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Abstract

We give existence and characterization results for some Artin—Schreier type function fields over finite fields with prescribed
genus and number of rational places simultaneously.
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1. Introduction

Let F, be a finite field of characteristic p with g elements. Let E be an algebraic function field and assume that IF,,
is its full constant field. Hasse—Weil inequality states that for the number of rational places N (E) we have

q+1-28(E)g'* < N(E) < q+1+2g(E)q"?,

where g(E) is the genus of E. E is called maximal or minimal if N(E) is ¢ + 1 +2g(E)q'/?> or g + 1 — 2g(E)q'/?
respectively. Note that for g(E) > 1, if E is maximal or minimal, then ¢'/? is an integer. Let n > 1, 4 > 0 and

S(X) = 50X + 51X + -+ 5, X9 € Fya[X]
be an I, -linearized polynomial of degree g" in F,2.[X]. Let F be the algebraic function field over F 2. given as

F=Fgu(u,v) with v —v =uS®u). (1.1)
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For g even, we further assume that 2 > 1. Since the full constant field of F is qun, throughout the paper a rational
place of F' means an [F 2, -rational place of F. Using [9, Proposition 3.7.10], we obtain that the genus g(F) of F is

— Dag"
s =12t igh 42 =T

Recall that the Hermitian function field H over ]qun is

-1

H=Fp(x,y) withy?! +y=x7"" (1.2)

Algebraic function fields over finite fields have many applications to coding theory and related areas [7,9,10]. In
this paper we systematically study the Artin—Schreier type function fields of the form (1.1). We prove the existence of
a large class of function fields in this form with prescribed genus g and number N of rational places simultaneously,
where the tuple (g, N) satisfies

— Dgh .
(g, N) = <%,qz" +1F(q— l)q”é) ,

for an integer 0 < h and an even integer 0 < k < 2h. We give characterizations of all function fields in the form
(1.1) whose number of rational places is distinct from ¢g>* + 1. In particular, we prove the existence of maximal and
minimal function fields of the form (1.1) for each possible genus and show how to construct them. Moreover if F is
maximal, then we prove that F is a subfield of H, the extension H/F is Galois and we determine its Galois group
Aut(H/F) explicitly. Some of our results generalize some results of [2], which correspond the case of g = 2.

In Section 2, using some results from [6], we give some properties of a corresponding quadratic form (cf. (2.1)).
Using the results of Section 2, we determine the number of rational places of F in Section 3. We give the existence
of some special classes of function fields in Section 4. An important idea of the paper is in Section 5. Under natural
conditions we prove the existence of a degree g extension of F', which is also in the form (1.1) and is of the same
type as F with respect to Theorem 3.1 of Section 3. In particular if F' is minimal or maximal, then we even give an
algorithm for constructing such a degree g extension F(¢) of F, which is minimal or maximal respectively. Using
these degree g extensions inductively and the special classes of function fields obtained in Section 4, we obtain our
existence results and some of our characterization results. We also give concrete examples illustrating our results. In
Section 6, we show that these degree ¢ extensions and their compositions are Galois extensions of F if N(F) > ¢*"+1
and we determine the Galois group of the composed extensions with respect to F'. We also prove that if F' is maximal,
then F is a subfield of H, the extension H/F is Galois and we obtain the Galois group Aut(H/F) explicitly.

Throughout the paper Tr(-) will denote the trace map from F 2, to Fy, i.e. fora € F 2., Tr(a) = a+a?+-- tad™
We begin with an observation on the number N (F). We note that N(F) = 1 + ¢g|Vg|, where Vs = {a € qun :
Tr(aS(a)) = 0} (see the proof of Theorem 3.1). In the next section we will consider the corresponding quadratic form
ace ]Fan — Tr(aS(a)) € Fy,.

2. A quadratic form

Let Bg be a symmetric F,-bilinear form on I 2. given by

BS . Fan X ]Fq2n — ]Fq
(a,b) — Tr(aS(®) + bS(a)).

Bg is alternating if ¢ is even. Let

QS : qun d Fq

2.1
a+— Tr(aS(a)).

Note that Qg is a quadratic form attached to By satisfying Qs(ra) = 22 Qs(a) and

Bs(a,b) = Qs(a +b) — Qs(a) — Qs(b)
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foreacha, b € F 2. and A € F,. In this section we will give some properties of the quadratic form Q5. Let Wy be the
radical of Bg:

Ws ={a e qun : Bg(a,b) =0 foreach b € Iqun}.

Wy is an F-linear subspace of F 2, and we have:

Lemma 2.1. Wy consists of the roots of the polynomial

h—1 h

i i h h h i
S osi T4 4258 T 4 5T T € Bl T
i=0 i=1

in qun and we have dim Wy < 2h.

Proof. From the properties of the trace function it follows that Tr(aS(b) + bS(a))=Tr (b{Zf’zo(s,-a)qfi

+ Z?:o Siaqi }), forany a, b € F 2.. Hence for any a € Wy, we have Z?:o (s,-a)qfi —i—Z?:O siaqi = 0 or equivalently

h o .
Y s+ sia?)" =o. 2.2)
i=0

i=0
We complete the proof observing that the polynomial in (2.2) is of degree ¢>*. O
Throughout the paper, k denotes the I, -dimension
k = dim Wg
of the F;-linear space Wy. Recall that Vg is the subset of ]Fan defined as
Vs={a e ]Fan : Os(a) = 0}.

Observe that when ¢ is odd, we have Qg(a) = 1Bg(a, a) for any a € qun and hence Wy C V5.

Definition 2.2. Let V be a vector space over I, of dimension m. Let B be a symmetric IF;-bilinear form on VV and Q a
quadratic form attached to B satisfying Q(a + b) = B(a, b) + Q(a) + Q(b) and Q(ra) = A2Q(a), for eacha, b € V,

A € Fy. For an F-basis & = {ey, ..., ey} of V, we define the polynomial representing the quadratic form Q with
respect to the basis £ as the polynomial fg € Fy[X, ..., X,,] with quadratic terms:
feXi, Xm) = Y fuXi+ Y fiiXiX,
1<i<m I<i<j<m
where f;; = Q(e;), 1 <i <mand f; ; = Ble;, ej), 1 <i < j < m.Indeed, for each (ai, ..., an) € IF’q" we have
fear, ... ap) = Qaier + -+ - + amep). (2.3)
Moreover, fg is the unique polynomial with quadratic terms satisfying (2.3) for each (ai, ..., am) € Fy'. Itis easy to

observe also that if 53 is nondegenerate on V then there is no basis £ of V such that fg is expressible in less than m
variables.

Recall that k is the dimension of Wy as a vector space over F.

Proposition 2.3. Assume that q is odd. There is an F,-basis £ of F 20 and d € Fy \ {0} such that the polynomial fe
representing Qs with respect to £ (cf. Definition 2.2) is

[P 2 2 2
E(Xl + X5+ -+ X5 HdX5, ). (2.4)
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Proof. If k = 2n, then fg is the zero polynomial and the statement holds trivially. Assume that k < 2n. Let WS
be an F,-linear subspace of ]F 20 such that Wg N Wy = {0} and dim Wg = 2n — k. We have ]F w = Ws® Wg
as vector spaces over [F. Let By and Q s be the restrictions of Bg and Qg respectively, onto Ws. Then By is
a) nondegeneraie symmeEic bilinear form 1 on Wy and Es is a guadr;atic fOI‘H_l attached to By, where Bg(a, b) =
QOs(a+b) — QOg(a) — Qg(b) fora,b € Wg. For an Fy-basis, £, of W, let fz denote the polynomial representing
Qg with respect to £. As By is nondegenerate, it follows from [3, Theorem 4.9] that there exists an IF,-basis
& = {e1,...,em—r) of Wg and d € F, \ {0} such that f‘g is given by (2.4). Let {e2y—k+1,...,€2,} be an F,-
basis of Wg. Then & = {eq, ..., ez} is an IF -basis of F 2, and it easily follows that the polynomial representing QS

with respect to £ is equal to fg- considered as a polynomial inFy[Xy,..., X2,]. O

Proposition 2.4. Assume that q is even. We have that k is even. Moreover if Ws C Vs, then there is an IF,-basis £ of
]Fan such that the polynomial f, representing Qs with respect to £ (cf. Definition 2.2) is either

X1Xo+ X3Xa+ -+ Xon—k—1X2m—k (2.5)
or

X1Xo+ X3Xa + -+ Xon—k—1 Xon—k + X3y +dX3, s (2.6)
where d € Fy satisfies Trg, /7, (d) =d +d* +d* + - + ds =1.

Proof. As in the proof of Proposition 2.3 we assume that k < 2n without loss of generality. Moreover we define
W, Bs and Qg similarly. Note that By is a nondegenerate, symmetric and alternating bilinear from on Wy and g is
even. Then it follows from [3, Corollary 2.11] that dim W and so k are even integers. For an F-basis, E of W s, let

fg denote the polynomial representing Q¢ with respect to . It follows from Definition 2.2 that there is no basis & of
W s such that fg is expressible in less than 2n — k variables. Using [6, Theorem 6.30] we obtain that there is a basis
€ of Wy such that fg is either given by (2.5) or by (2.6) where d € I, satisfies Trg, /r,(d) = 1. As in the proof of
Proposition 2.3, we complete the set € to a basis £ of 2. by elements from Wy and using Wy C Vg, we obtain that
the polynomial representing Qs with respect to £ is equal to fg considered as a polynomial in F; [ X7y, ..., X2,]. O

3. Number of rational places of F

In this section, using the results of Section 2, we determine the number of rational places of F' (defined by (1.1))
in terms of the dimension of the radical Wy and the zeros of the quadratic form Qg.
For an Fy-basis, &, of F o, let fg(X1, ..., Xo,) denote the polynomial representing Qs with respect to &.

Theorem 3.1. The number of rational places of F is given as follows:

(1) Assume q is odd and let d be as in Proposition 2.3. We have:
() If k is odd, then N(F) = 1 + ¢*".
k k
(i) If k is even and (—1)""2d is a square in F, then N(F) = 1 + g+ (g — g™t
(iii) If k is even and (—1)”*§d is a nonsquare in F, then N(F) = 1+ g — (g — l)q’”%.
(2) Assume q is even. We have:
() If Ws € Vs then N(F) = 1 + ¢*".
(i) If Ws < Vs and there is an Fy-basis, £, of F o such that fg is given by (2.5) in Proposition 2.4 then
N(F) =1+ + (g — "3,
(iii) If Ws C Vs and there is an F;-basis, &€, of F 20 such that fg is given by (2.6) in Proposition 2.4 then

N(F) = 14+¢* — (g — Dg"*3.
Proof. There is only one rational place in F over the place at infinity of the function field ¥ >, (u). The other rational

places of F' correspond to the elements a € F 2. satisfying Tr(a(S(a))) = 0. Moreover for each a € F 2 with
QOs(a) =Tr(a(S(a))) = 0, there are g rational places in F, so that

N(F) =1+ q|Vg]. 3.1)
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We first prove Case (2)(i). Assume that g is even and Wg & Vs. Let ¢ : Wg — T, be the restriction of Qg onto
Ws. Then ¢ is an additive homomorphism and it follows from the assumptions that ¢ is surjective. Hence for any
a € F, we get

4
Hx e Ws: Qs(x) = a}| = |q—5|. (3.2)

Observe that for a € ]qun and x € Wg, Qs(x +a) = Qs(x) + Qs(a). Then for any coset a + Wg of Wy in qu,l
we have

Hx ea+Ws: Qs(x) =0} = l{x € Ws: Qs(x) = Os(a)}l. (3.3)

Considering all disjoint cosets of Wy in qun and using (3.1)—(3.3), we complete the proof of Case (2)(i).

From here until the end of the proof we assume that if g is even, then Wg C Vg. Hence for the remaining cases, if
o € Wy then Qg(a) = 0.

Let W be an IF,-linear subspace of qun such that qun = Wy @® Wgy.Fora € ]qun, leta; € Wyandap € Wg be
the uniquely determined elements such that a = a; + a>. As a; € Wy C Vg we have

Os(a) = Qs(ar) + Bs(ar, az) + Qs(a2) = QOs(az). (3.4)

For g odd, letd € F, \ {0} and £ be an [F,-basis of IF 2. such that the polynomial fg (X1, ..., X2,) is given by
(2.4). For g even, let £ be an [F,-basis of qun such that fg(Xq, ..., X,) is either given by (2.5) or by (2.6) with a
corresponding d € F,. Let N(fe(X1, ..., X204, 0, ..., 0)) be the number of solutions of the equation

fg(Xla”"in*kaO’"-’O) =0
in F2"~*. Using (3.4) we obtain that

Vsl = ¢“N(fe(X1. ... X200, ..., 0)). (3.5)
If g is odd and & is odd, by [6, Theorem 6.27] we have

N(fe(X1. ..., Xop—t.0,...,0)) = g™ 1. (3.6)
If g is odd and k is even, then by [6, Theorem 6.26] we have

N(fg(Xla LR ] in—kvoa s ’0))

T (g = DAY if (—1)"%2d is a square in Ty, 3.7)
g = (g = Dg" M if (—=1)"7%/2d is a nonsquare in . '
Using (3.1) and (3.5)—(3.7), we prove the cases in (1).
If g is even and Wg C Vg, then by [6, Theorem 6.32] we have
2n—k—1 n—k/2—1 -
q + (g — g if (2.5) holds,

N X1, Xon—,0,...,0) = e kel 3.8

(JeXa nk 2 {q2” K1 (g = Dg" F?>=1if (2.6) holds. 3-8)

Using (3.1), (3.5) and (3.8), we prove the remaining cases in (2). U

In the following corollaries, which are direct consequences of Theorem 3.1, we give maximality and minimality
criteria for F. Recall that £k = dim Wy.

Corollary 3.2. Assume that q is odd. Let d € Fy \ {0} be as in Proposition 2.3. Then F is maximal if and only if
k = 2h and (—1)"""d is a square in F,. Moreover F is minimal if and only if k = 2h and (—=1)"""d is a nonsquare
inFy. In particular if F is maximal or minimal, then h < n.

Corollary 3.3. Assume that q is even. Then F is maximal if and only if Ws C Vg, k = 2h and (2.5) holds. Moreover
F is minimal if and only if Ws C Vs, k = 2h and (2.6) holds. In particular if F is maximal or minimal, then h < n.

Lemma 3.4. For any q, if k = 2n then F cannot be of type Theorem 3.1(1)(iii) or (2)(iii). In particular, if h = n
there is no minimal function field F of the form (1.1).
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Proof. Otherwise N(F) = 1 4+ ¢*" — (¢ — 1)¢** = 1 — (¢ — 2)¢*". This is already a contradiction for ¢ > 3. If
q = 2, this means that N(F) = 1, |Vg| = 0 and |Wg| = qz", which is a contradiction since Wg C V. [

4. Some examples

In this section we give existence results for some special function fields corresponding to Theorem 3.1(1)(ii),
(1)(iii), (2)(ii) and (2)(iii). We begin with maximal and minimal function fields.

Lemma 4.1. Assume that q is odd. Let C be the family of function fields
C = (F u(x,y) withy! —y =sx*:s € F o \ {0}}.
Each function field in C is either maximal or minimal. Let My and M_ denote the numbers of maximal and minimal
function fields in C respectively. We have
" —1
2

Proof. For s € qun \ {0} and S(X) = sX we have Wg = {0}. Using Theorem 3.1 we obtain that each function field
in C is either maximal or minimal. Hence we have

My =M_=

My +M_=qg™ —1. 4.1)
By Hilbert’s Theorem 90 we get
2n — Da" 2n — Dag"
M, 2 tl=-be" a7 —@=Dd" _ 4.2
q q
where M = [{(s,x) € (Fy2 \ {0}) x Fon : Tr(sx2) = 0}|. Indeed assume that s € F2. \ {0} such that the

function field F 2. (x, y) with y? — y = sx? is maximal. Its genus is % and hence its number of rational places is

1 4+ g% + (¢ — 1)g". Using Hilbert’s Theorem 90 (cf. [9, Proposition V1.4.1]) we obtain that
¢*" + (¢ —1q"

q
Then considering all such s € ]qun \ {0} we have

[{x € F o : Tr(sx®) = 0} =

2n _ n
{(s, x) € My x F o : Tr(sx?) = 0} = (M) 47+ (@ =Dq"

Similarly we get

2n __ _ n
(s, %) € M_ x F pu : Tr(sx?) = 0}] = (M_) "= =Dd"

Using (4.1) and the definition of M we obtain (4.2).
Forx =0and any s € qun \ {0} we have Tr(sx?) = 0. For x € qun \ {0}, the number of s € ]Fan \ {0} such that

Tr(sx2) = 01is qu — 1. Therefore we have

2n 2n
-1
M=g"—1+4(@" -1 <q— — 1) =L 4.3)
q q
Using (4.1)—(4.3) we complete the proof. [

Remark 4.2. There are only two F2.-isomorphism classes of fields in the family C of Lemma 4.1, each of size

(g** — 1)/2. Indeed, let F; = Fy20(x, y) with y4 —y = x2 and let Fr = Fpon(x, y) with y4 —y = ¢x2, where
¢ € F,on \ {0} is a primitive element. For s € F 2. \ {0}, the function field Fy = F 2. (x, y) with y¢ —y = sx?
is [F 2.-isomorphic to Fy or F; if s is a square or not in F . respectively. The content of this remark is due to the

anonymous referee.

For g even, there exists s1 € F 2. \ {0} such that the polynomial s? T4 + s1T splits in 2., for example s; = 1.
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Lemma 4.3. Assume that q is even and s\ € F 2. \ {0} such that the polynomial si] T4 + s1T splits in ¥ on. Let C(s1)
be the family of function fields

C(s1) = {F 2 (x, y) with y—y=sx>+s5x?": s € Fon}.

Each function field in C(sy) is either maximal, minimal or otherwise has ¢*" + 1 many rational places. Let M., M_
and My denote the numbers of the corresponding function fields in C(sy) respectively. We have

2n—2 n—1 2n—-2 _ n—1
ey e

2 2

Proof. Lets € qun and S(X) = sX +s5;X?. By Lemma 2.1 we have dim Wg = 2. Using Theorem 3.1 we obtain that
either the corresponding function field in C(s1) is maximal, minimal or otherwise has g2 4 1 many rational places.
Then we have

My = Mo = ¢*"%(g* - 1).

Mo+ My + M_ = ¢*", 44)
and
2n 2n n+l 2n n+1
Mel— + m. 2 +t@-De"™ a7~ g
q q
= [{(s.x) € Fou x F o0 : Tr(sx® 4 51x47") = 0}
q2n 5
st @3)

Using (4.4) and (4.5) we obtain that My < qz”. Therefore there exists s € ]Fan such that for S(X) = s X + s1 X
we have Wg C V. Fora € qun, let S,(X)=(s+a)X +s1X%. Fora € qun we have Ws, = W and hence
Ws, C Vs, <= Tr(ax?) = (Tr(vax))> =0 foreach x € Ws.

The vector space Hom(Ws, Fy) of Fy-linear maps from Wy to I, consists of the [, -linear maps sending x € Wg to
Tr(ax) as a runs through [ 2,. Consider the I, -linear map

L :F n — Hom(Ws, Fy)
a— L,,

where L, (x) = Tr(y/ax) for x € Ws. Then L is onto and Ker £ = {a € ]Fquz : Ws, € Vs, }. Therefore the number of
elements a € F 2. with Ws, C Vg, is

|]Fq2n| _ qzn _ qzn_z
[Hom(Ws, Fg)|  |Ws|
This implies that
My +M_ =qg¥ 2. (4.6)

Using (4.4)—(4.6) we complete the proof. [

We will prove the existence of maximal and minimal function fields for all possible cases of & later in Theorem 5.9
using Lemmas 4.1 and 4.3 and the results of Section 5.

Next we will show the existence of some special function fields corresponding to Theorem 3.1(1)(ii), (1)(iii), (2)(ii)
and (2)(iii) with k = 0 and some & > 1. We begin with a technical lemma. For & > 1, let i be the integer defined as
h = ged(h, n).

Lemma 4.4. For h = 1 and s € I 2. \ {0} we consider the polynomial

sT +s'T7" € F [T, 4.7)
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If q is odd and h/h is even, then for each s € IF 2. \ {0}, the polynomial in (4.7) has no nonzero root in ¥ . If q is
even and h/h is odd, then there exists s € 20 \ {0} such that the polynomial in (4.7) has no nonzero root in I 2.

Proof. Let w be a generator of the multiplicative group of F 2, and s = w?, where 6 is an integer. Assume first that
g is odd and h /h is even. We need to show that there is no integer / such that

W@ =D/2

2h
W@ =1 _
wi @ 1)

which is equivalent to

an_l

> —6(g" —1) mod(g®* —1). 4.8)

Ig? —1) =

Note that gcd(qy‘ —1,¢*" -1 = qy_’ — 1. There exists a solution / of (4.8) if and only if

2n _ 1 _
0" —1) =12 _ mod(g?" — 1). (4.9)

As h/h is even, we have that n/ is odd and that (¢2" — 1) divides (¢" — 1). So (4.9) holds if and only if (g2 — 1)

2n_ . .
divides £ > ! which is not the case because

1+q25+q2/€-2+”_+q2h-(%71)
2

q2n_1
2

=@ -1

where n/h and so the sum 1 + qZH + qZﬁ‘_2 4.+ qZh'(%J) is odd. This completes the proof of the first part.
Next we assume that ¢ is even and A /h is odd. Using similar methods we reach that there exists a nonzero root of

the polynomial (4.7) in F 2, if and only if

0" —1)=0 mod(g? —1). (4.10)

As h /i_z is odd, we have that (qu’ — 1) does not divide (qh — 1). Therefore there exists an integer 6 such that (4.10)
does not hold. This completes the proof. [

Remark 4.5. With the notation of Lemma 4.4, using similar methods we also obtain the following related results:
If g is odd and /1 /h is odd, then the number of s € F 2. \ {0} such that the polynomial in (4.7) has a nonzero root

2/1_ h . . . . .
in ¥ o is qzﬁ 1(:]” — 1). Moreover if 6 is an integer satisfying
g2 —

q2n _

01(q" — 1) = mod(g®" — 1),

then the set of s € qun \ {0} such that the polynomial in (4.7) has a nonzero root is

i - - q2” -1
@ FDEHEG D) L g < < qh -2, 0<j<1- —1'.
- = o=l = g? —1

If ¢ is even and h /h is even, then for each s € ]Fan \ {0}, the polynomial in (4.7) has a nonzero root in qun.
For both the cases that ¢ is odd and ¢ is even, if the polynomial in (4.7) has a nonzero root in F 2., then its exact
number of roots in F 2. is q°".

We use Lemma 4.4 in the following propositions of this section.

Proposition 4.6. For q odd and h > 1, let C be the family of function fields

C= {]Fan (x,y) withy? —y = sxd" 15 € Fo2n \ {0}} .
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Assume that h/h is even. Then for each function field in C, its number of rational places is either

"+ 1+@q—Dq" or ¢"+1-(g—1Dq". (4.11)
Let Mo + and My, — denote the numbers of function fields in C with the corresponding numbers of rational places in
(4.11) respectively. We have
q2n -1
7

Mo+ = Mo, =

Proof. For S(T) = sT9" with s € ]qun \ {0}, it follows from Lemmas 2.1 and 4.4 that dim Wg = 0. Hence using

Theorem 3.1 we obtain that for each function field in C, its number of rational places is either g>" 4+ 1 + (¢ — 1)¢" or
g** + 1 — (g — 1)g". Then we have

Mo+ My_ =q*" —1. (4.12)
Using Hilbert’s Theorem 90 we get
2n n 2n n
+(g—1 —(g-1
M=, T@=De == D 4.13)
q

2n_1
q

where M = [{(s, x) € (Fj2. \ {0}) x F 2. : Tr(sth+1) =0} =1
proof. [

¢*". Using (4.12) and (4.13) we complete the

Remark 4.7. As in Remark 4.2, if h/ I is even, there are two qun -isomorphism classes of fields in the family C in
Proposition 4.6, each of the same size (¢2* — 1)/2. The function fields F; = Fon(x, y) with y? — y = x4"+1 and
Fe =Fg o (x, y) with y? —y = {thH, where ¢ € F 2. \ {0} is a primitive element, are two representative function
fields of these isomorphism classes. Indeed it is enough to notice that ged(g? — 1,¢" + 1) = 2 when ¢ is odd and
h/h is even.

For g even, h > 1 and h/ h odd, it follows from Lemma 4.4 that there exists s 1 € ]Fan \ {0} such that the polynomial

h d . . . . . ..
s1T + sf 79" has no nonzero root in [F 2. Using similar methods to above we prove the following proposition.
Proposition 4.8. For g even, h > 1, and s1 € F 2. \ {0}, let C(s1) be the family of function fields

Cls1) = [Fyon (e, ) with 7 = y = 5x? 4 5127+ s € B |

- h 3
Assume that h/h is odd and the polynomial s1T + s;] 79" has no nonzero root in F 2. Then for each function field
in C(s1), its number of rational places is either

¢+ 1+ (@ —Dg" or ¢”"+1-(q—Dyg" (4.14)

Let My + and My — denote the numbers of function fields in C(s1) with the corresponding numbers of rational places
in (4.14) respectively. We have

2n n 2n n
+ _
VAR L

Remark 4.9. For i > 1, Proposition 4.6 gives results on the case where ¢ is odd and // is even, and Proposition 4.8
gives results on the case where ¢ is even and /i /h is odd. For h > 1, using Remark 4.5, now we consider the remaining
cases below.

Assume that ¢ is odd and /1 is odd. Then the number of rational places of a function field in C of Proposition 4.6
is either

" +1+@q-Dg" "+ 1—(q— D",

2n n+h 2n n+h 4.15)
g +1+(@—-1Dqg"™, or g"+1-(q—1qg"™".
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Let My, Mo, M it and M;,,_ denote the numbers of function fields in C with the corresponding numbers of
rational places in (4.15) respectively. We have

My =0 < Mﬁ’_zo, and My_ =0 < M};’_‘_:O.
For example

q=3,n=3h=3=My4+=0,Mp_->0; and

q=3n=6h=3= My_=0,Mp+ >0.

Assume that ¢ is even and //h is even. Then for each s € 2. \ {0}, the number of rational places of a function
field in C(s1) of Proposition 4.8 is either

g1+ - Dg"" or g7+ 1 (g - Dg".
In particular for each s; € F 2., the number of rational places of a function field in C(s;) can be neither
g*" +1+(q —1g" nor g +1— (g — g".
Later in Theorem 5.13, using Propositions 4.6, 4.8 and the results of Section 5, we will prove the existence of a
large class of function fields corresponding to Theorem 3.1(1)(ii), (1)(iii), (2)(ii) and (2)(iii).

5. Some degree g extensions of F

In this section we prove the existence of a degree g extension F(¢) of F such that F(¢) is also of the form (1.1)
and F(t) is of the same type as F with respect to Theorem 3.1. If F is minimal or maximal, then we even give
an algorithm for constructing F(¢). Using these degree g extensions inductively and the special function fields of
Section 4, we obtain the existence of a large class of function fields of the form (1.1) with prescribed genus g and
number of rational places N simultaneously, where the tuple (g, V) satisfies

b A
(g, N) = (%,qz" +1F(q - 1)q"+’5> ,

for an integer 0 < h and an even integer 0 < k < 2h. We also give characterizations of all function fields in the form
(1.1) whose numbers of rational places are distinct from g*" + 1.
We begin with an important technical result. We recall from Section 1 that F = qun (u, v) with v? — v = uS(u)

where S(X) = soX + -+ + s X4" is an F,-linearized polynomial of degree q".

Proposition 5.1. Let c € IE"qzn \ {0} and consider the extension F (t) of F where t9 4+ ct = u. Let D(X) € Iqun [X] be
the Iy -linearized polynomial satisfying

D(X)T = S(X7 + cX) — socX, 5.1
and let R(X) € Iqun[X] be the I ;-linearized polynomial

R(X) =c¢S(X? 4+ c¢X) 4+ D(X) + socX?. (5.2)
Note that deg R(X) = ¢"*! and using (5.1) we also have

R(X) = ¢D(X)? + D(X) + socX? + soc* X. (5.3)
Let s € F(t) be defined as s = v — t D(t). Then we have
F(t) =F,u(t,s) with s —s =tR(). 5.4)

Proof. We first consider the subfield ]Fan (s,t)of F(t). Asv =s+1tD(t) and u = t7 4 ct, we have qun (s, 1) = F(1).
Using (5.1), (5.2) and the identity v¢ — v = uS(u), we obtain that s —s = ¢t R(¢). Using [9, Proposition III.7.10] and
the fact that degtR(t) = 1 + qh+1 is coprime to g, we get [qun (s, 1) : qun ()] = q. Hence T? — T — tR(¢) is the
minimal polynomial of s in F 2. (, 5) over F 2. (¢), which completes the proof. [
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For ¢ € ]qun \ {0}, let R(X) € ]Fq2n [X] be the IF,-linearized polynomial of degree g"t! defined by (5.2). Let
Br:F g X qun — IF,; be the bilinear form defined as

Bgr(a,b) = Tr(aR(b) + bR(a)).
Let Op : qun — I, be the quadratic form attached to Bg given by Qr(a) = Tr(aR(a)). Moreover let Wg be the
radical Wg = {a € F 2. : Br(a,b) = 0 foreach b € F 2.} and Vg be the subset Vg = {a € F 2. : Qr(a) = 0}.

Proposition 5.2. Fora,b € ]Fan we have

Bg(a, b) = Bs(a? + ca, b? + cb) (5.5)
and

Qr(a) = Os(a + ca). (5.6)
Proof. Fora € qun, using (5.1) and (5.2) we get

a?R@a)? = c?a?S(a? + ca)? + a?Sa? + ca) + sgcqaqaqz — socala.
Then using the identity Tr(aR(a)) = Tr(a? R(a)?) we obtain that
Tr(aR(a)) = Tr(caS(a? + ca)) + Tr(a?S(a? + ca)) = Tr((a? + ca)S(a? + ca)),
which proves (5.6). Now the proof of (5.5) follows from (5.6) and the identity
Br(a,b) = Qrla +b) — Qr(a) — Qr(D)
which holds for each a, b € ]qun. O
Lemma 5.3. The map n from the set {c € F 2. \ {0} : the polynomial T9 + cTsplits in Fy2n} to the set of Fy-linear
subspaces in ¥ 2. of codimension 1 given by
nc)=1{a?+ca:ac F o}

is one to one and onto. In particular for each Fy-linear subspace H in ¥ 2, of codimension 1, there exists a uniquely
determined ¢ € F 2, \ {0} such that H is the image of the Fy-linear map

(0 Fan g Fqul

a+ a? +ca.
Proof. Let wy, ..., wy, form a basis of qun. There exist (¢1, ..., €,) € IE"?]” \ {(0, ..., 0)} such that
H={ajwi + - +azwo, : 1€ + -+ o€, =0and ay, ..., az, € Fy}.

As in the proof of [8, Theorem 3.1], let b € qun \ {0} such that Tr(bw;) = €; for j = 1,...,2n. Then
H = {a € Fpon @ Tr(ba) = 0O}. Let ¢ = —p7"'=1 and @c @ Fpon — F 2. be the Fy-linear map defined by

at+> a? + ca. Fora € qun and a = ¢.(a), we have Tr(ba) = O since bc + p9”""" = 0. Therefore Im - CH

and dimImg, < 2n — 1. As dimKer g, < 1, we obtain that Im ¢, = H. It is clear that ¢ is uniquely determined by
2n

H. Note that the number of distinct I, -linear subspaces in F 2. of codimension 1 is 4 :11 . Moreover the polynomial

T94cT withc € ]qun \ {0} splits in ]qun if and only if —c is a g — 1 power in ]qun. Hence the number of ¢ € qun \ {0}

711 . This completes the proof. [

2n
such that T7 + ¢T splits in F 2, is also qq

Lemma 5.4. Assume that ¢ € F 2. \ {0} such that the polynomial T + cT splits in F ;2. \ {0} and let H be the image
of the Fy-linear map ¢ : F 2. — F 2. sending a to a? + ca. Let R(X) be the F4-linearized polynomial of degree

q"* defined in (5.2) using this c. We have
dim Wi < dim Wg + 2.



124 E. Cakcak, F. Ozbudak / Journal of Pure and Applied Algebra 210 (2007) 113—135

Moreover if 'H. contains Wy, then we also have
0. (Ws) C W,

and in particular
dim Wg + 1 < dim Wg.

Proof. Let U be the IF,-linear subspace of IF 20 defined by
U={ueFp: Bs, B? 4+ cB) = 0foreach B € Fon}.

For o € Wk, since for all B € 2. we have Br(a, B) = Bs(a? + ca, 7 + ¢B) = 0, the image ¢.(Wg) of Wg under
@ 1s contained in U. Moreover Ker ¢. € Wg and hence

dim Wg — 1 = dim¢.(Wg) < dimU. 5.7
Lete € F 2. \ Hc and define the Fy-linear map
YU — Ty
u+ Bg(u,e).
As Span{H_, e} = qun, we observe that Ker v = Wg. Moreover dim ¥ (U) € {0, 1} and hence
dimU < dim Wg + 1. (5.8)

Using (5.7) and (5.8) we obtain that dim Wi < dim Wy + 2.
Assume further that H. contains Wg. Let o € ¢ Y(Ws) and ¢ = a? + ca € Ws. Using (5.5) we get
Br(a, B) = Bs(a, B? + c¢f) =0foreach 8 € Iqun. This proves that <pc_1 (Wg) € Wg. O

Recall that k denotes the dimension of the IF-linear space Wg.

Proposition 5.5. Assume that k is even, k < 2n — 2 and the number of rational places of F is
144" + (g — Dq"q""?

(cf. Theorem 3.1). Then there exists ¢ € K on \ {0} such that the polynomial T9 + cT splits in 20, the image H. of

the map ¢ sending a € ¥ o to a? 4+ ca € 20 contains W, for the ¥y-linearized polynomial R(X) of degree g"t!

defined in (5.2) using this c we have
dim Wg = dim Wy + 2,

and the number of rational places of the function field F (t) defined in Proposition 5.1 using this c is
1+¢”" + (¢ — Dq"g"*".

Proof. As dim Ws = k, the number of I, -linear subspaces of codimension 1 in [F 2. containing Wy is

2n—k

—1

9 (5.9)
qg—1

Let S be the subset of F2. \ {0} consisting of ¢ such that the polynomial 7% + ¢T splits in F 2, and the image Hc¢ of

the map ¢, sending a € ]Fan to a? 4 ca contains Wy. Using Lemma 5.3 and (5.9) we obtain that |S| = qzz:f !

Forc € S, let R(X) € qun [X] be the F,-linearized polynomial of degree qh+1 and F(t) be the function field
defined in Proposition 5.1 depending on c. By Lemma 5.4, we have that dim Wk is either dim Wg + 1 or dim Wg + 2.
Then from Theorem 3.1 we get the number of rational places of F(z) is either 1 + ¢, 1 +¢** + (¢ — )¢ ¢"/**! or
1+ q2n —(q - 1)qnqk/2+]'

Let 7 be the subset of the cartesian product S x F . defined as

T ={(c,a) € S x Fo2. : Tr(aS(a)) =0and a € Img.}.
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We will determine the cardinality of 7" by first fixing a € F 2. and varying ¢ € S.If a € F 2. \ Vs, then there is no
¢ € S such that (c,a) € 7. Note that Wg C Vg. If a € Wy, then for each ¢ € S we have a € Im ¢, by definition of
S. From Hilbert’s Theorem 90 we get

1
Vsl = - (¢ + g~ Da"a"”).

2"7](71 -_— . . . . . . . .
For a € Vg \ Wg, there are exactly qul distinct F -linear subspaces in F 2, of codimension 1 containing Wy and

7/\'7171

2n
a. Then there are exactly qT distinct ¢ € S such that a € Im ¢,. Therefore the cardinality |7'| of 7 is given by

qun—k -1 _— /2 q2n—k—l -1
171 =g T+ (¢ + (g = D" = ) T———. (5.10)
qg—1 qg—1
Now we estimate |7 | by fixing ¢ € S and varying a € [F,2.. Assume the contrary, that there is no ¢ € S such that the
number of rational places of the corresponding function field F(¢) is 1 + ¢ + (g — 1)q"¢*/*>*1.
Forc € S,as F(1) = F 2. (u, v, 1) with

v/ —v=uS@u) and
t9 +ct =u,

the number of rational places of F(¢) is 1 + q2|{a € qun : Tr(aS(a)) = 0 and a € Im ¢.}|. By the assumption above,
for c € S we have |{a € Fan :Tr(aS(a)) =0and a € Img.}| < q2”_2 and hence

2n—k
-1
e ———E (5.11)
qg—1
Using (5.10), (5.11) and some straightforward calculations we obtain (g — 1)g>" /272 4 ¢?* 4+ ¢?"2 < (¢ —
1)g"t%/2=1 4 24?"=1 which is a contradiction since k < 2n —2. [

Note that there is no function field F of the form (1.1) with dim Wg = k = 2n and N(F) = 14+¢%"—(g—1)q"¢*/>.
(cf. Lemma 3.4). Now we prove an analog of Proposition 5.5.

Proposition 5.6. Assume that k is even, k < 2n — 4 and the number of rational places of F is
1+4¢ — (g — Dq"q"?

(cf: Theorem 3.1). Then there exists ¢ € F 2, \ {0} such that the polynomial T? + cT splits in ¥ 2, the image H. of

the map ¢ sending a € ¥ 2, to a? + ca € ¥ on contains Wy, for the Fy-linearized polynomial R(X) of degree g"t!

defined in (5.2) using this ¢ we have
dim Wg = dim Wg + 2,

and the number of rational places of the function field F (t) defined in Proposition 5.1 using this c is
1 +q2n —(q - l)qnqk/Z-H.

Proof. The proof is similar to the proof of Proposition 5.5. Let S and 7 be the sets defined in the same way as in the
proof of Proposition 5.5. We have |Vg| = é (¢*" — (¢ — 1)g"g"/*) and

q2n—k 1 q2n—k—1 1
|T| — qk + (an—l _ (q _ 1)qn+k/2—l _ qk) . (5]2)
q-1 q-—1

Assume the contrary, that there is no ¢ € S such that the number of rational places of the corresponding function field
F(t)is 1+¢* — (g — 1)g"¢"*/**". This implies that [{a € F 2 : Tr(aS(a)) = 0 and a € Img,}| > ¢*"~ and hence

2n—k
—1
17> 2 g2, (5.13)

qg—1
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Using (5.12) and (5.13) we obtain (g — 1)g" /271 4 ¢2* 4+ ¢°"=2 > (¢ — 1)g>**/>72 4 24>~ which is a
contradiction since k <2n — 4. [

We will use the following important theorem from [5].

Theorem 5.7. Let E1, E> be two algebraic function fields with the same finite full constant field. Assume E| C E>.
Then the L-polynomial (cf. [9, Definition V.1.14]) of E1 divides the L-polynomial of E,. In particular if E; is a
maximal (resp. minimal) function field, then E1 is also maximal (resp. minimal).

In the next proposition, when F is maximal or minimal, we give an algorithm for constructing an extension F'(¢)
of F in the form (5.4) which is also maximal or minimal respectively. In this case, Propositions 5.5 and 5.6 give only
existence results.

Recall that if F' is maximal or minimal then k = 2 (cf. Corollary 3.2 and Corollary 3.3). We will use the following
observation in the next proposition. If F is maximal with 4 < n — 1 or F is minimal with 7 < n — 2, then Wg C V5.
Indeed otherwise Wy = Vg and as dim Wg = 2h we have

N(F) =1+ qq*". (5.14)

We also have

14 ¢>" + (g — Dg"g" if F is maximal,

5.15
1+¢* — (g — 1g"g" if Fis minimal. o

N(F) = {
Using (5.14), (5.15) and & < n — 1 (resp. h < n — 2) if F is maximal (resp. minimal), we obtain a contradiction.

Proposition 5.8. Assume that F is maximal with h < n — 1 or F is minimal with h < n — 2. We apply the following
algorithm:

1. Choose e € Vg \ Wg.
2. Choose f € F 2. with Bg(e, f) # 0.
3.Ifh=n—1,thenlet H = Span {Ws U {e}}. If h <n—1,letl =n—1—h and choose { f1, ..., fa} quzn such

that Span{ Ws U {e, fYU{f1,..., fa}} = qun. For1 <i <2l let f, € qun be defined by
2 Bs(fi.e)
fi=fi— AT
Bs(f, e)
Let H = Span {WS U {e} U {fl, . ..,fgl}}.
4. Let ¢ be the element of ]Fan \ {0} corresponding to the F-linear subspace H in ]Fq2n of codimension 1 containing
Ws (¢f. Lemma 5.3).
5. Let F (t) be the extension of F defined in Proposition 5.1 using this c.

I

Then F (t) is maximal or minimal respectively.

Proof. We can apply Step 1 by the observation above. Since ¢ ¢ Wy, there exists f € Fg2n with Bs(e, f) # 0.

Since e € Vg, we have Bg(e, e) = (0. Moreover Bs(e,fi) = 0 by definition of fl for 1 < i < 2I. Let
a=ws+ae+ayfi +---+ay fry be an element of H with ws € Wy and «, 1, ..., ap; € Fy. Then

21
Bs(e,a) = Bs(e, ws) + aBs(e,e) + ¥ _ Bs(e, fi) = 0. (5.16)

i=1
Let W < TFo be the Fjy-linear subspace defined by using the element ¢ of Step 4 as W =
{a € F o s a% + ca € Span {Ws U {e}}}. We have dim W = dim Span {Ws U {e}} + 1 = dim Wy + 2. Let w be
an element of W. There exists ws € Wy and o € F, such that w? + cw = wg + ae. For b € qun we have
Br(w, b) = Bg(w? + cw, b? + ¢b) = Bs(ws, a) + aBs(e, a), where a = b? + cb € H. Then Bg(w, b) = 0 and

hence W C Wkg. Since dim Wi < dim Wy + 2 (cf. Lemma 5.4), we conclude that W = Wp.

Now we prove that Wg C Vg. If ¢ is odd, this is obvious. We assume that ¢ is even. Using (5.6) we obtain
Or(w) = Os(ws+ae) = Os(ws) +aBs(ws, e)+a2Q5(e). Since F is maximal or minimal, we have Qs(wg) = 0
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(cf. Corollaries 3.2 and 3.3). Moreover Bs(ws, ¢) = Qs(e) = 0 by construction. Therefore Wr € Vg. We complete
the proof using Theorems 3.1 and 5.7. [

Now we give our existence results of maximal and minimal function fields of the form (1.1) for all possible values
of h.

Theorem 5.9. For g odd and 0 < h < n (resp. q even and 1 < h < n), there exists a maximal function field F of the
form (1.1). For g odd and 0 < h < n — 1 (resp. q even and 1 < h < n — 1), there exists a minimal function field F of
the form (1.1).

Proof. Assume that g is odd. For # = 0 the existence of maximal and minimal function fields follows from
Lemma 4.1. For 1 < h < n (resp. 1| < h < n — 1) using Proposition 5.8 inductively, we prove the existence of
maximal (resp. minimal) function fields. In the case where g is even, we proceed similarly using Lemma 4.3 instead
of Lemma4.1. O

Remark 5.10. For g = 2, among other things, the existence of maximal function fields of the form (1.1) was proved
in [2] using a different method.

Using the algorithm in Proposition 5.8, we obtain the following examples for Theorem 5.9.

Example 5.11. For ¢ = 3 and n = 5, let w be a generator of the multiplicative group of F o, such that
w!'® 4+ 2w + 2w 4+ 2w* + w +2 = 0. Let Sp(X), ..., S5(X) € F,24[X] be the polynomials given by

So(X) = w¥%x,

S1(X) = w04 x3 4218y,

Sy(X) = w080 x9 4 49491 x3 | 21290y

S3(X) = w2242 x2T L WSO 4 29809 3 |, 29460y

Sp(X) = w3464 x81 | 25366 y27 | 58844 50 4 ) 52110 x3 4 ) 21480

Ss(X) = w3298 x243,
For 0 < i < 5, the function field qun (u, v) with v9 — v = uS; (1) is maximal. Let Ty(X), ..., T4(X) € ]qun [X] be
the polynomials given by

To(X) = w'27 X,

Ti(X) = w3 X3 4 26687 x

To(X) = w B4 X9 4 10604 x3 | 55544y

T5(X) = w X2 4 !9B314x9 4 41735 x3 9130y

Tu(X) = w"SB X8l 1147027 | 34505 30 | 648233 | 26421

For 0 < i < 4, the function field qun (u, v) with v4 — v = uT; (1) is minimal.

Example 5.12. For ¢ = 4 and n = 5, let w be a generator of the multiplicative group of F >, such that
w2 + w4+ + w + wh + w+ w*+w+1 = 0. Let S;(X),...,S5(X) € ]Fan[X] be the polynomials
given by

S1(X) = X* 4 w260760

$H(X) = w272901X16 + w456641X4 + w679868X,

S3(X) = w137682X64 + w497075X16 + w259729X4 + w238458X,

S4(X) = w987750X256 + w94615OX64 + w586225X16 + w933150X4 + w600400X,

S5(X) = w375150X1024.
For 1 <i <5, the function field qun (u, v) with v? — v = uS; (1) is maximal. Let T1(X), ..., T4(X) € ]Fan [X] be
the polynomials given by

T (X) = X* 4 w!86392x
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Table 1.1

k h S(X)

0 2 wZQOx9

2 3 w2027 | 6829 1 72 x3

4 4 w24 X8 1 y239x27 1 633 x9 4 160 x3 4 628 x

6 5 wHS0x243 1 193 (81 | 266327 | 6459 | 258 53

0 4 w300 x8]

2 5 w56 243 4 429 ¥81 | 524327

4 6 w064 X729 | 456243 | 293 w81 |, 381 %27 | 136 %9

6 7 wIB X287 4 6565243 | 121y 81 4 | 686 x27 | 72559 | 654 x3

To(X) = wS0741 16 | 541393 x4 4 250945

T3(X) = w658821X64 + w826124X16 + w1028087X4 + w278641X,
Tu(X) = w409317X256 + w190565X64 + w485402X16 + w122205X4 + w789137X.

For 1 <i < 4, the function field qun (u, v) with v¢4 — v = uT;(u) is minimal.

Similarly using Propositions 4.6 and 4.8, we prove the following result for a large class of function fields
corresponding to Theorem 3.1(1)(ii), (1)(iii), (2)(ii) and (2)(iii) with prescribed genus and number of rational places
simultaneously.

Theorem 5.13. We have the following existence result:

1. Case where q is odd: Assume that k is an even integer with 0 < k < 2n (respectively 0 < k <2n —2)and h is an
integer satisfying that h > k/2 + 1 and gcd(h—k//Z) is even.
2. Case where q is even: Assume that k is an even integer with 0 < k < 2n (respectively 0 < k < 2n —2) and h is an

integer satisfying that h > k/2 + 1 and gcd?h—kk/ZZn) is odd.

Then in both cases above, there exists a function field F of the form (1.1) such that the genus g(F) and the number
of rational places N (F) are simultaneously prescribed as

Ik
g(F):%, and

N(F)=q*" 4+ 1+ (g — Dg"™? (resp. N(F) = ¢*" +1 — (q — Dg"™/?).

Remark 5.14. Using function fields in the form (1.1) different from the ones whose existence is proved in
Propositions 4.6 or 4.8, we would get further results similar to Theorem 5.13. For example using Remark 4.9 we

obtain that if ¢ is odd, k iseven with 0 < k <2n and h > k/2+ 1 with is odd, then there exists a function
(g=Dq"
2

—k/2
gcd(h k/2,n)
such that its number of rational places is either

field in the form (1.1) of genus

g +14(q—Dg"™*? or g™ +1-(q—g"

We give some examples for Theorem 5.13.

Example 5.15. Let ¢ = 3, n = 3 and w be the generator of the multiplicative group of F .. satisfying

w® + 2w* + w? + 2w + 2 = 0. Each line of Table 1.1 (respectively Table 1.2) corresponds to a function field
F = ]qun (u, v), where v? — v = uS(u), with the corresponding k and % of the table such that the genus g(F’) and the
number of rational places N (F') are

g(F) = (g —Dq"/2,
N(F) = q2l’l +14+ (q _ l)qn+k/2 (resp. qzn 41— (q _ 1)qn+k/2).

For g = 2, n = 4 and a generator w of the multiplicative group of F .. satisfying wd+wt+wr+uwr+1=0,
Tables 2.1 and 2.2 have the same meaning respectively.
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Table 1.2

k h S(X)

0 2 w219 x9

2 3 wl4lX27+wl35X9+w567X3

4 4 w099 81 4, 161x27 251 x0 | 44833 | 19y

0 4 w493X81

2 5 w265X243+wX81 +w75X27

4 6 W2AT X729 | 667 243 4 24181 | 381327 4 591 39
Table 2.1

k h S(X)

0 2 w7 x4 4w x

2 3 w24OX8+w196x4+w72xz+w]87x

4 4 w146X16+w27X8+w231X4+w21X2+w48X

6 5 w83X32+wl67X16+w228X8+w38X4+wl7lX2+w92X

3 6 w242 x64 4 252532 17016 4 2318 | 203 y4

0 3 w254X8+wl39X

2 4 wl49X16+w221X8+w217X4+w28X

4 5 w27X32+w222X]6+w]55X8+w26X4+w247X2+w15X

6 6 W28 X644 18832 | 245y 16 4 88 %8 | 88 x4 o 15332 | 35y
8 7 w60X128+w15X64+wl49X32+X16+w172X8+w60X4+w120X2
Table 2.2

k h S(X)

0 2 w101X4+w43X

2 3 w“XS+w229X4+w253X2+w163X

4 4 w22 X160 4 15 x8 4 00 x4 4 4 10x2 4 489y

6 5 WIX32 413X 16 4 194 y8 155 x4 4 8y L 147 x

0 3 w07 x8 4+ 4O x

5 4 w65 x16 4 1,209 %8 | 158 x4 201

4 5 w1232 4 150516 4 20058 | 634 | o 17332 |, 189y

6 6 w56X64+w183X32+wl3X16+wl43x8+wl7x4+w130X2+w92X

Proposition 5.6 implies the following characterization of function fields corresponding to Theorem 3.1(1)(iii) and
(2)(iii).
h
Tq and number of rational places
g + 1 — (g — )q"q*/?, where k is even and 0 < k < 2n — 2. Let u = h — k/2. Then F is a subfield of a

ynction field F in the form (1.1) such that its genus g(F) is (g=Dg""" and its number of rational places N(I::) is
2
qz"_1 + 1 (which is q2" +1—-( — l)q”q”_l).

Proposition 5.16. Let F be a function field in the form (1.1) of genus =D

Our characterization corresponding to Theorem 3.1(1)(ii) and (2)(ii) is much stronger. For simplicity we assume
that # — k/2 < n — 1 in the next theorem.

Theorem 5.17. Let F be a function field in the form (1.1) of genus M and number of rational places
g?" + 1+ (g — Dq"q"*'?, where k is even, 0 < k < 2n, and h —k/2 < n — 1. Letu = h — k/2. Then F is a
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subfield of a function field F in the form (1.1) whose F-linearized polynomial

S(X) = 50X +51X7 + -+ 54X € Fu[X] (5.17)

is of degree q" ™" and satisfies that

0=§1 ="'=§n—u—1 :Oa
Sn—i + EZ:: =0 foreachl <i <u, and
& 4350 =0.
In particular the genus g(ﬁ) of Fis M and the number of rational places N(F) of Fisl+ g>tL

Proof. Using the methods of this section, we obtain a function field F in the form (1.1), whose IFq-lineaIized
polynomial S(X) is of degree ¢ as in (5.17). Moreover the dimension k of the radical of the corresponding bilinear
form is 2n. This implies that

Tr (@S(@)) =0 foreacha € F 2. (5.18)

Let w be a generator of the multiplicative group of I .. Note that for 1 <i < u

n+i qn—i n—i n—i
z +1 _ +1
(s,,+,~a)q ) =35, ol . (5.19)

Using (5.18), (5.19) and [4, Theorem 2.5] we complete the proof. [
6. Some Galois extensions of F

In this section we prove that if N(F) > g?" + 1, then the degree ¢ extensions of Section 5 are Galois. Moreover
we prove that the extension F'/F of Theorem 5.17 is Galois and we determine its Galois group. If F is maximal, then
we also prove that F is a subfield of the Hermitian function field H over qun, the extension H/F is Galois and we
obtain the Galois group Aut(H/F) explicitly.

Recall that F' = F o (u, v) with v — v = uS(u), where S(X) is an Fy-linearized polynomial of degree q" in
IF42.[X]. In this section we assume that the dimension k of the radical of the corresponding bilinear form is even and

the number of rational places of F is q2" + 14+ (g — l)q""‘% (cf. Theorem 3.1). For k < 2n — 2, let F| = F(t1)
be the function field with tf + c1t1 = u, where c; is obtained using Proposition 5.5. Let m = n — % and form > 2
and 1 < i < m — 1, let ¢c;1 be obtained using Proposition 5.5 gnd Fi11 = Fi(ti+1) be the function field with
tiq 1 FCivitivl =1 Note that F;,, corresponds to the function field F of Theorem 5.17. Form > land 1 <i < m, let
@i be the Fy-linear map on F 2. sending x to x4 4 ¢;x. In this section we prove that F,/F is Galois and we compute
the Galois group Aut(F,/F).

Throughout this section, for 1 < i < m and a rational place Q of F; with vy (#;) > 0, we denote the evaluation of
tiat Q ast;(Q).

We begin with a technical lemma, which is not difficult but is useful. Let L be an algebraic function field such that
IF ;20 is the full constant field of L. Let ¢ € F 2, \ {0} such that the polynomial TY9 4 ¢T splits in Fy2.. Leta € L and
L(t) be the extension of L with 19 + ¢t = a. Assume that the full constant field of L(z) is ]qun and [L(¢) : L] =q.

Lemma 6.1. Under the same assumptions as above, let P be a rational place of L such that vp(a) > 0. Let ¢, be
the ¥y-linear map on F on sending x to x9 + cx. Let a(P) be the evaluation of a at P. If a(P) & Im ¢, then there
exists no rational place of L(t) over P. If a(P) € Im¢,, then there exist q rational places of L(t) over P. If Q is
a rational place of L(t) over P and t(Q) is the evaluation of t at Q, then the set of evaluations of t at all rational
places of L(t) over P is {t(Q) + « : a € Ker¢.}.

Proof. The proof follows from [9, Theorem I11.3.7]. [

Using Lemma 6.1, we prove the following proposition.



E. Cakgak, F. Ozbudak / Journal of Pure and Applied Algebra 210 (2007) 113-135 131

Proposition 6.2. Assume that m > 1. Let P be a rational place of F such that vp(uS(u)) > 0. For 1 <i < m, there
exist either no or exactly |Ker(gy o- - -o¢;)| rational places of F; over P. Moreover if there exists a rational place P; of
F; over P, then the set of evaluations of t; at all rational places of F; over P is {t;(P;) +«; : a; € Ker(¢j0---0¢;)}.

Proof. We prove by induction on i. For i = 1, the proposition follows from Lemma 6.1. Assume that it holds
for some 1 < i < m — 1. Assume further that there exists a rational place P;; of F;;; over P. Let P; be the
rational place of F; under P;;1. We observe that dim Ker(¢p; o - - - o ¢; 0 ¢;41) is either dim Ker(¢; o --- o ;) + 1 or
dim Ker(¢; o -- - o ¢;). First we consider the case that dim Ker(¢; o --- o ¢; 0 ¢j+1) = dimKer(¢; o --- 0 ¢;) + 1.
This means that Ker(p; o --- o ¢;) € Img;+1. Since there exists a rational place of F;;| over P;, it follows from
Lemma 6.1 that #; (P;) € Im ¢;41. By the induction hypothesis, the set of evaluations of #; at all rational places of F;
is{t;(P;)+oa;:a; € Ker(pro---0¢;)}. Ast;(P;) € Img;11 and Ker(¢j o---0¢;) € Im¢;41, each rational place of
F; over P totally splits in F;1/F;. Let Q;+1 be an arbitrary rational place of F;; 1 over P and let Q; be the rational
place of F; under F;4. Then we have

tis1(Pis)? + civ1tiv1(Piy1) = t;(P;), and

tis1(Qi+1)? + cip1tiv1(Qiv1) = 6:(Qi) = t:(P) + i,
where «; € Ker(¢) o---0¢;). Hence for oj+1 = 1i11(Qi+1) — ti+1(Pi+1), we have ¢;+1(aj+1) € Ker(py o --- 0 ¢;),
which means «; 1 € Ker(g; o--- 0 ¢jt1).

Next we consider the remaining case that dim Ker(¢; o -+ o0 ¢; 0 ¢j+1) = dimKer (¢] o - - - o ¢;). In this case we
have

dim(Ker(p; o---0¢;j) NImg;11) = dimKer(p; o---0¢;) — 1.

If Q; is arational place of F; over P suchthatt;(Q;)—t;(P;) € Ker(¢jo---o¢;) NIm @; 11, then as in the first case Q;
totally splits in F;1/F; and for each rational place Q; 4 of Fi41 over Q;, there exists «j+1 € Ker(pjo---o@;o@it1)
such that #11(Qi+1) — ti+1(Pi41) = «j41. It remains to prove that if Q; is a rational place of F; such that
t(Q;i)—t(P;) € Ker(py0---0¢;) \Im ¢, 1, then there is no rational place of F;; over Q;. Indeed, otherwise we have
ti(P;) € Img;4+1 and £;(Q;) € Im ;4. But this implies that ; (Q;) — #; (P;) € Im ¢; 11, which is a contradiction. [

Next we will show that F,/F is Galois. We begin with a lemma.

Lemma 6.3. For m > 1, we have dimKer(¢ o --- 0 ¢,,) = m.

Proof. For m = 1, the lemma is obvious. For m > 2, it is enough to prove that for each 1 < i < m — 1, we have
dim Ker(¢j o---o@;j41) = dimKer(p; o---0¢;) + 1. Assume the contrary and let i be the smallest integer such that
dim Ker(¢j o -+ o ¢;41) # dimKer(¢; o --- o ¢;) + 1. Then dimKer(¢; o --- 0 g;j41) = dimKer(p; o --- 0 ¢;)
and using Proposition 6.2 we obtain that N(F;+1) < N(F;). However this is a contradiction since we have

N(F)=1+¢"+(q— 1)¢" 5+ foreach 1 < j < m by construction. L[]
Assume thatm > 1 anda € Ker(gjo---0¢,,).Leta"™ =aandforl <i <m—1leta® = (gj;10---0¢u)(a).
Note that F,,, = ]qun (u,v,t1,...,ty). Let &, be the map on F), fixing F and given by
®, . F,, > F,
=t +a¥ forl <i<m.

It is easy to observe that @, (1] + c111) = u and @4 (¢!, | + ciy1ti11) =t for 1 < i < m — 1. Therefore @, is an
automorphism of F), fixing F. For aj,ay € Ker(¢p; o---0o¢p)and 1 < i < m we have aii) + ag) = (a1 + az)(i).
This implies that (D,, 0 D4,) (i) = Pay4a, (1), forl <i <m.

We have proved the following theorem. We recall that F;,, corresponds to F of Theorem 5.17.
Theorem 6.4. For m > 1, the extension Fy,/F is Galois and its Galois group is
Aut(Fy/F) ={P, :a eKer(pro---0@u)} =Zp x -+ X Lp,
—_——

e-m times

where g = p°. Moreover if ay, ar € Ker(g1 o--- 0 ¢p), then &4, 14, = Pgy 0 Py,.
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From here until the end of this section we further assume that F is maximal. This means 7 = % < n. It follows
from Proposition 5.1 that there exists a polynomial R,,[X] of degree ¢" in qun [X] such that F), is the same as the
function field qun (tm, Sm), Where sty — s,y = ty Ry (t). For simplicity of notation we also denote s,, and #,, as z
and x respectively. Using Theorem 5.17, we get b € F 2. \ {0} with b?" + b = 0 and R, (X) = bX?". Therefore
Fpn =T u(x, z) with 27 — z = bxd"t1,

First we consider the case n = 1. Since the map x — x?7! is the norm map on 42, there exists g € F > such that

BIt! = —1.Letz; =% € Fyand x| = % € F,,. We have
29 —z=b"2 —bzy =b9(z] +z1), and
bxt! = —p7 (Bx))7H! = px?T
Therefore F,,, = ]qu(xl, z1) with zi’ +2z1 = xqu, which means that F},, is the Hermitian function field over ]qu in

the case n = 1.

From now on we assume that n > 2. Let U, € F 2. be the Fy-linear space of dimension n — 1 consisting of the
roots of the additive polynomial bX + 69X + --- + pt" xa" ¢ F 2 [X]. For g € Up, we have B + B =0.
Recall that the Hermitian function field H over F 2. is F 2. (x, y) with y?' 4+ y = x2"t1 For B € Uy, let ¥ be the
automorphism on H given by

Yg:H—> H
X > X,
y—=y+B.

For B1, B2 € Up we have Wg, o Wg, = Vg 4p,. Hence {Wg : B € Uy} is a group of automorphisms of H fixing
[F ;2 (x) and of order q" .

Proposition 6.5. F, is a subfield of H, the extension H | Fy, is Galois and its automorphism group is Aut(H / F,,) =
{Up: B e Uy}

n—1

Proof. Let z = —(by + b9y? + --- + b1 yqnfl) be the element of H. For 8 € Up, as B is a root of the additive
polynomial bT+b9T9+- - -+b54"" T4 7 is fixed by Ws. Using b?" = —b we obtain that 79—z = bx4" ! Therefore
Fy is fixed by {¥g : B € Up}. As [H : qun(x)] = q" and [F), : qun(x)] =gq,weget[H : F,] =q""! =|Upl,
which completes the proof. [

When m = 0, Proposition 6.5 proves that F' is a Galois subfield of the Hermitian function field H over F 2, and it
also computes the Galois group Aut(H/F). From now on we assume that m > 1.
Since F, is maximal, there exist exactly ¢2**! elements (a, w) € Fo2n x F o0 satisfying w® —w = ba?"*+!. For

a,w € qun with w9 — w = ba?"*!, the map
Qa,w D Py =qun(x, ) = Fy
X x+a

n n+1 n—1 2n—1
Iz — (baq x + blal

x4+ b7 af an71>+w

n
. . . 1 . .
defines an automorphism of F,, fixing qun. For ay, ap, wi, wy € qun with w? —w; = baf for1 <i<?2,if

n+l

n n— 2n—1 n—1
w=w1+w2—<bag a1+bqag ai]+~-~+bq lag ai] ) 6.1)

and a = a; + ao, then w4 — w = ba?" 1. Moreover we have
Qal,wl o Qaz,wz = Qa,w- (6.2)

We have proved the following proposition.
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Proposition 6.6. The set
{Opw:a,we Iqun, w? —w = baq"H}
is a subgroup of order ¢*"*' in Aut(F,, [E g20).
Remark 6.7. For aj, az, wi, wy € F 2 with w! —w; = baf’n+1 for 1 <i <2, we observe that
Oy, w1 © Buywr = Ouzywy © Ouy oy = TI‘Iqun/Fq (balagn) =0.

Note that {&, : a € Ker(¢j o --- 0 ¢,,)} is a subgroup of order ¢" " in Aut(F,,/F) < Aut(Fm/qun). In the next
proposition we will prove that {®, : a € Ker(pj o --- 0 ¢y)} is even a subgroup of {6, 1 a, w € qun, wl —w =
bat"t1}.

Proposition 6.8. Fora € Ker(gi0---ogp), there exists a uniquely determined w € I 2. such that wl —w = ba?"t!
and @, = Oy .

Proof. For any w € F 2, with w? —w = ba?"+! we have
n n n— n— n— q
[w—(baq x +b%al +|xq+~-~+bq L e I)]

_ I:w . (baqnx + bqaqn+1xq +t bqn—lannflan—l)]

= bax?" + ba?" x4 + ba?""".
Therefore the additive polynomial
A(T) =T =T — (bax?" +ba?"x + ba?" *') € F 2 (x)[T] 6.3)
splits into linear factors as
an = ] (T + (b x + b9a? x4 b g T w) . (6.4)

wq —w=bad"+1
Note that z € F,, z7 — z = bx?"t! and &,(x) = x + a. Therefore
(04(2) — 2)7 — (D4(2) — 2) = bax?" + ba? x + ba® 1. (6.5)
Using (6.3)—(6.5) we complete the proof. [

Notation 6.9. For a € Ker(¢j o - -+ 0 ¢,,), we denote the uniquely determined w € F 2, such that w? —w = bad"*!
and @, = 6,4, (cf. Proposition 6.8) as w,.

Remark 6.10. As {®, : a € Ker(¢; o--- 0 ¢y,)} is a commutative group, if F,, is maximal, then using Remark 6.7
and Proposition 6.8, for a1, ax € Ker(¢q o --- 0 ¢) we get Try /F, (balag ) =0.
q

Now we recall some known results on the automorphism group Aut(H/F ;2.) of H fixing F 2,. We refer the reader
to [1] for the details of these facts. The automorphism group A = Aut(H /F 2.) is isomorphic to the projective unitary

group PGU(3, g?"). Let P4, be the unique pole of x in H. Let A(Px,) be the subgroup of A given by
A(Ps) = {0 € A: 0Py = Pyl

The unique p-Sylow subgroup A; (Px) of A(Px) consists of the automorphisms
oc:H—H

X=X+«
y y+alx+ B,

where o € F 1, B9" + B = a?" ! and hence | A (Pso)| = g™".
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The elements of A (Ps) can be identified with the tuples [«, 8] € qun X IF‘qzn such that ﬁqn + B8 = a?" 1, The
group law in Aj(Pyo) is

[og, B1] - [a2, B2] = [a) + a2, 041012 + B1 + B2l
For [a, B] € Aj(Px), we observe that the restriction of the automorphism [, 8] of F on F,, is the automorphism
O, v of Fy,, where

w=—0p+bIpl 41T B,
Indeed [o, B] sends z = —(by + b9y + -+ b?"" " ) to

1 2n—1 n—1 n—1

T {b(aq”x +B)+ bq(aanXq +B8N)+--+ b (@9 x7 x4+ ,Bqn_l)}
=Zz- (baqn + bqOﬂ"Jrl 4+ 4 bqnflaqznflanfl) +w,
where w = —(bﬁ+bqﬁq 4o pt” ﬂq” :
Since both F and F}, are maximal, for any « € ]Fan, both of the polynomials

T + T —a? ' and T9—T —ba? T}

split into linear factors in F .. Moreover recall that the group {Eg,w @ o, w € Fpon, w? —w = ba?"*1} has order

g*"*1 and | A1 (Ps)| = ¢>". Therefore the restriction of the group A;(Ps) on F,, is the group {Ogw 1, w €
Iqun, w? — w = ba¥" 1} For each Ou.w With o, w € F 2, and w? — w = bad"t1 there are exactly ¢g"~! distinct
B e ]Fan such that the restriction of [¢, 8] on F, is Oy, and these B’s are exactly the roots of the polynomial

n—1 n—1

" T 4 4+ bITT 4+ BT +w. (6.6)

Now we define a subset C of A (P ). We will show that C is a subgroup of A;(Ps) and the corresponding fixed
subfield HC will be F.

Definition 6.11. For « € Ker(p; o --- o ¢,), recall that w,, is the uniquely determined element of qun given in
Proposition 6.8 (cf. Notation 6.9). Let C be the subset

€= {[a, Bl e Ai(Po) 1o € Ker(pr o+ 0. 9) b7 17 4 4 6987 + wy = 0} '
As dimKer(¢j o - - - o0 ¢,) = m and the polynomial in (6.6) splits for any w, with ¢ € Ker(¢j o - - o ¢,,), we have
|C| — qnfh ,qnfl — q2n7h71.
Next we show that C is a subgroup. For [«1, B1], [«2, B2] € C, let [«, B] = [a1, B1] - [a2, B2]. Then ¢ = a1 + an
and g = omxg + B1 + B2. Using (6.1) and (6.2) we get

2n—1

n— n—1
of 47 af ol ). ©.7)

qn g qn+l
Wo 4oy = Wy + Way — (ba2 oy +bla,

Moreover
n— n— n n+1
BB+ b1+ + b7 BT =bad + B+ o) + b @lad + B+ BY)
n—1 qn—] q2n—l qn—] qn—]
++ b (@ a; + B +,32 )
= —Wy — W ba blad b o q e
= —Wy, — Wg, + 1a2 +bla a2 -+ ay . (6.8)

From (6.7) and (6.8) we obtain that [«, 8] € C and hence C is a subgroup.

It follows from Definition 6.11 and Proposition 6.8 that the restriction of C on F,, is the group {®, : o €
Ker(¢jo---0¢;,)}. Therefore any o € C fixes F and hence F is a subfield of the fixed subfield H Cof H corresponding
to C. Moreover [H : HC] = |C| = ¢¥" " Vand [H : F] = [H : Fyl[Fp : F1 = q"'¢"" = ¢?"~"~1. Therefore
F = HC. We have proved the following theorem.
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Theorem 6.12. Assume that F is maximal. The subset C in Definition 6.11 is a subgroup of A1(Pso) and F is the
fixed subfield H C of H corresponding to C.
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