFP. Experiments were performed six times with three replicates each. Average relative luminescence activity ±

SEM is plotted. *p < 0.05 by Student’s t test.

See also Table S4.
the TFs detected by eY1H assays were not tested in the latter

three studies, even though they have similar DNA binding

specificity and are expressed in the relevant disease tissue

(Table S5). Hence, it could be that either or both TF(s) contribute

to the disease in vivo.

Next, we devised a ‘‘supporting evidence score’’ (see

Extended Experimental Procedures) for each interaction

involving a mutant regulatory element, in which we weighted

the interactions according to: (1) co-expression of the differen-

tially interacting TF and the target gene in disease-relevant tis-

sues, (2) if the differentially bound TF is associated with a similar
668 Cell 161, 661–673, April 23, 2015 ª2015 Elsevier Inc.
disease ormouse phenotype as the target genemutation, and (3)

if the target gene expression change caused by the mutation (in-

crease or decrease) was concordant with gain/loss of a protein-

DNA interaction with an activator/repressor (Figure 6E). It is of

course important to note that the data used in this integration

are not yet complete and have their own confidence issues.

Out of the 294 differential interactions (with 109 non-coding mu-

tants), 98 have a medium/high to high level of confidence (Table

S5). Importantly, the differential interactions involving TFs ex-

pressed in disease-relevant tissues and/or associated with a

similar disease are generally consistent with changes in target



Figure 6. Disease-Associated Non-Coding Mutations

(A) Number of mutations per gene for which differential TF interactions were detected by eY1H assays.

(B) Distribution of diseases associated with tested non-coding mutations.

(C) Distribution of mutations that result in loss of interactions, gain of interactions, or both.

(D) Fraction of essential (per MGI) or disease-associated TFs (per HGMD) differentially interacting with non-coding mutations (differential TFs) and the remaining

TFs in the eY1H human TF collection (non-differential TFs). Statistical significance determined by proportion comparison test.

(E) Cartoon depicting data integration used to obtain a supporting evidence score for differential eY1H interactions (see Extended Experimental Procedures).

(F and G) Percentage of differential TF-target gene pairs in which the TF is co-expressedwith the target gene in the disease tissue (F) or is associated with a similar

disease or mouse phenotype (G) for interaction changes concordant or discordant with target gene expression changes. Statistical significance determined by

proportion comparison test.

(legend continued on next page)
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gene expression: an increase in expression is concordant

with gain of interaction with an activator or loss of an interaction

with a repressor, while a decrease in expression correlates with

gain of interaction with a repressor or loss of interaction with an

activator (Figures 6F–6H). All differential interactions, gene

expression changes, as well as expression and disease informa-

tion are provided in Table S5.

Several mutations cause differential interactions with multiple

TFs, often from the same family. Two examples illustrate how

such interactions can be evaluated for in vivo relevance. The first

example involves a C to T mutation in the beta globin gene

promoter that results in reduced gene expression leading to thal-

assemia. This mutation results in loss of interactions with five pa-

ralogous TFs: KLF2, KLF4, KLF7, KLF12, and KLF17, that bind

similar DNA sequences (Figure 6I). Two of these paralogs,

KLF2 and KLF4, are more likely involved than the other three

TFs, because they are expressed in erythroid cells and have

been shown to activate beta globin gene expression (Alhashem

et al., 2011; Gardiner et al., 2007). The second example involves

a T to C mutation in the CYBB promoter that causes a reduction

in expression leading to chronic granulomatous disease. eY1H

assays identified loss of binding for IRF2 and IRF5, both of which

are expressed in disease-relevant cells. Again, the mutation oc-

curs in the binding site of these TFs (Figure 6J). IRF2 has been

shown to activate the CYBB promoter (Luo and Skalnik, 1996)

and, therefore, it is likely that loss of this interaction is most rele-

vant to the disease. However, IRF5 cannot be entirely excluded

because these two TFs may share targets in vivo as discussed

above for the developmental enhancers.

Dominant Mutations in the Sonic Hedgehog ZRS
Enhancer
We identified differential interactions for nine dominant muta-

tions in the ZRS enhancer of SHH that result in ectopic gene

expression along the anterior margin of the limb bud, causing

digit malformations and polydactyly (Sharpe et al., 1999) (Fig-

ure 7A; Table S5). Interestingly, we found both loss and gain of

interactions with these mutations, involving many TFs that are

expressed in the developing limb. Data integration showed that

gain of interactions involving limb-expressed TFs mostly in-

volves activators, while loss of interactions occurred more

frequently with transcriptional repressors (p = 0.018, Figure 7B),

both of which are concordant with the increased gene expres-

sion elicited by these dominantmutations. Thus, similar diseases

can result from gain or loss of TF interactions caused by different

mutations within an enhancer.

We characterized the 105C/ G mutation in more detail. This

mutation results in gain of interactions with three AP2 TFs, two of

which are expressed in the limb and could be responsible for the

gain of SHH expression (Figures 7A and 7C). Indeed, this muta-

tion creates a consensus AP2 binding site (Badis et al., 2009)
(H) Number of interactions lost or gained involving activators (A), repressors (R)

increased or decreased target gene expression. Only interactions in which the TF

with a similar disease or phenotype are shown. Statistical significance was deter

(I and J) Examples of differential eY1H interactions with the HBB promoter (I) and t

in red. Reported TF binding site logos are shown (Weirauch et al., 2014).

See also Tables S5 and S6.
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(Figure 7D). TFAP2B is a transcriptional activator and activates

the mutant, but not wild-type enhancer in luciferase assays (Fig-

ure 7E). Together, these results show that TFAP2B can bind and

activate 105C / G enhancer mutant, suggesting that aberrant

binding of TFAP2B may result in the ectopic expression of

SHH, thereby causing digit malformations.

DISCUSSION

This study presents a gene-centered human TF-enhancer

interaction network delineated by eY1H assays. The technical

quality of this network is ensured by the inherent retest of inter-

actions with two reporter genes and the testing of TFs in

quadruplicate, as well as due to the high demonstrated rate of

reproducibility between independent experiments (�90%) (Re-

ece-Hoyes et al., 2011b, 2013). The biological quality of this

network is also high, as indicated by several metrics, including

significant overlap with TF binding sites, ChIP interactions, TF

expression and enhancer activity, enrichment for homeodo-

mains, and reporter assays. The relatively modest overlap

with ChIP data reflects the notion that ChIP may retrieve indirect

TF interactions, as well as a lack of sensitivity of ChIP data that

were only obtained in one or two cell types. Like any other

method, however, eY1H assays may also yield false positive

and negative interactions with both enhancers and disease-

causing mutant elements. False positive interactions may be

retrieved when multiple members of the same TF family with

highly similar consensus binding sites are found to bind to the

same enhancer(s) and only a subset of these actually bind the

enhancer in vivo. Importantly, however, we illustrate several

mechanisms by which enhancer sharing can be biologically

meaningful in attaining redundancy or in the precise timing of

enhancer activity, for instance during development. The careful

integration of eY1H interactions with high-resolution spatiotem-

poral expression and other types of data over time will

provide protein-DNA interaction data of increasing validity and

resolution.

The rate of false negatives in eY1H assays is likely to be

considerable (Walhout, 2011). For instance, TFs that exclusively

interact with DNA as heterodimers or after post-translational

modification by another human protein will not be detected.

In addition, eY1H assays cannot as of yet detect cooperative in-

teractions with multiple TFs. Therefore, the retrieval of several

known differential interactions with non-coding disease-causing

mutations in a single experiment is highly encouraging.

A particularly powerful feature of the eY1H approach is that

it uniquely enables the comparison of wild-type and mutant

TFs or regulatory elements, in a single experiment and in a

high-throughput manner. Our findings show that both coding

mutations in TF-encoding genes and non-coding mutations in

regulatory sequences can result in rewiring of GRNs. While
or bifunctional TFs (A/R, activators and repressors) for mutations that cause

is co-expressed with the target gene in disease-relevant tissue, or associated

mined using Fisher’s exact test.

he promoter of the CYBB gene (J). Disease-associated mutations are indicated



Figure 7. Mutations in the Limb SHH Enhancer

(A) Summary of interactions lost (red) or gained (blue) for different mutations in the ZRS enhancer of sonic hedgehog. Yellow circles, TFs expressed in limb during

development; black dots, activators; white dots, repressors; black/white dots, TF that can be both activators or repressors.

(B) Number of interaction changes occurring with limb-expressed activators, repressors or bifunctional TFs (activators/repressors) for interactions gained or lost

in ZRS enhancer mutations. p = 0.018 by Fisher’s exact test.

(C) Gain of interactions detected by eY1H assays in the 105C / G mutant in the ZRS enhancer of sonic hedgehog. Blue boxes indicate differential positive

interactions.

(D) DNA binding motifs for TFAP2A, TFAP2B, and TFAP2E discriminate wild-type and mutant enhancer sequences.

(E) HEK293T cells were co-transfected with enhancer fragments containing wild-type (105C) or mutant (105G) sequences cloned upstream of a Firefly luciferase

reporter vector and the indicated TF expression vectors. Relative luminescence activity is plotted as fold change compared to cells co-transfected with control

vector expressing GFP. Experiments were performed four times in three to six replicates. Average relative luminescence activity ± SEM is plotted. *p < 0.05 by

Student’s t test.

See also Table S5.
coding mutations cause mostly loss of protein-protein interac-

tions (Sahni et al., 2015, in this issue of Cell), protein-DNA

interaction changes caused by either coding or non-coding mu-

tations involve both gain and loss of interactions, sometimeswith

the samemutation (Sahni et al., 2015). We provide a guide for in-

terpreting eY1H data with non-coding disease-causing muta-

tions. Specifically, we would prioritize differential interactions
involving TFs that are co-expressed with the target gene, in the

disease-relevant tissue. Further, we emphasize that concordant

interactions, for instance increased gene expression and gain of

interaction with an activator or loss with a repressor, are more

likely relevant in vivo than other interactions. Obtaining addi-

tional, high-resolution gene expression and TF function data

will be critical for the continued integration not only of eY1H
Cell 161, 661–673, April 23, 2015 ª2015 Elsevier Inc. 671



data, but also of interaction data inferred by DNase I hypersen-

sitivity assays or predicted based on TF binding sites.

Most variants identified by GWAS reside in non-coding re-

gions of the genome (Hindorff et al., 2009; Maurano et al.,

2012). We propose that eY1H assays will provide a facile method

with which differential TF interactions involving these variants

can be analyzed. Overall this work provides an initial blueprint

to study enhancer networks, as well as to determine how

network connectivity is affected in disease.

EXPERIMENTAL PROCEDURES

eY1H Assays

Enhanced yeast one-hybrid (eY1H) assays were performed as described (Re-

ece-Hoyes et al., 2011b). This method detects protein-DNA interactions and

involves two components: a ‘‘DNA-bait’’ (e.g., a gene promoter or enhancer)

and a ‘‘TF-prey.’’ We generated DNA-bait strains for 360 human develop-

mental enhancers selected from the Vista Enhancer Browser (http://

enhancer.lbl.gov; Table S1). Enhancers (0.4–2.4 kb) were amplified by PCR

(Table S7) from human genomic DNA (Clonetech) and were then Gateway-

cloned (Reece-Hoyes et al., 2011b). Entry clones were sequenced using

PacBio (Yale Center for Genomic Analysis; Table S8). The DNA-baits were

cloned upstream of two Y1H reporter genes (LacZ and HIS3) and both DNA-

bait::reporter constructs were integrated into the yeast genome to generate

chromatinized ‘‘DNA-bait strains.’’ Yeast strains that express different TFs

fused to the activation domain (AD) of yeast Gal4 were mated into the DNA

bait strain. If a TF binds the regulatory region, the AD moiety activates reporter

gene expression. LacZ activation was detected via the conversion of colorless

X-gal into a blue compound, while His3 expression allows the yeast to grow on

media lacking histidine and to overcome the addition of 3-amino-triazole (3AT),

a competitive inhibitor of the His3 enzyme (Deplancke et al., 2004; Reece-

Hoyes and Walhout, 2012). We updated the previously published arrayed

collection of 988 human TFs (Reece-Hoyes et al., 2011a) by adding 146 TFs

and removing 48 for which the clone turned out to be incorrect, was truncated

or did not encode the DNA binding domain. The resulting collection contains

one variant of 1,086 full-length TFs (76% of all 1,434 human TFs, Table S9).

eY1H assays were performed using a Singer robot that manipulates yeast

strains in a 1,536-colony format. Images of readout plates lacking histidine

and containing 3AT and X-gal were processed using the Mybrid web-tool to

automatically detect positive interactions (Reece-Hoyes et al., 2013). Each

interaction was tested in quadruplicate and only those that were positive at

least twice were considered genuine (Reece-Hoyes et al., 2011b). However,

the vast majority of interactions detected (�90%) were supported by all four

colonies as previously published (Reece-Hoyes et al., 2011b). Interactions de-

tected by Mybrid were then manually curated. False positives detected by

Mybrid on plates with uneven background were removed. We included false

negative interactions missed by Mybrid, for instance because they occur

next to very strong positives or occur with baits that exhibit high background

reporter gene expression. Positive colonies were sequenced to determine

prey identity. Fourteen quads in the array were removed from the interaction

list as they did not match the expected TF (see Extended Experimental Proce-

dures). A total of 2,230 high-quality protein-DNA interactions between 246 en-

hancers and 283 TFs were included in the final data set (Table S2).

Target Profile Similarity

Target profile similarity between TFs was calculated using the Jaccard index

as the number of enhancer targets shared between two TFs A and B divided

by the number of enhancers that interact with either A or B (Fuxman Bass

et al., 2013). Target profile similarities range from 0 to 1, with 0 indicating no

target overlap and 1 indicating complete target overlap.

Mutated Regulatory Regions

Mutant DNA baits were generated by introducing mutations in the primers in

the PCR step prior to generating entry clones (Table S10). Yeast DNA-bait

strains were sequenced to verify the mutation and ensure the absence of addi-
672 Cell 161, 661–673, April 23, 2015 ª2015 Elsevier Inc.
tional mutations. eY1H screens were performed for two or three independent

yeast strains per construct. Interactions that occurred with at least two out of

three or two out of two of the strains were considered positive while interac-

tions not occurring in any of the strains were considered negative (Table S5).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, three

figures, and ten tables and can be found with this article online at http://dx.doi.

org/10.1016/j.cell.2015.03.003.
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