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This paper is concerned with the stationary problem of a prey–
predator cross-diffusion system with a protection zone for the prey.
We discuss the existence and non-existence of coexistence states
of the two species by using the bifurcation theory. As a result,
it is shown that the cross-diffusion for the prey has beneficial
effects on the survival of the prey when the intrinsic growth rate
of the predator is positive. We also study the asymptotic behavior
of positive stationary solutions as the cross-diffusion coefficient of
the prey tends to infinity.
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1. Introduction

In ecosystems, whether different species can coexist or not is determined by the combination of
various factors, such as natural environments, interactions between the species, and behavioral pat-
terns. Therefore, it is important to investigate what effect the above factors will have on coexistence
problems. From this viewpoint, we study the following Lotka–Volterra prey–predator model:
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(P)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = �
[(

1 + kρ(x)v
)
u
] + u

(
λ − u − b(x)v

)
, (x, t) ∈ Ω × (0,∞),

vt = �v + v(μ + cu − v), (x, t) ∈ Ω \ Ω0 × (0,∞),

∂nu = 0, (x, t) ∈ ∂Ω × (0,∞),

∂n v = 0, (x, t) ∈ ∂(Ω \ Ω0) × (0,∞),

u(x,0) = u0(x) � 0, x ∈ Ω,

v(x,0) = v0(x) � 0, x ∈ Ω \ Ω0.

Here Ω is a bounded domain in R
N (N � 3) with smooth boundary ∂Ω and Ω0 is a subdomain of Ω

with smooth boundary ∂Ω0; n is the outward unit normal vector on the boundary and ∂n = ∂/∂n;
k � 0, λ > 0, c > 0 and μ ∈ R are all constants; ρ > 0 and b > 0 in Ω \ Ω0, whereas ρ = b = 0 in Ω0
because v is not defined in Ω0. Furthermore, we make the following assumption for technical reasons:
if N = 2 or 3, then Ω0 ⊂ Ω; if N = 1 and Ω = (a1,a2) for a1 < a2, then Ω0 = (a1,a) or Ω0 = (a,a2)

for some a ∈ (a1,a2). In (P), unknown functions u(x, t) and v(x, t) denote the population densities of
prey and predator respectively; λ and μ denote the intrinsic growth rates of the respective species;
b(x) and c denote the coefficients of prey–predator interaction; the zero-flux boundary condition
means that no individuals cross the boundary.

In the first equation of (P), k�[ρ(x)vu] is usually called a cross-diffusion term which was orig-
inally proposed by Shigesada et al. [20] to model the habitat segregation phenomena between two
competing species. The cross-diffusion k�[ρ(x)vu] means that the movement of the prey species is
affected by population pressure from the predator species. Then the cross-diffusion coefficient k rep-
resents the sensitivity of the prey species to population pressure from the predator species. See [1,2,
12,17,21] and references therein for studies on the time-global solvability of cross-diffusion systems.

In (P), the predator species cannot enter the subregion Ω0 of the habitat Ω , whereas the prey
species can enter and leave Ω0 freely. Namely, Ω0 is a predation-free zone for the prey species and
such a subregion Ω0 is called a protection zone. One can think that there is a barrier along ∂Ω0 that
blocks the predator but not the prey (see [4–6] for further details). In the case where cross-diffusion
is absent, Du et al. [4–6] have studied the effects of a protection zone on Lotka–Volterra competition
model [4], Leslie prey–predator model [5], and Holling type II prey–predator model [6] respectively.
They have proved that if the size of the protection zone is larger than a certain critical patch size,
which is common to three models, then a fundamental change occurs in the dynamical behavior of
each of three models.

In this paper, we study the effects of cross-diffusion on the set of positive stationary solutions
of (P). Let Ω1 := Ω \ Ω0. The stationary problem associated with (P) is given by

(SP)

⎧⎪⎪⎨
⎪⎪⎩

�
[(

1 + kρ(x)v
)
u
] + u

(
λ − u − b(x)v

) = 0 in Ω,

�v + v(μ + cu − v) = 0 in Ω1,

∂nu = 0 on ∂Ω,

∂n v = 0 on ∂Ω1.

When Ω0 = ∅, there are some studies on prey–predator models with cross-diffusion analogous to (SP)
(see e.g. [8–11,18,22]). From now on, we always assume that

ρ(x) = χΩ\Ω0(x) :=
{

1 if x ∈ Ω \ Ω0,

0 if x ∈ Ω0,
and b(x) =

{
β if x ∈ Ω \ Ω0,

0 if x ∈ Ω0,
(1.1)

where β is a positive constant.
Our first goal is to understand the effects of cross-diffusion on the existence and non-existence of

positive solutions of (SP). From an ecological viewpoint, a positive solution of (SP) means a coexis-
tence state of prey and predator. When Ω0 = ∅, it is known that for any k � 0, (SP) has no positive
solution if λ � βμ (the proof is essentially the same as that of Lemma 3.3 appearing in Section 3).
This, together with the fact that the semitrivial solution (λ,0) is linearly unstable for any μ > 0, im-
plies that when no protection zone is present, the prey species cannot survive if the intrinsic growth
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rate of the predator is relatively high compared with the intrinsic growth rate of the prey. On the
other hand, in the case where a protection zone is present, we will show that there exists a certain
threshold prey growth rate for survival, denoted by λ∗∞(k,Ω0). To be more specific, we will show that
if λ < λ∗∞(k,Ω0), then (SP) has no positive solution for large μ, whereas if λ � λ∗∞(k,Ω0), then (SP)
has at least one positive solution for any μ > 0. Here, it is noted that in the absence of cross-diffusion,
λ∗∞(0,Ω0) is given by λD

1 (Ω0), where λD
1 (Ω0) is the first eigenvalue of −� over Ω0 with the homoge-

neous Dirichlet boundary condition (the boundary condition should be replaced by φ(a) = φ′(ai) = 0
for i = 1 or 2 if N = 1, but we use the same symbol λD

1 (Ω0); and the fact λ∗∞(0,Ω0) = λD
1 (Ω0) fol-

lows from Theorem 2.1 and related results in [6] since their proofs are still valid when m = 0 there).
Then it is interesting to examine the dependence of the threshold prey growth rate λ∗∞(k,Ω0) on k.
We will show that λ∗∞(k,Ω0) decreases as k increases and satisfies limk→∞ λ∗∞(k,Ω0) = 0. Namely,
in the limiting case where k → ∞, the prey species can coexist with the predator species regardless
of the values of λ > 0 and μ > 0. Moreover, we will also show that for any fixed k > 0, λ∗∞(k,Ω0)

converges to zero as Ω0 is enlarged to the entire Ω . This is a strong contrast to the no cross-diffusion
case, where the threshold prey growth rate λD

1 (Ω0) satisfies λD
1 (Ω0) � λD

1 (Ω) > 0 for any Ω0 ⊂ Ω .
Therefore, we can say that the cross-diffusion for the prey has beneficial effects on the survival of the
prey species when a protection zone is present.

Our second goal is to understand the asymptotic behavior of positive solutions of (SP) as k → ∞.
When μ � 0, for any positive solution (uk, vk) of (SP), we will show that as k → ∞, uk converges
to λ in Ω0 and converges to 0 in Ω1, while vk converges to μ in Ω1. This convergence result means
that when μ � 0, the prey species concentrates in the protection zone as k → ∞ and when μ > 0 in
particular, the two species become spatially segregated as k → ∞. On the other hand, when μ < 0,
we will show that along a sequence ki → ∞, (uki ,ki vki ) converges to a pair of positive functions
which satisfies a certain limiting system. We will also analyze the bifurcation structure of positive
solutions of the limiting system.

It is expected that for large k, positive steady-states with the habitat segregation property men-
tioned above are stable. But the stability problem is difficult due to the presence of cross-diffusion
and it remains open.

Let O be any bounded domain in R
N with smooth boundary. We denote the usual norm of L p(O )

for p ∈ [1,∞) by

‖ψ‖p,O =
(∫

O

∣∣ψ(x)
∣∣p

dx

)1/p

.

Furthermore, for q ∈ L∞(O ), we denote by λN
1 (q, O ) the first eigenvalue of −� + q over O with the

homogeneous Neumann boundary condition. We will omit O in the notation if there is no ambiguity.
As is well known, the following properties hold:

(i) the mapping q 
→ λN
1 (q, O ) : L∞(O ) → R is continuous,

(ii) λN
1 (0, O ) = 0,

(iii) if q1 � q2 and q1 �≡ q2, then λN
1 (q1, O ) > λN

1 (q2, O ).

This paper is organized as follows. In Section 2, we will state the main results of this paper. In
Section 3, we will prove Lemma 2.1 stated in Section 2. Moreover, we will show some non-existence
result and a priori estimates of positive solutions. In Section 4, we will obtain positive solutions from
the viewpoint of the local bifurcation theory. In Section 5, we will accomplish the proof of our main
results.

2. Main results

We introduce a new unknown function U by

U = (
1 + kρ(x)v

)
u. (2.1)
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Then (SP) is rewritten in the following form:

(EP)

⎧⎪⎪⎨
⎪⎪⎩

�U + f1(λ, U , v) = 0 in Ω,

�v + f2(U , v) = 0 in Ω1,

∂nU = 0 on ∂Ω,

∂n v = 0 on ∂Ω1,

where

⎧⎪⎪⎨
⎪⎪⎩

f1(λ, U , v) = U

1 + kρ(x)v

(
λ − U

1 + kρ(x)v
− b(x)v

)
,

f2(U , v) = v

(
μ + cU

1 + kv
− v

)
.

(2.2)

Define

E = C1
n(Ω) × C1

n(Ω1), (2.3)

where C1
n (O ) = {w ∈ C1(O ): ∂n w = 0 on ∂ O }. We say that (u, v) is a positive solution of (SP) if

(U , v) ∈ E is a positive solution of (EP) and u is defined by (2.1). It is shown by elliptic regularity the-
ory (see e.g. [7]) that (U , v) ∈ C1,θ (Ω) × C2(Ω1) for any θ ∈ (0,1) if (U , v) ∈ E is a positive solution
of (EP). Before stating our main results, we state the following lemma.

Lemma 2.1. For any fixed k and Ω0 , there exists a continuous and strictly increasing function λ∗(μ) with
respect to μ � 0 such that λ∗(0) = 0, λ∗(μ) < βμ for any μ > 0, limμ→∞ λ∗(μ) � λD

1 (Ω0) and

{
(λ,μ) ∈ [0,∞)2: λN

1

(
b(x)μ − λ

1 + kρ(x)μ
,Ω

)
= 0

}
= {(

λ∗(μ),μ
)
: μ � 0

}
.

Our first result is the following theorem concerning the existence of coexistence states of (SP) with
fixed k and Ω0.

Theorem 2.2. The following results hold true:

(i) Suppose that μ � 0. Then (SP) has at least one positive solution if and only if λ > λ∗(μ).
(ii) Suppose that μ < 0. Then (SP) has at least one positive solution if λ > −μ/c.

From Theorem 2.2, we can draw the coexistence region of (SP) in the λμ-plane (see Fig. 1).
Our next concern is to examine the dependence of the coexistence region on k and Ω0. We write

λ∗(μ,k,Ω0) instead of λ∗(μ) to express the dependence on k and Ω0 explicitly in Theorem 2.3 below.
Moreover, we define λ∗∞(k,Ω0) := limμ→∞ λ∗(μ,k,Ω0) � λD

1 (Ω0). Then λ∗∞(k,Ω0) is the threshold
prey growth rate in the sense stated in Section 1. We can obtain the following theorem.

Theorem 2.3. The following results hold true:

(i) Suppose that μ > 0. Then λ∗(μ,k,Ω0) is strictly decreasing with respect to k.
(ii) Let S = {φ ∈ H1(Ω):

∫
Ω0

φ2 dx > 0}. For any k > 0,

λ∗∞(k,Ω0) = inf
φ∈S

∫
Ω

|∇φ|2 dx + β
k

∫
Ω\Ω0

φ2 dx∫
Ω0

φ2 dx
� β|Ω \ Ω0|

k|Ω0| .
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Fig. 1. Coexistence region of (SP) with fixed k and Ω0.

Part (i) of Theorem 2.3 means that the coexistence region becomes larger as k increases, and
part (ii) of Theorem 2.3 means that the threshold prey growth rate λ∗∞(k,Ω0) decreases to 0 as
k → ∞ or Ω0 is enlarged to the entire Ω .

Concerning the asymptotic behavior of positive solutions of (SP) as k → ∞, the following theorem
holds.

Theorem 2.4. Let (uk, vk) be any positive solution of (SP) for each k.

(i) Suppose that μ � 0. Then

lim
k→∞

(uk, uk, vk) = (λ,0,μ) in C1(Ω0) × C1(Ω1) × C1(Ω1).

Moreover, limk→∞ kvk = ∞ uniformly in Ω1 even when μ = 0.
(ii) Suppose that λ > −μ/c > 0 and let {ki}∞i=1 be any sequence with limi→∞ ki = ∞. Then, by passing to

a subsequence if necessary,

lim
i→∞

uki = ū uniformly in Ω, lim
i→∞

(vki ,ki vki ) = (0, w̄) in C1(Ω1)
2,

where (ū, w̄) is a positive solution of

⎧⎪⎪⎨
⎪⎪⎩

�
[(

1 + ρ(x)w̄
)
ū
] + ū(λ − ū) = 0 in Ω,

�w̄ + w̄(μ + cū) = 0 in Ω1,

∂nū = 0 on ∂Ω,

∂n w̄ = 0 on ∂Ω1.

(2.4)

We can analyze the bifurcation structure of positive solutions of the limiting system (2.4).

Theorem 2.5. The set of positive solutions of (2.4) with bifurcation parameter μ contains an unbounded
connected set Γ in R × L∞(Ω) × C1(Ω1) satisfying the following properties:
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(i) Γ bifurcates from {(μ, ū, w̄) = (μ,λ,0): μ ∈ R} at μ = −cλ,
(ii) (−cλ,0) ⊂ {μ: (μ, ū, w̄) ∈ Γ } ⊂ (μ̃,0) for some μ̃ ∈ (−∞,−cλ],

(iii) limμ→0 ūμ = λ in C1(Ω0) and limμ→0(ūμ, w̄μ) = (0,∞) uniformly in Ω1 , where (μ, ūμ, w̄μ) ∈ Γ .

Although ū /∈ C1(Ω) for (μ, ū, w̄) ∈ Γ in Theorem 2.5, we can verify from Proposition 5.5 in
Section 5 that ū|Ω0 ∈ C1(Ω0) and ū|Ω1

∈ C1(Ω1). Finally, we remark that (iii) of Theorem 2.5 is
compatible with (i) of Theorem 2.4.

3. Preliminaries and a priori estimates

In this section, we will prove Lemma 2.1. Moreover, we will derive some non-existence result and
a priori estimates of positive solutions.

We first recall the following maximum principle (see Lou and Ni [15]) and Harnack inequality (see
Lin et al. [13] and Lou and Ni [16]).

Lemma 3.1. Suppose that g ∈ C(O × R), where O is a bounded domain in R
N with smooth boundary. If

w ∈ C2(O ) ∩ C1(O ) satisfies

�w(x) + g
(
x, w(x)

)
� 0 in O , ∂n w � 0 on ∂ O ,

and w(x0) = minO w, then g(x0, w(x0)) � 0.

Lemma 3.2. Let f ∈ L p(O ) with p > max{N/2,1}, where O is a bounded domain in R
N with smooth bound-

ary, and let w be a non-negative solution of �w + f (x)w = 0 in O subject to the homogeneous Neumann
boundary condition. Then there exists a positive constant C# = C#(p, N, O ,‖ f ‖p,O ) such that

max
O

w � C# min
O

w.

We will prove Lemma 2.1.

Proof of Lemma 2.1. Suppose that μ > 0. By the continuity and monotone increasing property
of λN

1 (q) with respect to q ∈ L∞(Ω) and the fact λN
1 (0) = 0, we see that

λ 
→ λN
1

(
b(x)μ − λ

1 + kρ(x)μ

)
: [0,∞) → R

is a continuous and strictly decreasing function satisfying

λN
1

(
b(x)μ

1 + kρ(x)μ

)
> 0 and λN

1

(
b(x)μ − βμ

1 + kρ(x)μ

)
< 0,

where we have used the assumption (1.1) about b(x). It thus follows from the intermediate value
theorem that there exists a unique λ∗(μ) ∈ (0, βμ) such that

λN
1

(
b(x)μ − λ∗(μ)

1 + kρ(x)μ

)
= 0.

Since

μ 
→ λN
1

(
b(x)μ − λ

1 + kρ(x)μ

)
: [0,∞) → R
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is continuous and strictly increasing, we can verify that λ∗(μ) is continuous and strictly increasing
with respect to μ � 0 and satisfies λ∗(0) = 0.

We finally show limμ→∞ λ∗(μ) � λD
1 (Ω0) by the argument used in the proof of Theorem 2.1 in [6].

From the variational characterization of the first eigenvalue, we have

0 = λN
1

(
b(x)μ − λ∗(μ)

1 + kρ(x)μ

)
= inf

φ∈Θ

∫
Ω

(
|∇φ|2 + b(x)μ − λ∗(μ)

1 + kρ(x)μ
φ2

)
dx, (3.1)

where Θ = {φ ∈ H1(Ω): ‖φ‖2,Ω = 1}. Let φ1 satisfy

−�φ1 = λD
1 (Ω0)φ1 in Ω0, φ1 = 0 on ∂Ω0,

∫
Ω0

φ2
1 dx = 1,

where φ1 = 0 on ∂Ω0 should be replaced by φ1(a) = φ′
1(ai) = 0 for i = 1 or 2 if N = 1. Define

φ̃1 ∈ H1(Ω) as follows:

φ̃1 ≡ φ1 in Ω0, φ̃1 ≡ 0 in Ω \ Ω0.

Setting φ = φ̃1 in (3.1), we obtain

0 �
∫
Ω0

(|∇φ1|2 − λ∗(μ)φ2
1

)
dx = λD

1 (Ω0) − λ∗(μ)

for any μ � 0. Therefore, limμ→∞ λ∗(μ) � λD
1 (Ω0). �

We will derive the following non-existence result of positive solutions.

Lemma 3.3. If μ � 0 and λ � λ∗(μ), then (EP) has no positive solution.

Proof. Let (U , v) be any positive solution of (EP) with μ � 0 and define u by (2.1). Then U is a
positive solution of

−�U + −λ + u + b(x)v

1 + kρ(x)v
U = 0 in Ω, ∂nU = 0 on ∂Ω.

In addition, by applying Lemma 3.1 to the second equation of (EP), we have

μ + cU (x0)

1 + kv(x0)
− min

Ω1

v � 0,

where v(x0) = minΩ1
v . Namely, v > μ in Ω1. Hence we find that

0 = λN
1

(−λ + u + b(x)v

1 + kρ(x)v

)
> λN

1

(
b(x)v − λ

1 + kρ(x)v

)
> λN

1

(
b(x)μ − λ

1 + kρ(x)μ

)
.

On the other hand, it follows from Lemma 2.1 that
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λN
1

(
b(x)μ − λ

1 + kρ(x)μ

)
� 0

for any λ � λ∗(μ). Therefore, (EP) has no positive solution if μ � 0 and λ � λ∗(μ). �
We will derive the following a priori estimates of positive solutions.

Lemma 3.4. Let θ ∈ (0,1). Then there exists a positive constant C independent of k such that any positive
solution (U , v) of (EP) satisfies

‖U‖C1,θ (Ω) � C and ‖v‖C1,θ (Ω1) � C .

Proof. Let (U , v) be any positive solution of (EP) and define u by (2.1). Integrating the first equation
of (EP) over Ω , we have ∫

Ω

u
(
λ − u − b(x)v

)
dx = 0.

Then by the Schwarz inequality, we see that∫
Ω

u2 dx � λ

∫
Ω

u dx � λ|Ω|1/2‖u‖2,Ω,

where |Ω| denotes the measure of Ω . Hence

‖u‖2,Ω � λ|Ω|1/2 (3.2)

and thus

|Ω0|1/2 inf
Ω0

u � ‖u‖2,Ω0 � λ|Ω|1/2.

Therefore,

inf
Ω0

u � λ

( |Ω|
|Ω0|

)1/2

. (3.3)

Similarly, we have∫
Ω1

v2 dx = μ

∫
Ω1

v dx + c

∫
Ω1

uv dx � μ+|Ω1|1/2‖v‖2,Ω1 + c‖u‖2,Ω1‖v‖2,Ω1 ,

where μ+ := max{μ,0}. It follows from (3.2) that

‖v‖2,Ω1 � μ+|Ω1|1/2 + c‖u‖2,Ω1 � μ+|Ω1|1/2 + cλ|Ω|1/2, (3.4)

which, in particular, gives

min
Ω

v � μ+ + cλ

( |Ω|
|Ω1|

)1/2

. (3.5)

1
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By (3.2), (3.4) and the assumption that the spatial dimension N satisfies N � 3, we can apply
Lemma 3.2 with p = 2 to (EP). Consequently, we can find two positive constants C1 and C2 inde-
pendent of k such that

max
Ω

U � C1 min
Ω

U � C1 inf
Ω0

u � C1λ

( |Ω|
|Ω0|

)1/2

and

max
Ω1

v � C2 min
Ω1

v � C2

(
μ+ + cλ

( |Ω|
|Ω1|

)1/2)
,

where we have used (3.3) and (3.5). Therefore, we get the conclusion by elliptic regularity theory and
the Sobolev embedding theorem. �
4. Local bifurcation from semitrivial solutions

In this section, we regard λ as a bifurcation parameter. We will apply the local bifurcation the-
orem of Crandall and Rabinowitz [3] to (EP) in order to obtain a branch of positive solutions which
bifurcates from the semitrivial solution curve

ΓU = {
(λ, U , v) = (λ,λ,0): λ > 0

}
or Γv = {

(λ, U , v) = (λ,0,μ): λ > 0
}
.

For p > N , we define

X1 = W 2,p
n (Ω) × W 2,p

n (Ω1) and X2 = Lp(Ω) × Lp(Ω1),

where W 2,p
n (O ) = {w ∈ W 2,p(O ): ∂n w = 0 on ∂ O }. We note that X1 ⊂ E by the Sobolev embedding

theorem, where E is the Banach space defined by (2.3).
We first study the local bifurcation from Γv for any fixed μ > 0. Let λ∗ = λ∗(μ) be the positive

number defined in Lemma 2.1 and let φ∗ be a positive solution of

−�φ∗ + b(x)μ − λ∗

1 + kρ(x)μ
φ∗ = 0 in Ω, ∂nφ

∗ = 0 on ∂Ω. (4.1)

We also define

ψ∗ = (−� + μI)−1
Ω1

[
cμ

1 + kμ
φ∗

]
, (4.2)

where I is the identity mapping and (−� + μI)−1
Ω1

is the inverse operator of −� + μI over Ω1 sub-
ject to the homogeneous Neumann boundary condition. Then the following local bifurcation property
holds true.

Proposition 4.1. Assume that μ > 0. Positive solutions of (EP) bifurcate from Γv if and only if λ = λ∗ . Pre-
cisely, all positive solutions of (EP) near (λ∗,0,μ) ∈ R × X1 can be expressed as

Γ̂δ = {
(λ, U , v) = (

λ(s), s
(
φ∗ + U (s)

)
,μ + s

(
ψ∗ + v(s)

))
: s ∈ (0, δ)

}
for some δ > 0. Here (λ(s), U (s), v(s)) is a smooth function with respect to s and satisfies (λ(0), U (0), v(0)) =
(λ∗,0,0) and

∫
Ω

U (s)φ∗ dx = 0.
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Proof. Let V := v − μ in (EP) and define a mapping F : R × X1 → X2 by

F (λ, U , V ) =
(

�U + f1(λ, U , V + μ)

�V + f2(U , V + μ)

)
,

where f1 and f2 are functions defined by (2.2). Then F (λ, U , V ) = 0 if and only if (U , V + μ) is a
solution of (EP). We note that F (λ,0,0) = 0 for any λ. By a simple calculation, the Fréchet derivative
of F at (U , V ) = (0,0) is given by

F(U ,V )(λ,0,0)[φ,ψ] =
(

�φ + λ−b(x)μ
1+kρ(x)μφ

�ψ − μψ + cμ
1+kμφ

)
. (4.3)

By Lemma 2.1 and the Krein–Rutman theorem, F(U ,V )(λ,0,0)[φ,ψ] = (0,0) has a solution with φ > 0
if and only if λ = λ∗; thus λ∗ is the only possible bifurcation point where positive solutions of (EP)
bifurcate from Γv . It follows from (4.1)–(4.3) that the kernel of F(U ,V )(λ

∗,0,0) is given by

Ker F(U ,V )

(
λ∗,0,0

) = span
{(

φ∗,ψ∗)}, (4.4)

and hence dim Ker F(U ,V )(λ
∗,0,0) = 1. By the Fredholm alternative theorem, the range of F(U ,V )(λ

∗,
0,0) is given by

Range F(U ,V )

(
λ∗,0,0

) =
{
(φ,ψ) ∈ X2:

∫
Ω

φφ∗ dx = 0

}
. (4.5)

Thus it holds that codim Range F(U ,V )(λ
∗,0,0) = 1. Moreover, we see from (4.5) that

Fλ(U ,V )

(
λ∗,0,0

)[
φ∗,ψ∗] =

( φ∗
1+kρ(x)μ

0

)
/∈ Range F(U ,V )

(
λ∗,0,0

)
.

Consequently, we can apply the local bifurcation theorem [3] to F at (λ∗,0,0). Therefore, the proof
of Proposition 4.1 is complete. �

Next we study the local bifurcation from ΓU for any fixed μ < 0. We define

φ∗ =
(

−� + −μ

c
I

)−1

Ω

[
−μ

c

(
−kρ(x)μ

c
− b(x)

)]
.

Then the following local bifurcation property holds true.

Proposition 4.2. Assume that μ < 0. Positive solutions of (EP) bifurcate from ΓU if and only if λ = −μ/c.
Precisely, all positive solutions of (EP) near (−μ/c, λ,0) ∈ R × X1 can be expressed as

{
(λ, U , v) = (

λ̃(s), λ + s
(
φ∗ + Ũ (s)

)
, s

(
1 + ṽ(s)

))
: s ∈ (0, δ̃)

}
for some δ̃ > 0. Here (λ̃(s), Ũ (s), ṽ(s)) is a smooth function with respect to s and satisfies (λ̃(0), Ũ (0), ṽ(0)) =
(−μ/c,0,0) and

∫
Ω

ṽ(s)dx = 0.

1
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Proof. Let z := U − λ in (EP) and define a mapping Φ : R × X1 → X2 by

Φ(λ, z, v) =
(

�U + f1(λ, z + λ, v)

�v + f2(z + λ, v)

)
.

Then Φ(λ, z, v) = 0 if and only if (z +λ, v) is a solution of (EP). We note that Φ(λ,0,0) = 0 for any λ.
By a simple calculation,

Φ(z,v)(λ,0,0)[φ,ψ] =
(

�φ − λφ + λ(kρ(x)λ − b(x))ψ
�ψ + (μ + cλ)ψ

)
.

Thus we can easily verify that λ = −μ/c is the only possible bifurcation point where positive solutions
of (EP) bifurcate from ΓU . In addition, we see

KerΦ(z,v)(−μ/c,0,0) = span
{
(φ∗,1)

}
and

Range Φ(z,v)(−μ/c,0,0) =
{
(φ,ψ) ∈ X2:

∫
Ω1

ψ dx = 0

}
. (4.6)

Hence

dim KerΦ(z,v)(−μ/c,0,0) = codim Range Φ(z,v)(−μ/c,0,0) = 1.

Moreover, (4.6) yields

Φλ(z,v)(−μ/c,0,0)[φ∗,1] =
(−φ∗ − 2kρ(x)μ

c − b(x)
c

)
/∈ Range Φ(z,v)(−μ/c,0,0).

Therefore, we can apply the local bifurcation theorem [3] to Φ at (−μ/c,0,0). Thus we have com-
pleted the proof of Proposition 4.2. �
5. Proof of main results

5.1. Proof of Theorem 2.2

In this subsection, we will prove Theorem 2.2 by combining the results of the previous sections
with the global bifurcation theory.

Proof of Theorem 2.2. We first consider the case μ > 0. In order to apply the global bifurcation
theorem, we define a mapping F̃ : R × E → E by

F̃ (λ, U , v) =
(

U
v − μ

)
−

(
(−� + I)−1

Ω [U + f1(λ, U , v)]
(−� + I)−1

Ω1
[v − μ + f2(U , v)]

)
.

By elliptic regularity theory and the Sobolev embedding theorem, the second term of F̃ is a compact
operator for any fixed λ. Moreover, (EP) is equivalent to F̃ (λ, U , v) = 0. Let Γ̂δ be the local bifurcation
branch in Proposition 4.1 and let Γ̂M ⊂ R × E denote the maximal connected set satisfying

Γ̂δ ⊂ Γ̂M ⊂ {
(λ, U , v) ∈ (R × E) \ {(

λ∗,0,μ
)}

: F̃ (λ, U , v) = 0
}
. (5.1)
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Define P O = {w ∈ C1
n (O ): w > 0 in O }. We first show

Γ̂M ⊂ R × PΩ × PΩ1 (5.2)

by contradiction. Suppose that Γ̂M �⊂ R × PΩ × PΩ1 . Then there exist

(λ∞, U∞, v∞) ∈ Γ̂M ∩ (
R × ∂(PΩ × PΩ1)

)
(5.3)

and a sequence {(λi, Ui, vi)}∞i=1 ⊂ Γ̂M ∩ (R × PΩ × PΩ1 ) such that

lim
i→∞

(λi, Ui, vi) = (λ∞, U∞, v∞) in R × E.

In addition, (U∞, v∞) is a non-negative solution of (EP) with λ = λ∞ . It follows from the strong
maximum principle that one of the following (a)–(c) must occur:

(a) U∞ ≡ 0 in Ω , v∞ ≡ 0 in Ω1.
(b) U∞ > 0 in Ω , v∞ ≡ 0 in Ω1.
(c) U∞ ≡ 0 in Ω , v∞ > 0 in Ω1.

Integrating the second equation of (EP) with (U , v) = (Ui, vi) over Ω1, we find that

∫
Ω1

vi

(
μ + cUi

1 + kvi
− vi

)
dx = 0 for any i ∈ N. (5.4)

If (a) or (b) holds, then

μ + cUi

1 + kvi
− vi > 0 in Ω1

for sufficiently large i ∈ N because of μ > 0. Hence the integrand in (5.4) is positive for sufficiently
large i ∈ N since vi > 0 in Ω1 for any i ∈ N. This contradicts (5.4). If (c) holds, then

�v∞ + v∞(μ − v∞) = 0 in Ω1, ∂n v∞ = 0 on ∂Ω1, v∞ > 0 in Ω1

and thus v∞ ≡ μ in Ω1. Hence Proposition 4.1 implies that (λ∞, U∞, v∞) = (λ∗,0,μ). This contra-
dicts (5.1) and (5.3). Therefore, the assertion (5.2) holds true. We define

Y =
{
(φ,ψ) ∈ E:

∫
Ω

φφ∗ dx = 0

}
, (5.5)

that is, Y is the supplement of span {(φ∗,ψ∗)} (which appeared in (4.4)) in E . According to the global
bifurcation theorem based on the global bifurcation theory of Rabinowitz [19], one of the following
non-excluding properties holds (see Theorem 6.4.3 in López-Gómez [14]):

(1) Γ̂M is unbounded in R × E .
(2) There exists a constant λ̄ �= λ∗ such that (λ̄,0,μ) ∈ Γ̂M .
(3) There exists (λ̂, φ̂, ψ̂) ∈ R × (Y \ {(0,μ)}) such that (λ̂, φ̂, ψ̂) ∈ Γ̂M .
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Case (2) cannot occur because of (5.2). On account of (5.2), (5.5) and φ∗ > 0, case (3) is also impossi-
ble. Therefore, case (1) must hold. It follows from (5.2) and Lemmas 3.3 and 3.4 that (EP) has at least
one positive solution if and only if λ > λ∗ . Thus the proof for the case μ > 0 is complete.

We can discuss the case μ < 0 in a similar manner and so omit the proof. Hence it only remains
to discuss the case μ = 0. Fix any λ > 0. By virtue of the above result, we can take a sequence
{(μi, Ui, vi)}∞i=1 such that (Ui, vi) is a positive solution of (EP) with μ = μi and limi→∞ μi = 0.
Since {μi}∞i=1 is a bounded sequence, it follows from Lemma 3.4 that there exists a subsequence, still
denoted by {(μi, Ui, vi)}∞i=1, such that

lim
i→∞

(Ui, vi) = (U∞, v∞) in C1(Ω) × C1(Ω1)

for a pair of non-negative functions (U∞, v∞) ∈ C1(Ω) × C1(Ω1). On account of limi→∞ μi = 0,
(U∞, v∞) is a non-negative solution of (EP) with μ = 0. Then the strong maximum principle implies
that (U∞, v∞) satisfies either U∞ > 0 in Ω and v∞ > 0 in Ω1 or one of (a)–(c) which appeared in
the proof for the case μ > 0. Since

∫
Ω1

vi

(
μi + cUi

1 + kvi
− vi

)
dx = 0

for any i ∈ N, neither (b) nor (c) occurs because of limi→∞ μi = 0. Integrating the first equation of (EP)
with (U , v) = (Ui, vi), we have

∫
Ω

Ui

1 + kρ(x)vi

(
λ − Ui

1 + kρ(x)vi
− b(x)vi

)
dx = 0

for any i ∈ N. Thus (a) is also excluded since λ > 0. Therefore, U∞ > 0 in Ω and v∞ > 0 in Ω1.
This means the existence of a positive solution of (EP) with μ = 0 for any fixed λ > 0. We have thus
proved Theorem 2.2. �
5.2. Proof of Theorem 2.3

Proof of Theorem 2.3. We first prove part (i) for fixed μ > 0. Fix any k1 � 0 and note that

λN
1

(
b(x)μ − λ∗(μ,k1,Ω0)

1 + k1ρ(x)μ
,Ω

)
= 0.

It follows from the assumption (1.1) that

b(x)μ − λ∗(μ,k1,Ω0)

1 + k1ρ(x)μ
=

{
βμ−λ∗(μ,k1,Ω0)

1+k1μ
in Ω \ Ω0,

−λ∗(μ,k1,Ω0) < 0 in Ω0.
(5.6)

Then the monotone increasing property of λN
1 (q) with respect to q ∈ L∞(Ω) and the fact λN

1 (0) = 0
imply that the constant βμ − λ∗(μ,k1,Ω0) must be positive in (5.6). Thus, if k2 > k1, then

βμ − λ∗(μ,k1,Ω0)

1 + k μ
<

βμ − λ∗(μ,k1,Ω0)

1 + k μ
2 1
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and hence

λN
1

(
b(x)μ − λ∗(μ,k1,Ω0)

1 + k2ρ(x)μ
,Ω

)
< 0.

Therefore, if k2 > k1, then λ∗(μ,k2,Ω0) < λ∗(μ,k1,Ω0). This completes the proof of part (i).
Next we prove part (ii). For any μ � 0, let φμ be a unique positive solution of

−�φμ + b(x)μ − λ∗(μ,k,Ω0)

1 + kρ(x)μ
φμ = 0 in Ω, ∂nφμ = 0 on ∂Ω,

∫
Ω

φ2
μ dx = 1. (5.7)

Multiplying the above differential equation by φμ and integrating the resulting equation over Ω , we
see from Lemma 2.1 that∫

Ω

|∇φμ|2 dx =
∫
Ω

λ∗(μ,k,Ω0) − b(x)μ

1 + kρ(x)μ
φ2

μ dx � λD
1 (Ω0).

Thus {φμ}μ�0 is bounded in H1(Ω) and so there exists a sequence {μi}∞i=1 with limi→∞ μi = ∞
such that limi→∞ φμi = φ∞ weakly in H1(Ω) and strongly in L2(Ω) for some non-negative function
φ∞ ∈ H1(Ω) satisfying

∫
Ω

φ2∞ dx = 1. Moreover, we find from (5.7) that

∫
Ω

(
∇φμi · ∇ψ + b(x)μi − λ∗(μi,k,Ω0)

1 + kρ(x)μi
φμi ψ

)
dx = 0

for any ψ ∈ H1(Ω). Letting i → ∞ in the above equation, we have

∫
Ω

∇φ∞ · ∇ψ dx + β

k

∫
Ω\Ω0

φ∞ψ dx − λ∗∞(k,Ω0)

∫
Ω0

φ∞ψ dx = 0

for any ψ ∈ H1(Ω), where λ∗∞(k,Ω0) = limμ→∞ λ∗(μ,k,Ω0). Namely, φ∞ is a weak solution of

−�φ∞ + β

k
χΩ\Ω0φ∞ − λ∗∞(k,Ω0)χΩ0φ∞ = 0 in Ω, ∂nφ∞ = 0 on ∂Ω.

Since φ∞ � 0 in Ω and
∫
Ω

φ2∞ dx = 1, we see φ∞ > 0 in Ω by the strong maximum principle. This
means that η = λ∗∞(k,Ω0) is the first eigenvalue of

−�φ + β

k
χΩ\Ω0φ = ηχΩ0φ in Ω, ∂nφ = 0 on ∂Ω.

Therefore, by the variational characterization of the first eigenvalue, we have

λ∗∞(k,Ω0) = inf
φ∈S

∫
Ω

|∇φ|2 dx + β
k

∫
Ω\Ω0

φ2 dx∫
Ω0

φ2 dx
� β|Ω \ Ω0|

k|Ω0|

for S = {φ ∈ H1(Ω):
∫
Ω0

φ2 dx > 0}, where the last inequality is obtained by setting φ ≡ 1 in Ω . �
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5.3. Proof of Theorem 2.4

In order to prove Theorem 2.4, we first derive the following three lemmas.

Lemma 5.1. Let {(ki, uki , vki )}∞i=1 be any sequence such that (uki , vki ) is a positive solution of (SP) with k = ki
and limi→∞ ki = ∞, and set Uki := (1 + kiρ(x)vki )uki . Then, by passing to a subsequence if necessary,

lim
i→∞

(Uki , vki ) = (
Ū ,max{μ,0}) in C1(Ω) × C1(Ω1)

for some non-negative function Ū ∈ C1(Ω).

Proof. With the aid of Lemma 3.4, by passing to a subsequence if necessary,

lim
i→∞

(Uki , vki ) = (Ū , v̄) in C1(Ω) × C1(Ω1)

for a pair of non-negative functions (Ū , v̄) ∈ C1(Ω) × C1(Ω1). Since vki > max{μ,0} in Ω1 for any
i ∈ N by Lemma 3.1, we have

v̄ � max{μ,0} in Ω1. (5.8)

Note that

lim
i→∞

uki (x)vki (x) = lim
i→∞

Uki (x)

1 + ki vki (x)
vki (x) = 0

for each x ∈ Ω1. Then the Lebesgue dominated convergence theorem yields

0 = lim
i→∞

∫
Ω1

vki (μ + cuki − vki )dx =
∫
Ω1

v̄(μ − v̄)dx. (5.9)

By (5.8) and (5.9), we obtain v̄ ≡ max{μ,0} in Ω1. This completes the proof of Lemma 5.1. �
Lemma 5.2. Suppose λ > −μ/c � 0 and let {(ki, uki , vki )}∞i=1 be any sequence such that (uki , vki ) is a positive
solution of (SP) with k = ki and limi→∞ ki = ∞. If {maxΩ1

ki vki }∞i=1 is bounded, then μ < 0 and by passing
to a subsequence if necessary,

lim
i→∞

uki = ū uniformly in Ω and lim
i→∞

ki vki = w̄ in C1(Ω1),

where (ū, w̄) is a positive solution of (2.4).

Proof. Set wki := ki vki and then (uki , wki ) satisfies

⎧⎪⎪⎨
⎪⎪⎩

�
[(

1 + ρ(x)wki

)
uki

] + uki

(
λ − uki − b(x)vki

) = 0 in Ω,

�wki + wki (μ + cuki − vki ) = 0 in Ω1,

∂nuki = 0 on ∂Ω,

∂ w = 0 on ∂Ω .

(5.10)
n ki 1



K. Oeda / J. Differential Equations 250 (2011) 3988–4009 4003
Assume that {maxΩ1
ki vki }∞i=1 is bounded. On account of Lemma 5.1, elliptic regularity theory and the

Sobolev embedding theorem, by passing to a subsequence if necessary,

lim
i→∞

((
1 + ρ(x)wki

)
uki , vki , wki

) = (Ū ,0, w̄) in C1(Ω) × C1(Ω1) × C1(Ω1) (5.11)

for a pair of non-negative functions (Ū , w̄) ∈ C1(Ω) × C1(Ω1). Therefore, we obtain

lim
i→∞

uki = Ū

1 + ρ(x)w̄
=: ū � 0 uniformly in Ω. (5.12)

It follows from (5.10)–(5.12) that (ū, w̄) is a non-negative solution of (2.4).
We finally show that ū > 0 in Ω , w̄ > 0 in Ω1 and μ < 0. We note that Ū is a non-negative

solution of

�Ū + Ū

1 + ρ(x)w̄
(λ − ū) = 0 in Ω, ∂nŪ = 0 on ∂Ω.

Using the strong maximum principle, we see either Ū > 0 or Ū ≡ 0 in Ω . Suppose that Ū ≡ 0 in Ω .
Then we find from (5.12) that limi→∞ uki = 0 uniformly in Ω . This, together with (5.11), leads to a
contradiction:

0 =
∫
Ω

uki

(
λ − uki − b(x)vki

)
dx > 0

for large i since λ > 0. Thus Ū > 0 in Ω and hence ū > 0 in Ω . By using the strong maximum
principle again, either w̄ > 0 or w̄ ≡ 0 in Ω1 holds. Suppose that w̄ ≡ 0 in Ω1. Then we have

�ū + ū(λ − ū) = 0 in Ω, ∂nū = 0 on ∂Ω, ū > 0 in Ω,

so that ū ≡ λ in Ω . Hence

lim
i→∞

(μ + cuki − vki ) = μ + cλ > 0

uniformly in Ω1 by assumption. This leads to a contradiction:

0 =
∫
Ω1

vki (μ + cuki − vki )dx > 0

for large i. Therefore, w̄ must be positive in Ω1. Since w̄ satisfies (2.4), we have λN
1 (−cū) = μ and

−cū < 0 in Ω1. By the properties of λN
1 (·), this is impossible when μ = 0. Therefore, μ < 0 and w̄ > 0

in Ω1. This completes the proof of Lemma 5.2. �
Lemma 5.3. Assume that μ = 0 and let {(ki, uki , vki )}∞i=1 be any sequence such that (uki , vki ) is a positive
solution of (SP) with k = ki and limi→∞ ki = ∞. Then {minΩ1

ki vki }∞i=1 is unbounded.

Proof. By the assumption μ = 0 and Lemma 5.2, {maxΩ1
ki vki }∞i=1 is unbounded. Since ki vki satisfies

�(ki vki ) + ki vki (μ + cuki − vki ) = 0 in Ω1, ∂n(ki vki ) = 0 on ∂Ω1,
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it follows from Lemmas 3.2 and 3.4 that

max
Ω1

ki vki � K min
Ω1

ki vki

for some positive constant K independent of i. Therefore, {minΩ1
ki vki }∞i=1 is also unbounded. �

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. Let {(ki, uki , vki )}∞i=1 be any sequence such that (uki , vki ) is a positive solution
of (SP) with k = ki and limi→∞ ki = ∞, and set Uki := (1 + kiρ(x)vki )uki . We first prove part (i)
for fixed μ � 0. It follows from Lemmas 5.1 and 5.3 that there exists a subsequence of {ki}∞i=1, still
denoted by {ki}∞i=1, such that

lim
i→∞

(Uki , vki ) = (Ū ,μ) in C1(Ω) × C1(Ω1)

for some non-negative function Ū ∈ C1(Ω) and

lim
i→∞

ki vki = ∞ uniformly in Ω1. (5.13)

Thus we have

lim
i→∞

uki = lim
i→∞

Uki

1 + ki vki

= 0 in C1(Ω1). (5.14)

We next show that limi→∞ uki = λ in C1(Ω0). Since uki = Uki in Ω0, it suffices to show that Ū ≡ λ

in Ω0. Dividing the first equation of (EP) with (U , v) = (Uki , vki ) by Uki and integrating the resulting
equation over Ω , we have

∫
Ω

λ − uki − b(x)vki

1 + kiρ(x)vki

dx = −
∫
Ω

|∇Uki |2
U 2

ki

dx � 0,

that is,

∫
Ω0

(λ − uki )dx � −
∫

Ω\Ω0

λ − uki − βvki

1 + ki vki

dx.

Letting i → ∞ in the above inequality, we see from (5.13) that

∫
Ω0

(λ − Ū )dx � 0. (5.15)

On the other hand, it holds that

∫
Ω

uki (λ − uki )dx +
∫

Ω\Ω
uki (λ − uki − βvki )dx = 0.
0 0
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Letting i → ∞ in the above equation, we see from (5.14) that

∫
Ω0

Ū (λ − Ū )dx = 0. (5.16)

Hence, (5.15) and (5.16) yield

∫
Ω0

(λ − Ū )2 dx = λ

∫
Ω0

(λ − Ū )dx −
∫
Ω0

Ū (λ − Ū )dx � 0.

Therefore, Ū ≡ λ in Ω0. Thus we have obtained

lim
i→∞

(uki , uki , vki ) = (λ,0,μ) in C1(Ω0) × C1(Ω1) × C1(Ω1) (5.17)

and limi→∞ ki vki = ∞ uniformly in Ω1. Since the limit of (uki , vki ) is uniquely determined in (5.17),
the conclusion of part (i) holds true.

We prove part (ii) by assuming λ > −μ/c > 0. On account of Lemma 5.2, it suffices to show
that {maxΩ1

ki vki }∞i=1 is bounded. We prove this by contradiction. Suppose that {maxΩ1
ki vki }∞i=1 is

unbounded. Then, by the same argument as in the proof of Lemma 5.3, {minΩ1
ki vki }∞i=1 is also un-

bounded. Hence, by passing to a subsequence if necessary,

lim
i→∞

min
Ω1

ki vki = ∞. (5.18)

Combining Lemma 3.4 and (5.18), we have

lim
i→∞

uki = lim
i→∞

Uki

1 + ki vki

= 0 uniformly in Ω1. (5.19)

We define ṽki = vki /maxΩ1
vki . Then

�ṽki + ṽki (μ + cuki − vki ) = 0 in Ω1, ∂n ṽki = 0 on ∂Ω1, max
Ω1

ṽki = 1. (5.20)

It follows from elliptic regularity theory and the Sobolev embedding theorem that there exists a
subsequence of {ki}∞i=1, still denoted by {ki}∞i=1, such that

lim
i→∞

ṽki = ṽ in C1(Ω1), max
Ω1

ṽ = 1 (5.21)

for some non-negative function ṽ ∈ C1(Ω1). Thus by virtue of Lemma 5.1 and (5.19)–(5.21), ṽ is a
positive solution of

�ṽ + μṽ = 0 in Ω1, ∂n ṽ = 0 on ∂Ω1.

This is impossible since μ < 0. Hence {maxΩ1
ki vki }∞i=1 is bounded. Therefore, we get the conclusion

by Lemma 5.2. �
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5.4. Proof of Theorem 2.5

In this subsection, we fix λ and regard μ as a bifurcation parameter. Set Ū := (1 + ρ(x)w̄)ū. Then
(2.4) is rewritten in the following form:

⎧⎪⎪⎨
⎪⎪⎩

�Ū + g1(Ū , w̄) = 0 in Ω,

�w̄ + g2(μ, Ū , w̄) = 0 in Ω1,

∂nŪ = 0 on ∂Ω,

∂n w̄ = 0 on ∂Ω1,

(5.22)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(Ū , w̄) = Ū

1 + ρ(x)w̄

(
λ − Ū

1 + ρ(x)w̄

)
,

g2(μ, Ū , w̄) = w̄

(
μ + cŪ

1 + w̄

)
.

Define

φ̄ = (−� + λI)−1
Ω

[
ρ(x)λ2].

We first prove the following local bifurcation result.

Proposition 5.4. Positive solutions of (5.22) bifurcate from {(μ,λ,0): μ ∈ R} if and only if μ = −cλ. Pre-
cisely, all positive solutions of (5.22) near (−cλ,λ,0) ∈ R × X1 can be expressed as

Γδ̄ = {
(μ, Ū , w̄) = (

μ(s), λ + s
(
φ̄ + Ū (s)

)
, s

(
1 + w̄(s)

))
: s ∈ (0, δ̄)

}
for some δ̄ > 0. Here (μ(s), Ū (s), w̄(s)) is a smooth function with respect to s and satisfies (μ(0), Ū (0),

w̄(0)) = (−cλ,0,0) and
∫
Ω1

w̄(s)dx = 0.

Proof. Let z̄ := Ū − λ in (5.22) and define a mapping G : R × X1 → X2 by

G(μ, z̄, w̄) =
(

�z̄ + g1(z̄ + λ, w̄)

�w̄ + g2(μ, z̄ + λ, w̄)

)
.

Then G(μ, z̄, w̄) = 0 if and only if (z̄ + λ, w̄) is a solution of (5.22). We note that G(μ,0,0) = 0 for
any μ. Since

G(z̄,w̄)(μ,0,0)[φ,ψ] =
(

�φ − λφ + ρ(x)λ2ψ

�ψ + (μ + cλ)ψ

)
,

we can easily see that μ = −cλ is the only possible bifurcation point where positive solutions
of (5.22) bifurcate from {(μ,λ,0): μ ∈ R}. Moreover, we find

Ker G(z̄,w̄)(−cλ,0,0) = span
{
(φ̄,1)

}
and

Range G(z̄,w̄)(−cλ,0,0) =
{
(φ,ψ) ∈ X2:

∫
Ω

ψ dx = 0

}
. (5.23)
1
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Consequently, we have

dim Ker G(z̄,w̄)(−cλ,0,0) = codim Range G(z̄,w̄)(−cλ,0,0) = 1.

Furthermore, (5.23) yields

Gμ(z̄,w̄)(−cλ,0,0)[φ̄,1] =
(

0
1

)
/∈ Range G(z̄,w̄)(−cλ,0,0).

Therefore, we can apply the local bifurcation theorem [3] to G at (−cλ,0,0). Hence the proof of
Proposition 5.4 is complete. �

Combining Proposition 5.4 with the global bifurcation theory, we can prove the following proposi-
tion.

Proposition 5.5. The set of positive solutions of (5.22) with bifurcation parameter μ contains an unbounded
connected set ΓM in R × E satisfying the following properties:

(i) ΓM bifurcates from {(μ, Ū , w̄) = (μ,λ,0): μ ∈ R} at μ = −cλ,
(ii) (−cλ,0) ⊂ {μ: (μ, Ū , w̄) ∈ ΓM} ⊂ (μ̃,0) for some μ̃ ∈ (−∞,−cλ],

(iii) {maxΩ Ūμ}(μ,Ūμ,w̄μ)∈ΓM
is bounded,

(iv) limμ→0 w̄μ = ∞ uniformly in Ω1 , where (μ, Ūμ, w̄μ) ∈ ΓM .

Proof. We define a mapping G̃ : R × E → E by

G̃(μ, Ū , w̄) =
(

Ū − λ

w̄

)
−

(
(−� + I)−1

Ω [Ū − λ + g1(Ū , w̄)]
(−� + I)−1

Ω1
[w̄ + g2(μ, Ū , w̄)]

)
.

Then (5.22) is equivalent to G̃(μ, Ū , w̄) = 0. Let Γδ̄ be the local bifurcation branch in Proposition 5.4
and let ΓM ⊂ R × E denote the maximal connected set satisfying

Γδ̄ ⊂ ΓM ⊂ {
(μ, Ū , w̄) ∈ (R × E) \ {

(−cλ,λ,0)
}

: G̃(μ, Ū , w̄) = 0
}
.

Thus the assertion (i) is satisfied for this ΓM . By the same argument as in the proof for the case
μ > 0 in Theorem 2.2, we can verify that ΓM is contained in the set of positive solutions of (5.22)
with bifurcation parameter μ and that ΓM is unbounded in R × E .

We next show the assertion (iii). Let (μ, Ūμ, w̄μ) ∈ ΓM . Integrating the first equation of (5.22)
over Ω , we have

∫
Ω

(
Ūμ

1 + ρ(x)w̄μ

)2

dx = λ

∫
Ω

Ūμ

1 + ρ(x)w̄μ
dx � λ|Ω|1/2

∥∥∥∥ Ūμ

1 + ρ(x)w̄μ

∥∥∥∥
2,Ω

and thus

∥∥∥∥ Ūμ

1 + ρ(x)w̄μ

∥∥∥∥
2,Ω

� λ|Ω|1/2. (5.24)

Hence applying Lemma 3.2 with p = 2 to the first equation of (5.22), we obtain

max Ūμ � C∗ min Ūμ (5.25)

Ω Ω
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for some positive constant C∗ independent of μ. Moreover, we see that

|Ω0|1/2 min
Ω

Ūμ � ‖Ūμ‖2,Ω0 �
∥∥∥∥ Ūμ

1 + ρ(x)w̄μ

∥∥∥∥
2,Ω

(5.26)

because of Ūμ/(1 + ρ(x)w̄μ) = Ūμ in Ω0. Combining (5.24)–(5.26), we have

max
Ω

Ūμ � C∗λ
( |Ω|

|Ω0|
)1/2

.

Therefore, we get the assertion (iii).
We finally prove the assertions (ii) and (iv). Let (μ, Ūμ, w̄μ) ∈ ΓM . Then Ūμ > 0 in Ω and w̄μ is

a positive solution of

−�w̄μ − cŪμ

1 + w̄μ
w̄μ = μw̄μ in Ω1, ∂n w̄μ = 0 on ∂Ω1.

Hence we have

μ = λN
1

(
− cŪμ

1 + w̄μ
,Ω1

)
< 0.

Since we have already shown the assertion (iii), we obtain{
μ: (μ, Ū , w̄) ∈ ΓM

} ⊂ (μ̃,0) for some μ̃ ∈ (−∞,−cλ].
Moreover, in view of elliptic regularity theory and the Sobolev embedding theorem, the assertion (iii)
yields the boundedness of {‖Ūμ‖C1(Ω)}. Thus {‖w̄μ‖C1(Ω1)} is unbounded because of the unbound-

edness of ΓM in R × E . It follows from the boundedness of {‖Ūμ‖C1(Ω)}, elliptic regularity theory
and the Sobolev embedding theorem that {maxΩ1

w̄μ} is also unbounded. Furthermore, applying
Lemma 3.2 to the second equation of (5.22), we see that {minΩ1

w̄μ} is also unbounded. Con-
sequently, there exists a sequence {μi}∞i=1 such that limi→∞ μi = μ∞ for some μ∞ ⊂ [μ̃,0] and
limi→∞ minΩ1

w̄μi = ∞. We define w̃μi = w̄μi /maxΩ1
w̄μi . Then

�w̃μi + w̃μi

(
μi + cŪμi

1 + w̄μi

)
= 0 in Ω1, ∂n w̃μi = 0 on ∂Ω1, max

Ω1

w̃μi = 1.

Hence, by passing to a subsequence if necessary,

lim
i→∞

w̃μi = w̃ in C1(Ω1), max
Ω1

w̃ = 1

for some non-negative function w̃ ∈ C1(Ω1). In addition, w̃ is a positive solution of

�w̃ + μ∞ w̃ = 0 in Ω1, ∂n w̃ = 0 on ∂Ω1.

Thus μ∞ = 0. Therefore, we get the assertion (ii). Moreover, by applying Lemma 3.1 to (5.22), we
have

min
Ω

Ūμ � λ and μ + cŪμ(x0)

1 + min w̄μ
� 0,
Ω1
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where w̄μ(x0) = minΩ1
w̄μ . Namely,

min
Ω1

w̄μ � cŪμ(x0)

−μ
− 1 � cλ

−μ
− 1 → ∞ as μ → 0 − .

Hence we have obtained the assertion (iv). �
We are now in a position to prove Theorem 2.5.

Proof of Theorem 2.5. The conclusions of Theorem 2.5 except for the convergence result of ūμ im-
mediately follow from (i), (ii) and (iv) of Proposition 5.5. Furthermore, owing to (iii) and (iv) of
Proposition 5.5, we can prove the convergence result of ūμ by the same argument as in the proof
of (i) of Theorem 2.4. Therefore, the proof of Theorem 2.5 is complete. �
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