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Abstract. We describe an algebraic framework including, in particular, the afline monoid of a 
given ring. Within this framework it is a simple matter to deduce Ehrenfeucht's Conjecture from 
Hilbert's Basis Theorem. 

1. Introduction 

Ehrenfeucht's Conjecture in formal language theory goes back to the beginning 
of the 1970s (cf. [4]), and was recently proved by Albert and Lawrence [1]. It can 
be formulated as follows. 

Theorem 1.1 (Ehrenfeucht's Conjecture). Let A be an alphabet (i.e., a finite nonempty 
set), and let A* denote the set of finite words in the letters of  A. I f  L is an arbitrary 
subset of A*, then there exists a finite subset F of L which is a test set for L in the 
following sense: if B is any alphabet and h~, h2: A*-* B* are any two homomorphisms, 
then 

VWE F." h l ( w  ) = h2(w ) implies that Vw~ L: hi(w) = h2(w). 

According to Salomaa [6], various proofs of Theorem 1.1 have been given, all of 
them ultimately based upon Hilbert's Basis Theorem (see Section 3 below). See also 
Perrin [5], a paper which, in addition, comments upon some related results and 
open problems. 

The aim of the present paper is primarily to clarify: we believe that our proof is 
quite transparent, and, in particular, that it makes clear how a result in commutative 
algebra (namely Hilbert's Basis Theorem) can contribute to proving an essentially 
noncommutative result (namely Ehrenfeucht's Conjecture). 
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The main tool for passing between commutative rings and noncommutative 
monoids is the construction which to any ring R associates its affine monoid Aft(R) 
(Definition 2.3). Essential ingredients in the transfer of information between the' 
two areas mentioned are the 'homomorphism lemma' (Lemma 2.4), the 'injectivity 
lemma' (Lemma 2.5), and Lemma 2.6, which asserts the existence of a ring- 
homomorphism representing a given monoid-homomorphism. These results are 
collected in Section 2. 

The proof given in Section 3 is in its essence modelled after the proof in [6]. 
According to that author, basic parts of the proof are due to McNaughton. 

2. Algebraic preliminaries 

In this section we shall explicitly formulate the universal properties of the monoid 
A* and of the polynomial ring Z[A] (Lemmas 2.1 and 2.2), we shall define the 
affine monoid Att(R) associated with a given ring R and state a simple 'homomor- 
phism lemma' (Lemma 2.4). The less trivial Lemmas 2.5 and 2.6 are proved in detail. 

Lemma 2.1. Let A be an alphabet. 
(1) A* is a monoid (with concatenation as operation and the empty word as neutral 

element). 
(2) l f  M is any monoid and f :  A-> M any function, then f has a unique extension 

to a monoid-homomorphism f :  A* -~ M. 

In addition to the monoid A* we shall consider the set Z[A] of all polynomials 
with indeterminates belonging to A and integer coefficients. 

Note. We require all rings to have a unit element and all ring-homomorphisms to 
map unit element into unit element. 

Lemma 2.2. Let A be an alphabet. 
(1) Z[A] is a commutative ring (with the usual operations of polynomial addition 

and multiplication). 
(2) I f  K is any commutative ring and f :  A--> K any function, then f has a unique 

extension to a ring-homomorphism f :  Z[ A ] --> K. 

Lemmas 2.1 and 2.2 are often formulated as: "A* is the free monoid generated by 
the set A" and "'Z[A] is the free commutative ring generated by the set A'" respectively. 

Both of these results are easy to prove, Lemma 2.1 by the general associative law, 
and Lemma 2.2 by the general associative, the general commutative, and the general 
distributive laws. 
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2.1. The a.ffine monoid 

Let R be any ring. A function f :  R --> R of  the form 

f ( x )  = r+ sx, 

where (r, s) s R 2 is called aj3ine. It is clear that if 

g(x)  = t + ux, 

then 
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( f  o g ) ( x ) = ( r +  s t )+(su)x ,  

which shows that the set of  afline functions is closed under composition, and 
therefore, is a monoid. This observation motivates the following definition. 

Definit ion 2.3. Let R be a ring. By the affine monoid Af t (R)  o f  R we understand 
the set R 2 organised with the binary operation 

(r, s) • (t, u )=  (r+ st, su). 

The following result is obvious. 

A 

Lemma 2.4. Let R~ and R 2 be rings, and let h: R1 -> R2 be a ring-homomorphism. Then 
the map /~ x/~: Aff(Rl) --> Aft(R2) defined by component-wise application of  h is a 
monoid.homorphism. 

The injectivity result of Lemma 2.5 is crucial. 

Lemma 2.5. Let A be any alphabet, and let A*, Z[A] ,  and Aff(Z[A]) be the monoid, 
the polynomial ring, and the a Oine monoid described above. Let a : A -, Aff(Z[A]) be 

defined by 

or(a) = (a, a) for  all a ~ A, 

and let t~:A*-> Aff(Z[A]) denote its extension to a monoid-homomorphism. Let z;1 
denote the projection o f  AtI(Z[A]) onto its first coordinate, i.e., 

¢r~(p~, p2) = p~ for  (p~, pE) e Af f(Z[A]) .  

Then 7ri o 6z : A* --> ZCA] is injective. 

Proof. It is easy to see that if  w = a~a2.., ak ~ A* is a word of  length k, then ~r~ o ti(w) 

is a sum of  the k monomials a~, a~a2, a l a 2 a 3 , . . . ,  a~a2.., ak. Thus, ~rl ° ti(w) tells 
us not  only which characters occur in w, but also their order. [] 
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2.2. The disjoint sum A + A 

Let A be an alphabet. We denote by A~ respectively A2 the two disjoint copies 
of A obtained by providing each element with the index T respectively '2', and we 
define the disjoint sum A + A by 

A + A = A ~ u A 2 .  

We define two maps ~o~, q~2: A--> A + A by 

q~i(a)=ai f o r a ~ A , i = l , 2 .  

In view of Lemmas 2.1 and 2.2 these maps have extensions to monoid-homomor- 
phisms ffi : A* --> (A + A)* and to ring-homomorphisms ff~ : Z[A] --> Z[A + A]. (The 
extensions simply consist in providing each letter occurring in a word or a polynomial 
with the index in question.) 

The next lemma is one of the main ingredients in the proof of Ehrenfeucht's 
Conjecture. 

Lemma 2.6. Let A be an alphabet, let A+ A, ~Pl and ~p2 be defined as above, and 
define cr : A--> Att(Z[A + A]) by 

o.(a)=(al,az)=(~pn(a), q~2(a)) f o r a ~ A .  

Let B be any alphabet, and let fl:B*-> Aff(Z[B]) be the monoid-homomorphism 
corresponding to the map ~ of  Lemma 2.5. 

Then, if  h : A*--> B* is any monoid-homomorphism, there exists a unique ring- 
homomorphism/~: Z[A + A] --> Z[B] such that 

(I) 

i.e., such that the following diagram is commutative. 

A* 

Aff(ZEa + A]) 

h 
) B* 

t~ 

~×~ 
, 

Proof. The proof is easy. First assume that (1) holds, and consider any a e A. The 
element flo h(a) in Aff(Z[B]) is of the form (pl(a),p2(a)), where the two poly- 
nomials pi(a)~ Z[B] depend upon a. By (1), we have 

(/~ x/~)(cr(a)) = (p,(a) ,  P2(a)), 

i.e., h(al )=p,(a)  and h(a2)=p2(a). 
Thus,/~ is uniquely determined on A + A. By the uniqueness part of Lemma 2.2, 

/~ is uniquely determined on Z(A+ A). 
To see that/~ exists, let f :  A + A--> Z[B] be determined by 

f ( a , )=p , (a ) ,  f(a2)=p2(a), 
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where a ~ A is arbitrary, and (pl(a),  p2(a))= f l°  h(a) as above. By Lemma 2.2, f 
has an extension g =)7 to a dng-homomorphism from Z [ A +  A] into Z[B], and by 
Lemma 2.4, /~ x g is a monoid-homomorphism of Aff(Z[A + A]) into Aff(Z[B]). 

Thus, both sides of (1) are monoid-homomorphisms, and since they coincide on 
all a e ,4, they coincide on A* ,by the uniqueness part of Lemma 2.1. [] 

3. Proof of Ehrenfeucht's Conjecture 

It was proved by Culik and Karhum~iki (see [4]) that Ehrenfeucht's Conjecture 
is equivalent to the following statement. 

Theorem 3.1. Let A be an alphabet and let I be an index-set. Let (wi,~, Wi,2)i~I be a 
family o f  pairs o f  words in A*: 

V i e  I: (wi,1, w ~ 2 ) e A * x A * .  

Then there exists a finite subset J of  I such that if B is any alphabet and h : A* ~ B* 
any monoid-homomorphism, then 

Vj  ~ J: h(w~,~) = h(wj.2) (2) 

implies that 

V i e  I: h(w~l) = h(wi.2). (3) 

Both of the implications in the statement that Theorem 1.1 and Theorem 3.1 are 
equivalent can be proved by means of constructions involving the direct sum A + A. 

We shall prove Theorem 3.1 from the following theorem. 

Hilbert's Basis Theorem. Let A be an alphabet and let I be an index set. Let (P~)i~ 
be a family of  polynomials in Z[A]. Then there exists a finite subset J of  I such that 
the ideal generated by the set {p~ IJ e J} contains the set {p~J i e I}. 

We note that the theorem means that each polynomial p~, i ~ 1, can be written as 
a linear combination of the polynomials pj, j  ~ J, in the sense that there exist 
polynomials q~ e Z[A],  i e I, j e J, such that 

Vi~ I: p i=  ~ q,~j. (4) 
j e J  

A proof of this--not  very deep--theorem can, for instance, be found in [2, p. 81; 
3, p. 240; or 7, p. 200]. 
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Proof of Theorem 3.1. Let A, I, and (w~l , w~2)i~ be given, and construct A+A, 
¢1, ~o2, and tr as in Lemma 2.6. Also, let ~'1 denote the projection of Aff(Z[A + A]) 
onto its first coordinate. 

For each i E/,  define the polynomial pi E Z[A + A] by 

Pi = ~ ,  o 6"( wi,,) - ~r, o 6"(wi,2). (5) 

By Hilbert's Basis Theorem there exists a finite subset J of I and polynomials 
qi~ E l [A  + A] such that (4) holds. We shall now show that if B is any alphabet and 
h:A*-* B* any monoid-homomorphism, then (2) implies (3). 

To see this, let /~ and/~ be determined as in Lemma 2.6, and let ~'1 denote the 
projection of Aff(Z[B]) onto its first coordinate, too. 

Consider any two words wl and w2 in A*. Since Zrl o/~ is injective (Lemma 2.5), 
we have 

h(w,)=h(w2) (6) 

if and only if  

~1°  ~ °  h(w,)='n',o ~ o  h(w2). 

Using (1) we see that (7) is the same as 

~ , o  ( ~  x E) o (~(w,) = .,.,., o (E x E) o ,~(w2) 

or 

g o ~ o ~ ( w , )  = / ~  o ~ ,  o a ( w 2 ) ,  

and since/~ is a ring-homomorphism, it follows that (6) holds if and only if 

g(~r, o ~ ( w , ) - ~ ,  o ~ ( w 2 ) )  = 0. 

Thus, by the definition (5) of the pi's, (2) is equivalent to 

vj~J: g(pA = o. 

Since/~ is a ring-homomorphism, it follows from (4) and (8) that 

V / E / :  h ( p , ) =  ~, g(qo) f l (p j )=O.  
j e J  

which is equivalent to (3). [] 

(7) 

(8) 
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