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Abstract

We apply network flow techniques to find good exit selections for evacuees in an emergency evacuation. More
precisely, we present two algorithms for computing exit distributions using both classical flows and flows over time
which are well known from combinatorial optimization. The performance of these new proposals is compared to a
simple shortest path approach and to a best response dynamics approach by using a cellular automaton model.
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1. Introduction

Emergency evacuations are a very important and complex field that has been heavily discussed lately. Still, there
are a lot of open questions such as how to model human behavior in dangerous situations, how to design a building in
a manner that supports fast evacuations or how to optimize evacuation strategies. We make a contribution to the latter
question.

A central step towards developing a good evacuation plan for a given building is to find an appropriate assignment
of each evacuee to the exit through which he shall leave the building. In the following we call this an exit assignment.
The intuitive idea would be to send everybody to his nearest exit. As depicted in Fig. 1(a), this can lead to significantly
bad results even if the structure of the building is very simple. More advanced techniques, based on approaches from
game theory, have been presented in [8] and lead to better results. We present a completely new approach that uses
network flow algorithms, well known from combinatorial optimization. In particular, we analyze the possibilities of
using earliest arrival flows that provide an accurate model of evacuations because they consider their temporal aspect.
Additionally, we investigate an approach using classical static network flows, namely maximum flows and minimum
cost flows.

We evaluate the new approaches with a cellular automaton based simulation. The computational results show a
clear advantage of the new techniques. Moreover they turn out to be practically fast.

All tests are made by using the ZET evacuation tool1 that implements all approaches and the cellular automaton.
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(a) An example of a simple building.

(b) The computational results: The diagram depicts the number of safe evacuees for each point in time. The curve of
the shortest path approach flattens after 17 seconds.

Figure 1: For about half of the evacuees the narrow exit is nearer than the wide exit so that a shortest path approach will send them there and a jam
emerges.

2. Network Flows

We begin by introducing the basic definitions and concepts of network flows required by the exit assignment
calculations presented in the sections below. Note that the following definitions are tailored to our purposes to some
extent as flow representing evacuees has additional requirements not shared by more general settings.

2.1. Basic Definitions

A directed graph G = (V, A) consists of a set of nodes V and a set of arcs A ⊆ V × V \ { (v, v) | v ∈ V}. For a
directed graph G = (V, A) and a node v ∈ V , δ+(v) and δ−(v) denote the set of outgoing and ingoing arcs of node v,
respectively. A network consists of a directed graph G = (V, A) and a capacity function u : A ∪ V → N and either a
set of sources S + ⊆ V and a set of sinks S − ⊆ V or a balance function b : V → Z. Note that the capacity function is
defined on the set of nodes and arcs. If a balance function is used, we refer to nodes v with b(v) > 0 as sources and to
nodes v with b(v) < 0 as sinks. For a node v we call |b(v)| its supply if b(v) > 0 and its demand if b(v) < 0. A dynamic
network is a network with a transit time function τ : A → N and a time horizon T . The standard model of dynamic
networks assumes transit times that are independent of flow-density and similar effects. More sophisticated models
that do not use this simplification can be found in [15].

A static flow x assigns a flow value x(a) to each edge a ∈ A. For reasons of brevity, we define the following
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notations for a flow function x : A→ N0:

x+(v) :=
∑

a∈δ+(v)

x(a) x−(v) :=
∑

a∈δ−(v)

x(a) ∀v ∈ V

A dynamic flow assigns a flow value x(a, t) to each arc a ∈ A at each time t ∈ N0. Like for static flows, we define for
a dynamic flow function x : A × N0 → N0:

x+(v, t) :=
∑

a∈δ+(v)

t∑

θ=0

x(a, θ) x−(v, t) :=
∑

a∈δ−(v)

t−τ(a)∑

θ=0

x(a, θ) ∀v ∈ V

A flow on a network (G, u, S +, S −) with sources and sinks is a function x : A → N0 that satisfies the capacity
constraints x(a) ≤ u(a) for all a ∈ A as well as the flow conservation constraints x+(v) − x−(v) = 0 for all v ∈
V \ (S + ∪ S −). A transshipment on a network (G, u, b) with a balance function is a function x : A→ N0 fulfilling the
capacity constraints x(a) ≤ u(a) for all a ∈ A and the balance constraints x+(v) − x−(v) = b(v) for all v ∈ V .

A dynamic flow or flow over time on a dynamic network (G, u, τ, S +, S −, T ) with sources and sinks is a function
x : A × N0 → N0 that satisfies

• the time horizon constraints x(a, t) = 0 for all a ∈ A and all t ≥ T − τ(a),

• the edge capacity constraints x(a, t) ≤ u(a) for all a ∈ A and all t ∈ N0,

• the node capacity constraints x−(v, t) − x+(v, t) ≤ u(v) for all v ∈ V , t ∈ N0,

• the flow conservation constraints x+(v, t) ≤ x−(v, t) for all v ∈ V \ S +, t ∈ N0.

The value x(a, t) assigned to an edge a at time t can be interpreted as the amount of flow entering the edge a at time t.
Note that we allow storage in nodes as long as the capacity of the node is not exceeded.

A dynamic transshipment or transshipment over time on a dynamic network (G, u, τ, b,T ) with a balance function
is a function x : A×N0 → N0 satisfying the time horizon and the edge capacity constraints as specified for flows over
time. Furthermore, it satisfies

• the node capacity constraints max {b(v), 0} + x−(v, t) − x+(v, t) ≤ u(v) for all v ∈ V and all t ∈ N0,

• the flow conservation constraints x+(v, t) − x−(v, t) ≤ max {b(v), 0} for all v ∈ V and all t ∈ N0,

• the balance constraints x+(v,T ) − x−(v,T ) = b(v) for all v ∈ V .

2.2. Flow Problems with or without time dimension
In this section we will consider several problems based on flows and transshipments (over time). We will begin

with the simpler flow and transshipment problems that do not use transit times.

2.2.1. Maximum Flow
The maximum flow problem proposed by Ford and Fulkerson [9] consists of finding a flow x of maximal value for

a given network (G, u, S +, S −) with sources and sinks. The value of a flow x is defined as the number of flow units
sent from the sources to the sinks, or more formally:

value(x) :=
∑

v∈S −
x−(v) −

∑

v∈S −
x+(v)

We use the preflow-push algorithm with the highest-label selection rule and the global- and gap-heuristics described
by Cherkassky and Goldberg [5] to compute a maximal flow.

Note that the maximum flow problem does not take distances or transit times into account. Nonetheless, it is able
to provide useful information for our exit assignments: we can use the maximum flow problem to identify bottlenecks
and gauge their capacities. For example, we can use the areas where a group of evacuees resides as sources and the
safe regions for them as sinks. By computing a maximum flow based on this we are able to locate bottlenecks slowing
down the evacuation. Furthermore, it provides us with the number of evacuees that can pass through the bottleneck at
the same time, which assists us in determining capacities of escape routes.
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2.2.2. Minimum Cost Flow
Given a network (G, u, b) and a cost function c : A → Z, which assigns costs to the edges, the minimum cost flow

problem consists of finding a transshipment x of minimal cost. A transshipment pays for each flow unit sent through
an edge the price determined by the cost function. Therefore, the cost of a transshipment x is defined as follows:

cost(x) :=
∑

a∈A
c(a)x(a)

Several approaches exist to compute a solution to this problem, e.g. cycle cancelling and successive shortest path
based techniques (for an overview see [1]). We found successive shortest path based algorithms to be particularly well
suited to our instances due to the fact that the number of evacuees is usually much smaller than the number of nodes
and edges in the network, which favors the successive shortest path based techniques.

If we consider the transit times of our building networks as costs we can use minimum cost flow problems to
incorporate the transit times in our flow calculations without having time as an explicit dimension in our calculations.
On the one hand this makes our calculations significantly easier but on the other hand it is a rather large idealization.
Still, in conjunction with the maximum flow problem, the minimum cost flow problem is able to provide interesting
exit assignments: by estimating the capacities of the building’s exits we can derive demands for each exit and use
these to compute a minimum cost flow whose result can then be used to generate an exit assignment, as we will see in
the next section.

Until now, we have only considered flow problems without an explicit time dimension. In the following we will
abandon this restriction and examine flow over time problems that have an explicit time dimension. These problems
are typically harder to solve than their counterparts without a time component, but they are able to model evacuation
scenarios much more closely.

2.2.3. Maximum Flow Over Time Problem
The maximum flow over time problem consists of finding a flow over time x of maximal value for a given dynamic

network (G, u, τ, S +, S −,T ) with sources and sinks. The value of a flow over time x is defined as the number of flow
units sent from the sources to the sinks during the specified time interval, or more formally:

value(x) :=
∑

v∈S −
x−(v, T ) −

∑

v∈S −
x+(v,T )

We do not use this problem directly, though.

2.2.4. Quickest Transshipment
The quickest transshipment problem asks for the minimal time horizon T necessary to find a transshipment that

sends all supplies to the demands in a dynamic network (G, u, τ, b,T ). Expressed differently, this problem basically
asks for the time needed to evacuate a certain number of people from a building. While this is certainly an interesting
question, the next problem leads to an even more interesting one.

2.2.5. Earliest Arrival Transshipment
The earliest arrival transshipment problem consists of finding a transshipment over time for a given dynamic

network with balances (G, u, τ, b,T ) that has the earliest arrival property, which is defined as follows: for every time
t ∈ N0 the value of the flow units sent from the sources to the sinks (as defined by the balance function) in the interval
[0, t] is maximal. The existence of such a transshipment over time is guaranteed in our model as long as there is only
a single sink (which is the case in our application). A constructive proof can be found in [2]. The value of the flow
units sent in the interval [0, t] is defined analogously to the maximum flow over time problem:

value(x, t) :=
∑

v∈S −
x−(v, t) −

∑

v∈S −
x+(v, t)

In order to solve this problem we use the algorithm proposed by Tjandra [19]. The earliest arrival property guarantees
that we have evacuated the maximal amount of people at every point in time. This is especially helpful if the amount
of time available for the evacuation is not known — regardless of the amount of time we actually have, the earliest
arrival property guarantees that we have saved as many people as possible.
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3. Our Approach

Our primary goal in this section is to compute a mapping of evacuees to exits (an exit assignment) that minimizes
the simulated evacuation time. We approach this problem by reducing the building to a network and apply results
from network flow theory.

Contrary to earlier work in this area (see for example Francis [10], Chalmet, Francis and Saunders [4], Choi,
Hamacher and Tufecki [6], Hamacher and Tjandra [12], Tjandra [19]) which employed networks primarily in macro-
scopic settings where building structure is usually greatly abstracted compared to the microscopic settings of evac-
uation simulations. In contrast to this, our networks are derived from the microscopic settings of cellular automata.
Furthermore, we evaulate the results of our flow computations directly by using the cellular automaton based simula-
tions.

3.1. Reducing a Building to a Network Model

To reduce the building to a network we essentially partition the building into almost-square rectangles and treat
every rectangle as a node. We use transit times and capacities that are proportional to the euclidian distance and to the
shared borders of the rectangles, respectively.

This approach is flexible enough to allow a high degree of control about the size and detailedness of the resulting
network. Its main drawback is that it takes only topological information about the building plan into consideration. It
does not, for example, try to predict which regions will be most important to the evacuation and model these regions
with a high degree of detail and other regions with less. Such an approach could possibly reduce the size of the
network even more without loss of precision and would therefore be an interesting subject for further research.

By computing a transshipment on this network we can now map the supplies on the sources to the sinks, i.e. we
can find a mapping of evacuees to exits by transfering the results of an arbitrary (static or dynamic) transshipment
algorithm to an exit assignment. This improves the intuitive approach that assigns each evacuee to his nearest exit.

3.2. Exit Assignments by Maximum Flows & Minimum Cost Flows

Our first approach transfers the results from a minimum cost transshipment. We first calculate a maximum flow
for every sink in the network to estimate the capacities of the sinks. The network for the following minimum cost
computation uses these estimated capacities for the sinks and has infinite capacity on all edges. More precisely,
our procedure is as follows: Let (G = (V, A), u, τ, b) be a network, with S + and S − denoting the sources and sinks,
respectively, as defined by the balance function. We proceed in five steps:

1. Calculate the shortest path with respect to transit times between each source-sink pair (s+, s−) ∈ S + × S − in G,
i.e. look for paths with minimal transit time. This can e.g. be achieved by using Dijkstra’s algorithm [7]. We
denote the distance with respect to transit times between s and t by dist(s, t).

2. Estimate the capacity capacity(s−) of each exit s− ∈ S − by calculating a maximum flow from all sources to s−.
As noted above, we recommend the preflow-push algorithm with the highest-label selection rule and the global-
and gap-heuristics for this purpose.

3. Create a complete bipartite graph G′ := (V ′, A′) using S + and S − as first and second subset of the partition,
respectively:

V ′ := S + ∪ S − A′ :=
{
(s+, s−)

∣∣∣ s+ ∈ S +, s− ∈ S −
}

Add costs c′ : A′ → N0, capacities u′ : A′ → N0 and a balance function b′ : V ′ → Z to G′:

c′(a) := distance(s+, s−) u′(a) := ∞ ∀a = (s+, s−) ∈ A′

b′(v) :=

⎧⎪⎪⎨⎪⎪⎩
b(v), if v ∈ S +

capacity(v)∑
w∈S− capacity(w)

(∑
w∈S + b(w)

)
, else

The balance function distributes the evacuees among the exits, proportional to the capacity we estimated for the
exits in the previous step.
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4. Calculate a minimum cost flow on G′. To do so, we suggest using a successive shortest path based technique
(as described by [16], for example). We use a slightly relaxed minimum cost flow problem to achieve better
results: we treat the demand of a node as an upper bound for the amount of flow sent to it. Thereby we can
impose a limit to the number of people evacuated through a specific exit without imposing too rigid constraints.

5. Extract the exit assignment from the computed transshipment.

3.3. Exit Assignments by Earliest Arrival Transshipments

Our second approach uses an earliest arrival transshipment to compute an exit distribution. The procedure is as
follows:

1. Generate an earliest arrival transshipment problem from the building model. Since the earliest arrival transship-
ment problem uses capacities, transit times and has a concept of time we can use the network instances we are
deriving directly as the basis for our computations.

2. Calculate an earliest arrival transshipment in this network. We employ a technique based on [19].
3. Extract the exit assignment from the computed transshipment.

4. Computational Results

In this section we discuss the performance of the different approaches to calculate exit assignments. To gain
computational results we use a simulation that computes the behavior of the evacuees when they get a certain exit
assignment as input. The following subsections describe this simulation in detail and discuss the quality of the
solutions computed by our network flow based approaches.

4.1. Cellular Automaton Model

In order to evaluate our new approaches we use a cellular automaton to simulate the behavior of the evacuees.
This approach is very efficient and can produce a lot of effects of pedestrian dynamics with only local interactions of
the simulated persons. The model is very similar to cellular automata presented in [3], [13]. We implemented a very
simple model, so that no special simulation features can influence the result.

4.1.1. Discretization of the Building
The cellular automaton basically consists of a matrix of squared cells with the dimenson 40cm × 40cm. Each cell

represents space that can be occupied by at most one evacuee thus leading to a maximum density of 6.25 persons per
square meter which is also used by [13] and seems to be quite practical in most cases according to [20]. The building
is rasterized so that it can be represented by the cells and therefore the model is discrete in space.

The cells are of different types: beside general cells an exit cell represents an evacuation area which is a safe place
and should be reached from the starting position. Other cells can be used to simulate obstacles blocking the evacuees.

4.1.2. Movement
The cellular automaton is a vmax = 1 model, that means it is discrete in time and every evacuee can move to one

of the 8 neighbor cells in each step. Different walking speeds are realized by compulsory breaks after each step, the
evacuees also have to wait to compensate longer covered distances in the case they move diagonally.

The evacuees use a potential assigned to the cells to decide in which direction they move, as explained in [13]: the
cells with the lowest potential are the exit cells and the potential is increasing if the distance is larger. The evacuees
always try to reach cells with a lower potential value and thus use shortest paths implicitly. It is decided randomly
with respect to the potential difference to which neigbored cell an evacuee moves.

Each cell has a potential for every reachable block of exit cells, so an evacuee can have a special exit assigned that
he wants to reach. Thus the evacuees do not necessary follow the shortest path to any exit, but the shortest path to a
specified exit.

During the simulation the persons do not move simultaneously, which would create some problems with evacuees
wanting to use the same cell, but one after the other. In order not to favor any evacuee, the order in which the persons
move is randomized in each step of the cellular automaton. There exist other update schemes. In the parallel case all
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individuals are updated at the same time, conflicts have to be broken randomly in this case. An ordered update from
the individual with shortest distance to the exit to the one with longest distance can lead to shorter evacuation times
as in the best case all individuals move synchronously in each time step. Random shuffle gives a good compromize
between these cases.

A special case occurs, if two persons want to switch positions. The simulation algorithm can detect such situations
and allows the two evacuees to swap positions. As the space for the swap is very limited, the swap will lead to a longer
waiting period before the next move can happen.

4.1.3. Simulation Algorithm
The simulation runs a set of local rules for each person in every step. The set of rules includes rules for finding

the target cell and for removing persons from the simulation if they have reached an exit cell. This design contributes
to the modularity of our cellular automaton because single rules can easily be replaced or extended if necessary.

(a) Exits in different distances: The exit on the left is much closer to the evacuees.

(b) Computational results: The min cost approach loses.

Figure 2: This example demonstrates the influence of distances on the minimum cost approach. As both exits have the same capacity, the min cost
approach sends about half of the people to the right exit although they could reach the left one in significantly shorter time.
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4.2. Results

In this section we briefly discuss the advantages and disadvantages of the proposed approaches. As we have
already seen in the introduction, the main disadvantage of using the nearest exit for all evacuees is the fact that exit
capacities are ignored. The minimum cost approach does not only consider the exits but also computes the width
of the bottleneck when reaching an exit from a particular starting point. Thus it can not only handle examples as
described in Fig. 1(a) but also buildings that include structures such as staircases.

However, the minimum cost approach does not care about the distances between evacuees and exits and thus may
fail if there are wide exits very far away. The same problems arise if a lot of exits share the same bottleneck because it
does not take into account that all people that want to go to one of these exits may meet while passing the bottleneck.

The earliest arrival approach uses an optimal flow over time and thus does not suffer from these problems. By
taking the temporal aspect into account it detects bottlenecks and exactly balances between the capacity and the
distance of an exit. Figure 4 and 2 show the superior performance of the earliest arrival approach in the situations
described as critical for the minimum cost approach.

In some sense, the exit assignment computed by the earliest arrival approach is even optimal: if all people in the
simulation (and in reality, too) would behave exactly as the earliest arrival transshipment assumes then the evacuation
would be as fast as possible. Anyway, the only information the agents in our simulation receive is the exit they should
take. In the cellular automaton model (and probably also in reality) people try to get to their desired exit as fast as
possible and choose the shortest path to get there. If the earliest arrival transshipment has decided that a lot of people
should go to an exit reachable by different ways of different length, all people will take the shortest one. That can take
significantly longer than the earliest arrival transshipment expected. Figure 3 shows that the minimum cost approach
should be preferred for situations like this.

We compared our approaches to a game theoretic approach based on response functions presented in [8]. They
model the exit selection as an n-player game where the strategy of the evacuees consists of chosing an exit. The
evacuees try to choose the strategy that gives the largest payoff value in response to the strategies chosen by all other
evacuees. The strategy selection is iterated several times and converges to a Nash equilibrium. For more details on
general game theoretic concepts and the existance and computation of Nash equilibria see [17, 18, 11].

The authors of [8] give a basic instruction on how to compute the payoff value. We concretized the calculation by
defining the following formula: The payoff value of a selected exit is the estimated evacuation time, which consists of
a weighted sum of the estimated moving time and the estimated queueing time. Let K be the set of exits and k ∈ K be
one of the exits. Let the distance (in means of floor potential value) for evacuee i to k be denoted by dk(i), the number
of evacuees heading to exit k by qk, the capacity of the exit by ck and vmax the speed of the evacuees. Then the payoff
for the selected exit k for evacuee i is defined as

p(k, i) �
1
2

(
qk

ck
+

dk(i)
vmax

)

Each evacuee chooses the exit k∗(i) with p(k∗, i) = min {p(k, i) | k ∈ K} that minimizes the value for p(k, i) and the
process is iterated. It turns out that the process converges very fast, after very few iterations a Nash equilibrium is
reached.
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(a) Different positions of pillars.

(b) Computational results: The earliest arrival transshipment counts too much on the foresight of the evacuees.

Figure 3: Evacuees going to the right exit will jam at the bottleneck between the pillars because they do not take the longer but more clever way
around the pillars. The earliest arrival approach does not take this into accout and does not perform as well as before.

5. Discussion

We have seen that network flows greatly help to compute good exit assignments but the approaches are still in
an early state of development and thus have some disadvantages. To reach the best results, one should apply all
approaches and choose the best exit assignment by testing all assignments in a simulation. It might also be possible
to create an algorithm predicting the best approach, but this would be a topic of further research.

The gained exit assignments can also be used as initial distributions for iterative heuristics like the best response
dynamic approach to decrease the number of necessary iterations. Another idea to improve the performance of ex-
isting approaches by using network flow techniques is to include the capacity calculation described in section 3.2 to
gain better approximations of the real capacity of exits. In our tests with the best response dynamics approach this
significantly improved the results.

Our research on the use of network flows to set up evacuation plans is far from complete. It is a very interesting
question whether our approaches could be combined to reduce the disadvantages of each. Furthermore, the approach
using earliest arrival flows could be improved by restricting the algorithm from choosing unlikely routes for evacuees.

Even more interesting is the question whether there is a more direct way to derive evacuation plans from network
flows than to calculate exit assignments and use them to develop a good plan. A big step into this direction is the
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(a) Two exits share the same bottleneck.

(b) Computational results: The diagram depicts the number of safe evacuees for every point in time.

(c) A screenshot of the jam that emerges at the shared bottleneck when using the shortest path approach.

Figure 4: A building with a shared bottleneck on the right exit: Only the earliest arrival approach has no problems with the shared bottleneck.
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computation of personal evacuation routes, i.e. of a detailed plan telling exactly which way each person should take in
a perfect evacuation. The computation of escape routes could also be performed on a group-basis, e.g. all people in a
room could be assigned a common escape route. The latter can be done by computing an earliest arrival transshipment
and finding a mapping of flow units to the evacuees. However, as people usually do not behave perfectly, additional
ideas are needed to fully use the strength of network flow computations. A new idea which tries to respect human
behavior is the use of Nash Flows over Time [14].
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[13] H. L. Klüpfel, A cellular automaton model for crowd movement and egress simulation, Ph.D. thesis, Faculty of natural sciences, University

Duisburg-Essen, Germany (2003).
[14] R. Koch, M. Skutella, Nash equilibria and the price of anarchy for flows over time, in: M. Mavronicolas (Ed.), Proceedings of the 2nd

International Symposium on Algorithmic Game Theory, Lecture Notes in Computer Science, Springer, Berlin, 2009.
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