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Abstract

In this article we study the evaluation of symmetric functions on the alphabet of contents of

a partition. Applying this notion of content evaluation to the computation of central characters

of the symmetric group, we are led to the definition of a new basis of the algebra L of

symmetric functions over QðnÞ that we call the basis of class symmetric functions.

By definition this basis provides an algebra isomorphism between L and the Farahat–

Higman algebra FH governing for all n the products of conjugacy classes in the center Zn of

the group algebra of the symmetric group Sn: We thus obtain a calculus of all connexion

coefficients of Zn inside L: As expected, taking the homogeneous components of maximal

degree in class symmetric functions, we recover the symmetric functions introduced by

Macdonald to describe top connexion coefficients.

We also discuss the relation of class symmetric functions to the asymptotic of central

characters and of the enumeration of standard skew young tableaux. Finally we sketch the

extension of these results to Hecke algebras.
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1. Introduction

A starting point for the present work can be found in early investigations, by
Frobenius [3] and Ingram [6], of the so-called central characters of the symmetric
group. Given a partition m; the central character om evaluated at a partition l of n is

a normalization of the irreducible character wl of the symmetric group Sn evaluated
at a permutation s of reduced cycle type m;

ol
m ¼ jCmðnÞj

f ðlÞ wlðsÞ; ð1Þ

where CmðnÞ stands for the conjugacy class of permutation with reduced cycle type m;
and f ðlÞ is the dimension of the irreducible representation indexed by the partition l:
For m the empty partition, om is identically equal to 1 since f ðlÞ ¼ wl1n ; and the first

interesting case is m ¼ 1; i.e. for the class C1ðnÞ of transpositions: it is then well

known (see [3,6] or [15, Chapter 1]) that jC1ðnÞj
f ðlÞ wl

21n�2 is obtained by summing the

numbers j � i over all positions ði; jÞ in the Ferrers diagram of l:

ol
1 ¼

n
2

� �
f ðlÞ w

l
21n�2 ¼

X
ði;jÞAl

ð j � iÞ: ð2Þ

The numbers j � i are called the contents of l: See Table 1 for the contents of the
partitions l of 4 and the corresponding values ol

1; computed out of the values of the

characters in Table 2.
In view of Formula (2), it is natural to ask for a general expression of central

characters. Ingram [6] computed a few other similar expressions, but the idea to use
systematically content evaluation was brought to our attention by the work of
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Table 1

Contents of l
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Katriel. Let CðlÞ ¼ f j � i : ði; jÞAlg be the multiset of contents of the partition l
and let pkðCðlÞÞ ¼

P
ði;jÞAl ð j � iÞk be the kth power sum symmetric function

evaluated at the contents of l (see Table 1). Katriel [8–11] conjectured that the

central characters ol
r can be written as

ol
r ¼ prðCðlÞÞ þ

X
jnjor

On
rðnÞpnðCðlÞÞ;

where On
rðnÞ are polynomials in n of degree at most ðr � jnjÞ=2 and that On

rðnÞ is equal
to zero if r and jnj do not have the same parity.
We show in this article that the conjecture of Katriel is true and more precisely

that the degree of the polynomial On
rðnÞ is at most ðr � jnjÞ=2þ 1� cðnÞ: Moreover,

we extend that result and show that for each partition m; there corresponds a
symmetric function, called class symmetric function, and denoted omðxÞ such that

when om is evaluated on the contents of a partition l; we obtain the central character
ol

m: The first few omðxÞ are presented in Table 3 for jmjp6 and cðmÞp3: A

preliminary version of these results was presented at the 12th FPSAC conference [5].
These class symmetric functions in fact form a new basis of the algebra L of

symmetric functions over QðnÞ: This is the key to obtain an isomorphism between L
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Table 2

Character table of S4

l\m (4) ð3; 1Þ ð2; 2Þ ð2; 12Þ ð14Þ

(4) 1 1 1 1 1

ð3; 1Þ �1 0 �1 1 3

ð2; 2Þ 0 �1 2 0 2

ð2; 12Þ 1 0 �1 �1 3

ð14Þ �1 1 1 �1 1

Table 3

Class polynomials omðxÞ of Sn indexed with reduced partitions m; jmjp6 and cðmÞp3

o1 ¼ p1 o2 ¼ p2 � ðn
2
Þ

o3 ¼ p3 � ð2n � 3Þp1 o12 ¼ 1
2

p12 � 3
2

p2 þ ðn
2
Þ

o4 ¼ p4 � 2p12 � ð3n � 10Þp2 þ 5ðn
3
Þ � 3ðn

2
Þ o21 ¼ p21 � 4p3 � ððn

2
Þ � 6n þ 8Þp1

o5 ¼ p5 � 6p21 � ð4n � 25Þp3 þ 2ð3n � 4Þðn � 5Þp1
o31 ¼ p31 � 5p4 þ ð12n � 35Þp2 � ð2n � 11Þp12 � 16ðn

3
Þ þ 8ðn

2
Þ

o22 ¼ 1
2

p22 � 5
2

p4 � ððn
2
Þ � ð6n � 15ÞÞp2 þ 3p12 þ 3ðn

4
Þ � 6ðn

3
Þ þ 3ðn

2
Þ

o13 ¼ 1
6

p13 þ 10
3

p3 � 3
2

p21 þ ððn
2
Þ � 4n þ 5Þp1

o6 ¼ p6 � 9
2

pð22Þ � 5
2
ð2n � 21Þp4 � 8p31 þ 1

2
ð21n2 � 241n þ 504Þp2 þ 2ð7n � 36Þp12

�49ðn
4
Þ þ 91ðn

3
Þ � 40ðn

2
Þ

o41 ¼ p41 � 6p5 þ 10ð2n � 11Þp3 � ð3n � 40Þp21 � 2p13 þ ð5ðn
3
Þ � 53ðn

2
Þ þ 24ð5n � 6ÞÞp1

o32 ¼ p32 � 6p5 � 1
2 ðn � 5Þðn � 36Þp3 � ð2n � 27Þp21 þ ð6ðn

3Þ � 47ðn
2Þ þ 20ð5n � 6ÞÞp1

o212 ¼ 1
2

p212 þ 15p4 � 4p31 � 3
2

p22 þ 5
2
ððn
2
Þ � 6ð2n � 5ÞÞp2 � 1

2
ððn
2
Þ � 6n þ 26Þp12

�6ðn
4
Þ þ 30ðn

3
Þ � 13ðn

2
Þ
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and the Farahat–Higman algebra FH governing products of conjugacy classes in the
centerZn of the group algebra of the symmetric group Sn: This main result allows to
study content evaluation of symmetric functions and to show, for example, that given
a family ðalÞlAn of rational values indexed by partitions of n there exists a unique

symmetric polynomial f ðx1;y; xnÞ such that f ðCðlÞÞ ¼ al: Then we study the
relation of these results with known results about the asymptotic of skew young
tableaux. We recover for instance the fact that if A is a fixed number and l is a

partition of n with l1pA
ffiffiffi
n

p
and cðlÞpA

ffiffiffi
n

p
and if m is a partition of k then

f ðl=mÞ
f ðlÞ ¼ f ðmÞ

k!
þ Oðn�1=2Þ;

as n-N: This result first appeared in [22]. More generally our results appear
connected to a number of recent attempts to develop original approaches to the
study of representation theory of the symmetric group (in particular see [1,12,19]).
Our exposition is organized as follows. We start with some definitions. Then we

prove the main theorem and give some of its consequences. Next, we use class
symmetric functions to give asymptotic enumeration of certain classes of tableaux.
We end by showing how these results extend to Hecke algebras.

2. Definitions

2.1. Partitions

A partition l ¼ ðl1; l2;y; lkÞ is a finite non-increasing sequence of positive
integers li; called the parts of l; such that l1Xl2X?XlkX1: When the sum l1 þ
l2 þ?þ lk ¼ n; we say that l is a partition of n into k parts and we write lAn or

jlj ¼ n and cðlÞ ¼ k: The conjugate of a partition l is denoted by l0 and l0i ¼
jfj: ljXigj:
The refinement partial order oR on integer partitions of size n is the partial order

induced by the inclusion order on set partitions: aoR b if a is obtained by breaking
some parts from b: The inclusion partial order C on partitions is the partial order
such that aCb if and only if aipbi for 1pipcðaÞ: The (partial) natural ordering on
partitions is defined for a ¼ ða1;y; akÞ; b ¼ ðb1;y; bcÞ by: apb if jajojbj or if
a1 þ?þ aipb1 þ?þ bi for all i ¼ 1;y; c:

Given a partition l ¼ ðl1; l2;yÞ of n; we define its reduced partition *l as the
partition ðl1 � 1; l2 � 1;yÞ; i.e. each part is reduced by one and zero parts are
removed. Observe that for all nX1; this is a bijection between partitions of n and
partitions m satisfying jmj þ cðmÞpn (including the empty partition e). The reduced
cycle type of a permutation s is defined accordingly. Given a partition m; we denote
by CmðnÞ the conjugacy class of permutations of Sn with reduced cycle type m: For
instance C1ðnÞ is the class of transpositions of Sn; C2ðnÞ the class of 3-cycles, and so

on. In view of the previous observation, CmðnÞa| if and only if nXjmj þ cðmÞ; and
ðCmðnÞÞjmjþcðmÞpn is the family of all conjugacy classes of Sn: We also identify each
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conjugacy class CmðnÞ with the formal sum
P

sACmðnÞ s; which is an element the center

Zn of the group algebra of the symmetric group Sn: The family of all conjugacy
classes ðCmðnÞÞjmjþcðmÞpn then forms a basis of Zn:

2.2. Characters

A linear representation of a group G is a group homomorphism M : G-AutðVÞ
from G to the group AutðVÞ of automorphisms of a vector space V : It can be seen as
a map that associates to each group element xAG an invertible matrix MðxÞ that acts
on V : The character of a representation M is the homomorphism w : G-Q given by
wðxÞ ¼ trðMðxÞÞ; i.e. that associates to each xAG the trace of the matrix MðxÞ:
Unlike the characters, the entries of the matrices MðxÞ are dependent on the choice of
the basis of V :When the basis of V is chosen so that all the matrices MðxÞ are block-
diagonal with indecomposable blocks, these irreducible blocks are the irreducible
representations of G: The irreducible representations of the symmetric group Sn and
their corresponding characters are indexed with partitions l of n; and we write

wlðsÞ ¼ trðMlðsÞÞ where l is the indexing partition of the irreducible representation.

Characters are obviously class functions and we write wlm for the common value w
lðsÞ

for sAC *mðnÞ: We also view the character wl as an element
P

s w
lðsÞ s in Zn: It is well

known that the family ðwlÞlAn forms a basis ofZn; and that the matrix ½wlml;mAn; called

the character table, is invertible. Table 2 shows the character table of the group S4:

2.3. Farahat–Higman algebra

The fact that the family ðCmðnÞÞjmjþcðmÞpn forms a basis of the center Zn of the

group algebra of the symmetric group Sn allows to define the linearization

coefficients clm;nðnÞ of the products CmðnÞ � CnðnÞ in Zn for all n:

CmðnÞ � CnðnÞ ¼
X
l

clm;nðnÞClðnÞ:

Farahat and Higman [2] proved that the coefficients clm;nðnÞ are polynomials in n: Let

the Farahat–Higman algebra FH be the algebra over QðnÞ with basis ðCmÞm
(considered as formal elements) and product

Cm � Cn ¼
X
l

clm;nðnÞCl:

This algebra was introduced in [15, Chapter I.7, Example 24]. The following conditions

are necessary for the connexion coefficient clm;nðnÞ to be non-zero polynomials:

1. jmj þ jnj and jlj have the same parity,
2. jljpjmj þ jnj;
3. if jlj ¼ jmj þ jnj then ðm,nÞoRl in the refinement order on partitions.
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Proposition 2.1. The coefficient clm;nðnÞ is a polynomial in n of degree bounded by

1

2
ðjmj þ jnj � jljÞ þ cðmÞ þ cðnÞ � cðlÞ: ð3Þ

Proof (sketch of). First we show that this bound is correct for any coefficient cl1;nðnÞ
in a product C1 � Cn: This is done by a verification of the six possible cycle types
obtained when we multiply sACn by a transposition. After this verification, we
observe that when jmj ¼ k then (3) is an upper bound for the product C1 �? � C1 �
Cn of C1 with itself k times and with Cn: Since Cm � Cn is a component of the latter

product, the coefficient clm;nðnÞ is also bounded by (3). &

Observe that this bound is not always tight: for instance c
ð1;1Þ
ð1Þ;ð3ÞðnÞ ¼ 4 is

independent of n; in contradiction with the (false) statement of [15, Chapter I.7,

Example 24] that clm;nðnÞ should be independent of n if and only if jmj þ jnj ¼ jlj:
Similarly we define the coefficients bn

mðnÞ; for m ¼ ðm1;y; mkÞ ¼ 1m1?nmk a

partition (see [15, Chapter I.7, Example 24, 25]):

Cm1 �? � Cmk
¼

Y
i

mi!

 !
Cm þ

X
moRn

bn
mðnÞCn þ

X
jnjojmj

bn
mðnÞCn;

¼
Y

i

mi!

 !
Cm þ

X
n0om0

bn
mðnÞCn; ð4Þ

(recall that n0 is the conjugate of n and that nom refers to the natural ordering
as previously defined). The connexion coefficient bn

mðnÞ is zero if jmj and jnj
have different parity and is a polynomial in n of degree bounded by 1

2
ðjmj � jnjÞ þ

cðmÞ � cðnÞ:

2.4. Classical symmetric functions

The elementary and homogeneous symmetric functions can be defined by their
generating functions (see [15, Chapter I])

Y
iX1

ð1þ txiÞ ¼
X
mX0

emðxÞtm;
Y
iX1

1

1� txi

¼
X
mX0

hmðxÞtm

with x ¼ x1; x2;y : For a partition l ¼ ðl1;y; lkÞ; these definitions are extended
multiplicatively: el ¼ el1?elk

and hl ¼ hl1?hlk
: The power sum symmetric

functions are classically defined by

pmðxÞ ¼
X
iX1

xm
i and pl ¼ pl1?plk
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and this definition is extended to differences of alphabets in the plethystic
notation by

pmðA � BÞ ¼
X
aAA

am �
X
bAB

bm: ð5Þ

A general relation between elementary, homogeneous and power sum symmetric
functions then reads, for two alphabets A and B;

Q
aAA ð1� taÞQ
bAB ð1� tbÞ ¼

X
mX0

hmðA � BÞ tm; where hmðA � BÞ ¼
X
mAm

1

zm
pmðA � BÞ; ð6Þ

where for a partition m ¼ 1m1?pmp ; we write as usual zm ¼ m1!1
m1?mp!p

mp :

2.5. Content evaluation

Recall that CðlÞ ¼ fj � i j ði; jÞAlg is the multiset of contents of the partition l:
Given a symmetric function f ðx1; x2;yÞ and a partition lAn we define its content

evaluation f ðCðlÞÞ ¼ f ðc1;y; cn; 0; 0;yÞ where the ðciÞ1?n form an arbitrary

enumeration of the elements of CðlÞ: For instance, the content evaluation of power
sums is particularly simple to express

pkðCðlÞÞ ¼
X
ði;jÞAl

ð j � iÞk:

The classical content polynomial of a partition l of n;

clðtÞ ¼
Y

ði;jÞAl

ðt þ ð j � iÞÞ ¼
Xn

k¼0
ekðCðlÞÞ tn�k;

is just the generating function of elementary symmetric functions evaluated on the
contents of l (modulo some power of t).
Observe now that (see also [15, p. 15])

clðt þ kÞ
clðt þ k � 1Þ ¼

Y
ði;jÞAl

t þ k þ ð j � iÞ
t þ k � 1þ ð j � iÞ ¼

YcðlÞ
i¼1

t þ li þ k � i

t þ k � i
:

We shall be interested in expansions in power series of y ¼ 1=t of the latter
expression, which is conveniently rewritten with the notation cðaÞ ¼ j � i for the
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content of the box a ¼ ði; jÞ:

clð1=y þ kÞ
clð1=y þ k � 1Þ ¼

Y
aAl

1þ yk þ ycðaÞ
1þ yðk � 1Þ þ ycðaÞ

¼ 1þ yk

1þ yðk � 1Þ


 �nY
aAl

1þ ycðaÞ
1þyk

1þ ycðaÞ
1þyðk�1Þ

: ð7Þ

2.6. Power content symmetric functions and shift-symmetric functions

The evaluations pkðCðlÞÞ can also be expressed as functions in the parts li of l:
For example we deduce from Fig. 1:

p1½CðlÞ ¼
X

i

li

2


 �
� ði � 1Þli;

p2½CðlÞ ¼
X

i

li þ 1

3


 �
þ

li

3


 �
� ði � 1Þliðli � 1Þ:

We call these polynomials in the li the power-content polynomials. More precisely
we define the kth power-content function pckðxÞ as the unique function such that for
all partitions l

pckðl1; l2;yÞ ¼ pkðCðlÞÞ:

The functions pckðx1; x2;yÞ are not symmetric but they are shift symmetric, in the
sense of Okounkov and Olshanski [19]: a function pðx1; x2;yÞ is shift symmetric if it
satisfies one of the following two equivalent conditions:

1. pðx1;y; xi; xiþ1;yÞ ¼ pðx1;y; xiþ1 � 1; xi þ 1;yÞ 8iX1:
2. pðx1; x2;yÞ becomes a symmetric polynomial under the change of variables

x0
i :¼ xi � i þ k with k an arbitrary constant.

Theorem 2.1. For any positive integer k; pckðx1;y; xi; xiþ1;yÞ is a shift-symmetric

function.
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Proof. This is obvious when we observe the effect on the contents of the exchange of
two adjacent rows li; liþ1 of a diagram l:
The set of contents in the two rows on the left of Fig. 2 remains unchanged

after we perform the shifted transposition. This means that the sum of the kth
power of these entries is invariant under a shifted transposition and proves
the theorem. &

The algebra L� of shift-symmetric functions was studied by Okounkov and
Olshanski [19]. The set fpcl ¼ pcl1pcl2?g of power content functions forms a basis

of L�: As any symmetric function gðCðlÞÞ in the contents of a partition l becomes a
shift-symmetric polynomial in the parts of l we are allowed to define a map
p :L-L� by pðpkÞ ¼ pck:

3. The basis of class symmetric functions

We are now in a position to state our main result.

Theorem 3.1. There exists a basis ðomðxÞÞm of the algebra L over QðnÞ of symmetric

functions in the indeterminates x ¼ fx1; x2;yg such that the content evaluations of the

symmetric functions omðxÞ yield central characters: for any partition m; for all

nX1; lAn;

omðCðlÞÞ ¼ jCmðnÞj
f ðlÞ wlðsÞ for any sACmðnÞ; ð8Þ

where wl and f ðlÞ are the character and dimension of the irreducible representation of

Sn indexed by l: In other terms each om represents simultaneously for all n the

eigenvalues of the multiplicative action of the CmðnÞ on the center Zn of the group

algebra of Sn: for all nX1 and lAn;

CmðnÞ � wl ¼ omðCðlÞÞ wl: ð9Þ

Moreover, the map c :Cm/omðxÞ is an algebra isomorphism between the Farahat–

Higman algebra FH and the algebra L: for all partitions m; n;

cðCm � CnÞ ¼ cðCmÞcðCnÞ ¼ omðxÞonðxÞ:

The symmetric functions omðxÞ thus provide a calculus in L for the connexion

coefficients of the algebra FH, or, equivalently, for any fixed n; for connexion
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coefficients of the symmetric group Sn: for all partitions m; n;

omðxÞonðxÞ ¼
X

jljpjmjþjnj
clm;nðnÞolðxÞ:

Remark. For any fixed n; we thus obtain a polynomial calculus that provides all
connexion coefficients of Zn as linearizations. As opposed to this, the polynomial
representation introduced by Macdonald [15, Chapter I.7, Example 25] was
restricted to the so-called top connexion coefficients of Zn (see also Goulden and
Jackson’s account of Macdonald’s result in [4]). In fact, the homogeneous
components of maximal degree in our class polynomials om are the polynomials

gl studied there.

3.1. Class symmetric functions for cycles

We need some preliminary results before proving Theorem 3.1.

Lemma 3.1. The symmetric function omðxÞ defined by Relation (8) with m ¼ ðrÞ for all

lAn have an expansion in the power sum basis

orðxÞ ¼ prðxÞ þ
X
jnjor

On
rðnÞ pnðxÞ;

where the On
rðnÞ are polynomials in n of degree at most ðr � jnjÞ=2þ 1� cðnÞ:

Proof. Let ðtÞr and ðtÞðrÞ denote, respectively, the rth descending and ascending

factorials of t: The following expression is due to Ingram [6] (see also [15, p. 118]):
for l ¼ ðl1;y; lkÞAn; the central character

jCrðnÞj
f ðlÞ wlðsÞ with sACrðnÞ

is equal to the coefficient of t�1 in the expansion in powers of 1=t of

ð�1Þrþ1ðtÞðrþ1Þ

ðr þ 1Þ2
Yn

i¼1

t þ r þ 1þ li þ n � i

t þ li þ n � i
:

Using the remarks of Section 2.4, this is also the coefficient of t�1 in the expansion in
powers of 1=t of

ð�1Þrþ1ðt þ nÞðrþ1Þ

ðr þ 1Þ2
clðt þ n þ r þ 1Þ

clðt þ n þ rÞ
clðt þ n � 1Þ

clðt þ nÞ :

The coefficient of t�1 in the expansion in powers of 1=t of a rational function is stable
under translation of the form t-t � x so that we can as well look for the coefficient
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of t�1 in

ð�1Þrþ1ðtÞðrþ1Þ

ðr þ 1Þ2
clðt þ r þ 1Þ

clðt þ rÞ
clðt � 1Þ

clðtÞ
:

Upon setting t ¼ �1=y and using Eq. (7) the central character thus reads

�1
ðr þ 1Þ2

½yrþ2
Yr

s¼0
ð1� syÞ ð1� yðr þ 1ÞÞð1þ yÞ

1� yr


 �nY
aAl

1� ycðaÞ
1�yðrþ1Þ

� 
1� ycðaÞ

1þy

� 
1� ycðaÞ

1�yr

� 
ð1� ycðaÞÞ

;

where ½yrf ðyÞ denotes the coefficient of yr in the power series expansion of f ðyÞ:
Now consider the alphabet A ¼ CðlÞ � ½Ar þ A0 � A�1 � Arþ1 where Ak ¼ f 1

1�ky
g is

a one-letter alphabet. Using the plethystic formulas (5) and (6), the last product can
be expanded to give

�1
ðr þ 1Þ2

½yrþ2
Yr

s¼0
ð1� syÞ ð1� yðr þ 1ÞÞð1þ yÞ

1� yr


 �n

1þ
X

n;jnj40

pn½Ar þ A0 � A�1 � Arþ1 pnðCðlÞÞ yjnj

zn

0
@

1
A:

This expression is an expansion in power sums evaluated on contents. The
coefficients of Lemma 3.1 should therefore be defined as

Oe
rðnÞ ¼

�1
ðr þ 1Þ2

½yrþ2
Yr

s¼0
ð1� syÞ 1� y2ðr þ 1Þ

1� yr


 �n

;

where e is the empty partition; otherwise (jnj40):

On
rðnÞ ¼

�1
ðr þ 1Þ2

½yrþ2�jnj
Yr

s¼0
ð1� syÞ

� 1� y2ðr þ 1Þ
1� yr


 �n
pn½Ar þ A0 � A�1 � Arþ1

zn
:

This is indeed a polynomial in n; as shown by expansion in the binomial basis of the
nth power:

On
rðnÞ ¼

1

zn

Xrþ2�jnj
2

j k
i¼0

ð�1Þiþ1 n

i


 �
ðr þ 1Þi�2½yrþ2�jnj�2i

�
Qr

s¼0ð1� syÞ
ð1� ryÞi

pn½Ar þ A0 � A�1 � Arþ1:
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Observe moreover that

pk½Ar þ A0 � A�1 � Arþ1 ¼ ð1� ryÞ�k þ 1� ð1þ yÞ�k � ð1� ðr þ 1ÞyÞ�k

¼
X
jX1

k þ j � 1

j


 �
y

1� ry


 �jþk

þ1� ð1þ yÞ�k

¼
X
jX0

k þ j � 1

j


 �
ðrj þ 0j � ð�1Þj � ðr þ 1ÞjÞyj

¼
X

j4i40

k þ j � 1

j


 �
j

i


 �
ðr þ 1Þið�1Þj�i

yj;

so that pk½Ar þ A0 � A�1 � Arþ1 ¼ �ðk þ 1Þkðr þ 1Þy2 þ Oðy3Þ: This implies that

there exists a constant c such that pn½Ar þ A0 � A�1 � Arþ1 ¼ cy2cðnÞ þ Oðy2cðnÞþ1Þ:
In other terms, the polynomial On

rðnÞ has degree at most
r�jnj
2

þ 1� cðnÞ: This allows
to compute the leading term and verify that Or

rðnÞ ¼ 1: &

3.2. The general case

Now let us consider the general central characters. Inverting the triangular
relation (4) yields

Cm ¼
1Q
i mi!

Cm1 �? � Cmk
þ
X
n0om0

dn
mðnÞCn1 �? � Cnc ; ð10Þ

where n ¼ ðn1;y; ncÞ and the coefficients dn
mðnÞ satisfy the same properties as the

bn
mðnÞ; that is they have degree at most ðjmj � jnjÞ=2þ cðmÞ � cðnÞ and they are zero if

jmj and jnj have different parity.
In view of relation (9), formula (10) yields

omðxÞ ¼
1Q
i mi!

om1ðxÞ?omk
ðxÞ þ

X
n0om0

dn
mðnÞon1ðxÞ?oncðxÞ: ð11Þ

Using now Lemma 3.1, relation (11) allows us to obtain a general expansion for our
class symmetric functions, which proves that they form a basis of L; and thus
concludes the proof of Theorem 3.1.

Lemma 3.2. The symmetric functions omðxÞ defined by relation (8) for all lAn have an

expansion in the power sum basis

omðxÞ ¼
1Q

i mi!
pmðxÞ þ

X
n0om0

On
mðnÞpnðxÞ;

where the On
mðnÞ are polynomials in n:
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Now we study the degree of these polynomials.

Lemma 3.3. The On
mðnÞ are polynomials in n of degree at most

jmj�jnj
2

þ cðmÞ � cðnÞ:

Proof. We know that

omðxÞ ¼
X
a0pm0

da
mðnÞoa1ðxÞ?oacðxÞ;

where the da
mðnÞ are polynomials in n of degree at most 1

2
ðjmj � jajÞ þ cðmÞ � cðaÞ and

that

orðxÞ ¼ pr þ
X
jnjor

On
rðnÞpnðxÞ;

where the On
rðnÞ are polynomials in n of degree at most ðr � jnjÞ=2þ 1� cðnÞ:

Therefore,

omðxÞ ¼
X
a0pm0

da
mðnÞ

X
jnð1Þjpa1

?
X

jnðcÞjpac

Yc
i¼1

OnðiÞ
ai

ðnÞ
 !

p,c
i¼1 nðiÞ ðxÞ

¼
X

jnjpjmj

X
nð1Þ;y;nðcÞ

,c
i¼1 nðiÞ¼n

X
a;aiXjnðiÞj
a0pm0

da
mðnÞ

Yc
i¼1

OnðiÞ
ai

ðnÞ
 !

pnðxÞ:

As each OnðiÞ
ai

ðnÞ has degree at most ðai � jnðiÞjÞ=2þ 1� cðnðiÞÞ then
Qc

i¼1 OnðiÞ
ai

ðnÞ
has degree at most 1

2
ðjmj � jajÞ þ cðmÞ � cðaÞ:

Hence

Om
n ðnÞ ¼

X
nð1Þ;y;nðcÞ

,c
i¼1 nðiÞ¼n

X
a;a0

i
XnðiÞ

a0pm0

da
mðnÞ

Yc
i¼1

OnðiÞ
ai

ðnÞ

has degree at most ðjmj � jnjÞ=2þ cðmÞ � cðnÞ: &

3.3. Asymptotic of central characters

We show here that the asymptotic of central characters is a simple consequence of
the two previous subsections. Let l be a partition of n and let A be a constant such

that l1pA
ffiffiffi
n

p
and cðlÞpA

ffiffiffi
n

p
: This implies that pr½CðlÞ ¼ Oðnr=2þ1Þ and pn½CðlÞ ¼

Oðnjnj=2þcðnÞÞ:
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Moreover we know from Lemmas 3.2 and 3.3 that

omðCðlÞÞ ¼ 1Q
i mi!

pmðCðlÞÞ þ
X
moRn

On
mpnðCðlÞÞ þ

X
jnjojmj

On
mpnðCðlÞÞ;

where On
m is a polynomial in n of degree at most ðjmj � jnjÞ=2þ cðmÞ � cðnÞ: Therefore,

Proposition 3.1. If lAn is such that l1pA
ffiffiffi
n

p
and cðlÞpA

ffiffiffi
n

p
for some constant A

then

omðCðlÞÞ ¼ Oðnjmj=2þcðmÞÞ: ð12Þ

as n-N:

Remark. This asymptotic was studied by Biane [1], building on work of Vershik and

Kerov [23], when l1; l2;y is a sequence such that lnAn; and such that the lns when

rescaled by a factor
ffiffiffi
n

p
have area 1 and converge uniformly to some limit.

4. Consequences of the isomorphism

We now state some interesting consequences of the isomorphism c:

Corollary 4.1. Given a family of rational values ðalÞlAn; there is a unique symmetric

polynomial f ðx1;y; xnÞ with rational coefficients that satisfies f ðCðlÞÞ ¼ al for all

partitions lAn:

Proof. Take f ðxÞ ¼ c
P

n anwn=hn
� �

: Then for all partitions lAn;

alwl ¼
P

n anwn=hn � wl ¼ f ðCðlÞÞwl: The first equality is true by idempotency of

the irreducible characters, the second is a consequence of Theorem 3.1. &

Theorem 4.1. Let ðekðxÞÞkX1 denote the elementary symmetric functions. Then

ekðxÞ ¼
X
nAk

onðxÞ:

Proof. The Jucys–Murphy elements Ji of the group algebra of the symmetric group
Sn are defined by

Ji ¼ ð1; iÞ þ ð2; iÞ þ?þ ði � 1; iÞ; for all i ¼ 2;y; n:

These elements were introduced independently by Jucys [7] and Murphy [18] and
they satisfy two fundamental properties first recognized by Jucys and pointed out to
us by Lascoux [13] (see also [17,20]).
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First, the elementary symmetric functions in the Ji algebraically span the center
Zn of the group algebra of Sn and are sums of conjugacy classes of permutations
with a given number of cycles

ekðJ1;y; JnÞ ¼
X
mAk

CmðnÞ: ð13Þ

Next consider a symmetric function f ðxÞ: The evaluation of f on the Jucys–Murphy
elements belongs to the center of the group algebra of Sn and satisfies

f ðJ1;y; JnÞ � wl ¼ f ðCðlÞÞwl: ð14Þ

Our interest in the latter properties is clear: translating Eq. (13) in L through
Eq. (14) gives for all integers n and partitions lAn;

ekðCðlÞÞ ¼
X
mAk

omðCðlÞÞ: ð15Þ

The theorem follows from Eq. (15) and the application of Corollary 4.1. &

Finally, observe that the Jucys–Murphy elements yield another way to state the
relation between FH and L:

CmðnÞ ¼ omðJ1;y; JnÞ:

5. Tableaux

We now use the previous results to obtain the asymptotic and ordinary
enumeration of some tableaux: skew young tableaux and semi-standard tableaux.
In this section we use non-reduced partitions. When reduced partition are needed we
use the *m notation.

5.1. Skew young tableaux

If aCl then the diagram of a is contained in the diagram of l: Let l=a denote the
skew diagram obtained by the difference of the Ferrers diagrams l and a: A standard
tableau of skew shape l=a is a filling of the positions of the Ferrers diagram l=a
with the numbers from 1 to jlj � jaj in increasing order from left to right and
from bottom to top. Fig. 3 shows a standard tableau of skew shape l=a ¼
ð5; 4; 2; 1Þ=ð2; 1Þ:
A combinatorial interpretation of the numbers f ðl=aÞ was given by Okounkov

et al. [19] and linked to shift symmetric functions. We now want to exhibit these
numbers f ðl=aÞ in terms of our power content functions. The key observation is that
the irreducible characters wlm are linear combinations of values f ðl=aÞ: More
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precisely, we have

wlðm;1n�jmjÞ ¼
X
aAjmj

wamf ðl=aÞ: ð16Þ

This equality is a straightforward consequence of the application of the
Murnaghan–Nakyama rule for the evaluation of the irreducible characters

wlðm;1n�jmjÞ: For each partition m of weight jmj ¼ k; there is an identity similar to (16)

and this establishes a system of linear equations. The coefficients matrix ½wam of this
system is invertible so that we can express the f ðl=aÞ as linear combinations of the
characters wlm;1n�m : It follows that the normalized numbers

ðnÞk
f ðlÞ f ðl=aÞ are linear

combinations of central characters:

f ðl=aÞ ¼
X
mAk

wam
zm

wlm1n�jmj :

See also [22]. We then get

ðnÞk

f ðlÞ f ðl=aÞ ¼
X
mAk

wam
n � k þ m1ðmÞ

m1ðmÞ


 �
jC *mðnÞj

f ðlÞ wlm1n�k|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
o *mðCðlÞÞ

;

where m1ðmÞ is the number of 1 in m: The following fact follows. For every partition
aAk; there exists a unique symmetric polynomial gaðxÞ and a corresponding shift
symmetric polynomial pðgaðxÞÞ such that for all partitions l

gaðCðlÞÞ ¼ pðgaÞðl1; l2;yÞ ¼ ðnÞk

f ðlÞf ðl=aÞ:

We present in Table 4 the normalized numbers
ðnÞk
f ðlÞ f ðl=aÞ of standard skew tableaux

as shift symmetric polynomials pðgaÞðl1; l2;yÞ:
We can also use our results to get the asymptotics of f ðl=aÞ: This asymptotic was

studied by Stanley [22]. Let l be a partition of n and A a constant such that l1pA
ffiffiffi
n

p

and cðlÞpA
ffiffiffi
n

p
:
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Fig. 3. A standard tableau of skew shape ð5; 4; 2; 1Þ=ð2; 1Þ:
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Proposition 5.1. For every partition a of k; we have

f ðl=aÞ
f ðlÞ ¼ f ðaÞ

k!
þ
wa
21k�2p1ðCðlÞÞ
n2ðk � 2Þ! þ Oð1=nÞ:

as n-N; with p1ðCðlÞÞ ¼ Oðn3=2Þ:

Proof. We use the fact that

f ðl=aÞ
f ðlÞ ¼ 1

ðnÞk

X
mAk

wam
n � k þ m1ðmÞ

m1ðmÞ


 �
o *mðCðlÞÞ:

We know from Proposition 3.1 that

o *mðCðlÞÞ ¼ Oðnjmj=2þcðmÞ=2�m1ðmÞÞ:

Then

1

ðnÞk

n � k þ m1ðmÞ
m1ðmÞ


 �
o *mðCðlÞÞ ¼

1

k!
if m ¼ 1k;

p1ðCðlÞÞ
n2ðk � 2Þ!þ Oð1=nÞ if m ¼ 21k�2;

Oð1=nÞ otherwise:

8>>>><
>>>>:

As noted before wm
1k ¼ f ðmÞ: The result follows. &

Remark. As noted by Stanley [22], together with results of Logan and Shepp [14] or
Vershik and Kerov [23], this implies a result of McKay et al. [16]. Let NðnÞ be the
number of Young tableaux with n cells or, equivalently, the number of involutions
in the symmetric group Sn: Let Nðn; aÞ be the number of Young tableaux with
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Table 4

f ðl=aÞ as a polynomial in the parts of l

ðnÞ2
f ðlÞ f ðl=2Þ ¼ pc1 þ ðn

2
Þ ðnÞ2

f ðlÞ f ðl=12Þ ¼ �pc1 þ ðn
2
Þ

ðnÞ3
f ðlÞ f ðl=3Þ ¼ pc2 þ ðn � 2Þpc1 þ ðn

3
Þ � ðn

2
Þ ðnÞ3

f ðlÞ f ðl=21Þ ¼ �pc2 þ 2ðn
3
Þ þ ðn

2
Þ

ðnÞ3
f ðlÞ f ðl=13Þ ¼ pc2 � ðn � 2Þpc1 þ ðn

3Þ � ðn
2Þ

ðnÞ4
f ðlÞ f ðl=4Þ ¼ pc3 þ 1

2
ð2n þ 9Þpc2 þ 1

2
pc21 þ ððn

2
Þ � 4n þ 6Þpc1 þ ðn

4
Þ � 3ðn

3
Þ þ 2 ðn

2
Þ

ðnÞ4
f ðlÞ f ðl=31Þ ¼ �pc3 þ 3

2
pc2 � 1

2
pc21 þ ðn

2
Þpc1 þ 3ðn

4
Þ � ðn

2
Þ

ðnÞ4
f ðlÞ f ðl=22Þ ¼ �npc2 þ pc21 þ 2ðn

4
Þ þ 3ðn

3
Þ þ ðn

2
Þ

ðnÞ4
f ðlÞ f ðl=212Þ ¼ pc3 þ 3

2
pc2 � 1

2
pc21 � ðn

2
Þpc1 þ 3ðn

4
Þ � ðn

2
Þ

ðnÞ4
f ðlÞ f ðl=14Þ ¼ �pc3 þ 1

2
ð2n þ 9Þpc2 þ 1

2
pc21 � ððn

2
Þ � 4n þ 6Þpc1 þ ðn

4
Þ � 3ðn

3
Þ þ 2ðn

2
Þ
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n cells that contain a fixed standard Young tableau of shape aAk; that is
Nðn; aÞ ¼

P
lAn f ðl=aÞ: The result states that

Nðn; aÞBNðnÞf ðaÞ
k!

:

See [22] for details.

5.2. Semi-standard tableaux

A semi-standard tableau of shape l and distribution m is a filling of a Ferrers diagram
of shape l with positive integers such that the number of occurrences of an integer i in l
is given by the part mi of m and the numbers in the diagram are strictly increasing from
bottom to top and weakly increasing from left to right. We show in Fig. 4 a semi-
standard tableau of shape l ¼ ð5; 4; 2; 1Þ and distribution m ¼ ð3; 3; 2; 2; 2Þ:
The numbers Kðl; mÞ of semi-standard tableaux of shape l and distribution m are

known as the Kostka numbers. In particular Kðl; 1nÞ is the number f ðlÞ of standard
tableaux of shape l and the following relation between Kostka numbers and the
numbers of skew tableaux is a straightforward consequence of their definition: for
any partition a;

Kðl; ða; 1n�jajÞÞ ¼
X
gAjaj

Kðg; aÞf ðl=gÞ:

Therefore, the normalized Kostka numbers
ðnÞjaj
f ðlÞ Kðl; a1n�jajÞ are obtained by the

evaluation of linear combinations of power-content functions. For example, we have

ðnÞ4
f ðlÞ Kðl; 221n�4Þ ¼ �3pc2 þ pc12 þ

n � 2

2


 �
pc1 þ

nðn � 1Þðn2 � 5n þ 10Þ
4

:

Here is a direct consequence of Proposition 5.1. Let k be a fixed integer. Let l be a
partition of n with l1pA

ffiffiffi
n

p
and lðlÞpA

ffiffiffi
n

p
for some constant A:
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Fig. 4. A semi-standard tableau.
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Proposition 5.2.

Kðl; a1n�kÞ
f ðlÞ ¼ 1

k!

X
gAk

Kðg; aÞf ðgÞ þ oð1Þ;

as n-N:

In Table 5, we present a list of these polynomials.

6. Extension to Hecke algebras

The Hecke algebra of a reflection group W is a q-deformation of the group algebra
Q½W  of W : The Hecke algebra Hnðq1; q2Þ of Sn is obtained by modifying one of the
Coxeter relations defining Sn (see Table 6).
The algebra Hnðq1; q2Þ is semi-simple if and only if q1a0 and q2a0 and its

irreducible representations are indexed with partitions of n: The dimension of an
irreducible representation of Hnðq1; q2Þ indexed by l is equal to f ðlÞ as in Sn: The

characters wlmðq1; q2Þ of Hnðq1; q2Þ form a square matrix of polynomials in q1; q2 and

Hnð1;�1Þ ¼ Q½Sn: There is a recursive rule for the evaluation of the irreducible
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Table 5

Polynomial expansion of
ðnÞk
f l

Kl;m in l1; l2y; lm

ðnÞ4
f l

Kðl; 221n�4Þ ¼ �3pc2 þ pc12 þ 2ðn�2
2
Þpc1 þ 6ðn

4
Þ þ 2ðn

2
Þ

ðnÞ5
f l

Kðl; 321n�5Þ ¼ �4pc3 þ pc1pc2 þ ððn
2
Þ � 6n þ 18Þpc2 þ ðn � 4Þpc21

þð4ðn
3Þ � 9ðn

2Þ þ 18n � 24Þpc1 þ 10ðn
5Þ � 6ðn

4Þ þ 9ðn
3Þ � 5ðn

2Þ
ðnÞ6
f l

Kðl; 421n�6Þ ¼ �5pc4 þ pc1pc3 þ ððn
2
Þ � 8n þ 40Þpc3 þ 1

2
pc31

þð3ðn
3
Þ � 27

2
ðn
2
Þ þ 48n � 110Þpc2 þ ð3

2
ðn
2
Þ � 8n þ 26Þpc21

þð7ðn
4
Þ � 23ðn

3
Þ þ 54ðn

2
Þ � 96n þ 120Þpc1

þ15ðn
6
Þ � 30ðn

5
Þ þ 36ðn

4
Þ � 43ðn

3
Þ þ 20ðn

2
Þ

ðnÞ6
f l

Kðl; 321n�6Þ ¼ �5pc4 þ pc22 � 8ðn � 5Þpc3 þ ð2n � 10Þpc21

þð2ðn
2
Þ � 8n þ 26Þpc12 � ð2ðn

3
Þ � 14ðn

2
Þ þ 48n � 110Þpc2

þð8ðn
4
Þ � 22ðn

3
Þ þ 54ðn

2
Þ � 96n þ 120Þpc1 þ 20ðn

6
Þ

�20ðn
5
Þ þ 42ðn

4
Þ � 42ðn

3
Þ þ 20ðn

2
Þ

ðnÞ6
f l

Kðl; 231n�6Þ ¼ 20pc3 � 9s1s2 þ pc13 � 9ðn�4
2
Þpc2 þ 3ðn�4

2
Þpc12

þð18ðn
4
Þ � 36ðn

3
Þ þ 60ðn

2
Þ � 96n þ 120Þpc1

þ90ðn
6
Þ þ 36ðn

4
Þ � 36ðn

3
Þ þ 18ðn

2
Þ

Table 6

Generators and relations of Sn and Hnðq1; q2Þ

Sn Hnðq1; q2Þ
set of generators : ft1; t2;y; tn�1g set of generators : fg1; g2;y; gn�1g
1: t2i ¼ 1 or ðti � 1Þðti þ 1Þ ¼ 0 1: ðgi � q1Þðgi � q2Þ ¼ 0
2: titj ¼ tjti; j j � ij41 2: gigj ¼ gjgi ; j j � ij41
3: titiþ1ti ¼ tiþ1titiþ1; j j � ij41 3: gigiþ1gi ¼ giþ1gigiþ1; j j � ij41
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characters wlmðq1; q2Þ (see [21]) similar to the Murnaghan–Nakayama rule with the

exception that the border strips of length mi removed from l are possibly
disconnected.
More precisely, let bCl be a sub-diagram of l such that l=b is a border strip of l

i.e. a subset lying on the northeast most part of l that does not contain any 2� 2

block of boxes. Let CCðl=l0Þ be the set of connected components of a border strip

l=l0 and ccðl=l0Þ ¼ cardðCCðl=l0ÞÞ: Then the q-Murnaghan–Nakayama recursive
rule states

wlmðq1; q2Þ ¼
X

bAn�mi

ðq1 þ q2Þccðl�bÞ�1 Y
xACCðl�bÞ

q
rðxÞ
1 q

cðxÞ
2

0
@

1
Awbm�mi

ðq1; q2Þ;

where the sum is taken over all sub-diagrams b such that l=b is a border strip of
length mi possibly disconnected and rðxÞ; cðxÞ are the numbers of rows and columns
in a connected border strip x:

We want to evaluate irreducible characters of the form wl
m1n�jmj ðq1; q2Þ with

mAkpn: Applying the recursive rule, we see that the contribution of the removal of
the 10s from l is one. This implies an identity similar to (16):

wlðm;1n�jmjÞðq1; q2Þ ¼
X
aAjmj

wamðq1; q2Þf ðl=aÞ ð17Þ

and normalizing again the irreducible characters we have

ðnÞjmj
f ðlÞ w

l
ðm;1n�jmjÞðq1; q2Þ ¼

X
aAjmj

wamðq1; q2Þ
ðnÞjmj
f ðlÞ f ðl=aÞ: ð18Þ

This tells us that there also exists symmetric functions with coefficients in
Q½q1; q2; n which give the value of irreducible characters of Hecke algebras. We also
call these symmetric functions class symmetric functions of Hnðq1; q2Þ:

Theorem 6.1. For each partition m and its corresponding reduced partition *m; there

exists a symmetric function o *m;qðxÞ with coefficients in Q½q1; q2; n such that

ðnÞjmj
f ðlÞ w

l
ðm;1n�jmjÞðq1; q2Þ ¼ o *m;qðCðlÞÞ: ð19Þ

We also get

Lemma 6.1. The class symmetric functions om;qðxÞ for all lAn have an expansion

in the power sum basis:

om;qðxÞ ¼
X
n0pm0

On
mðn; q1; q2Þ pnðxÞ;

where the On
mðn; q1; q2Þ are polynomials in n; q1 and q2:
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Note that the normalization used here is slightly different than the one used in
Section 3. We present in Table 7, some class polynomials om;q of Hnðq1; q2Þ:
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