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Around θπ = 90◦, the coupling to the ρ0 N channel leads to a good accounting of the charged pion
exclusive photoproduction cross section in the energy range 3 < Eγ < 10 GeV, where experimental data
exist. Starting from a Regge pole approach that successfully describes vector meson production, the
singular part of the corresponding box diagrams (where the intermediate vector meson–baryon pair
propagates on-shell) is evaluated without any further assumptions (unitarity). Such a treatment provides
an explanation of the s−7 scaling of the cross section. Elastic rescattering of the charged pion improves
the basic Regge pole model at forward and backward angles.
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At high photon energies (let say Eγ > 3 GeV) and forward an-
gles, charged pion photoproduction on nucleon is well accounted
for by the exchange, in the t-channel, of the π and the ρ Regge
linear trajectories [1,2]. At backward angles, the exchange of the
nucleon and the Delta linear Regge trajectories, in the u-channel,
leads also to a good account of the cross section [1,3]. Around
θπ = 90◦ (large p⊥), this basic Regge model misses the data by
orders of magnitude, and we have advocated the use of saturat-
ing trajectories to fill in this gap [1,2]. This was a poor man way
to incorporate quark degrees of freedom and recover the s−7 scal-
ing behavior of the experimental cross section at θπ = 90◦ (being√

s = W the total c.m. energy). Such a scaling was considered as
the evidence of quark degrees of freedom [4], however any attempt
to compute the cross section of this channel, within pertubative
QCD, failed in describing the data [5–7].

This Letter proposes a more natural explanation in terms of
channel couplings. Unitarity tells us that the amplitude of an exclu-
sive reaction is driven by the overlap of the production and absorp-
tion amplitudes of all the possible intermediate states. The integral
runs over the angles of these intermediate states. At low ener-
gies, the production and absorption amplitudes are more or less
flat, and many intermediate states may contribute. A full coupled
channel treatment is mandatory, and this is the duty of the Excited
Baryon Center (EBAC) at Jefferson Laboratory. At high energies, on
the contrary, the angular distributions are strongly forward peaked,
and the unitary integral picks only the few intermediate states that
have the highest production cross section. In the 3 < Eγ < 10 GeV
energy range, the N(γ ,ρ)N channel overwhelms the others; typ-
ically its cross section is more than ten times the cross section of
the ω or the π production channels. Among those less important
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channels, a special attention must be paid however to the pion
elastic rescattering: Although the pion production is the same in
the pole and in the rescattering amplitude, the pion elastic scat-
tering amplitude is almost purely absorptive in this energy range.
The consequence is that the corresponding unitary integral inter-
feres destructively with the pole amplitude at the most forward
and backward angles.

Fig. 1 summarizes these findings, for the p(γ ,π+)n reaction.
The contribution of the ρ0 p cut alone reproduces the angular and
energy variations of the experimental data around θπ = 90◦ . The
π+n elastic cut brings down u-channel Regge pole contribution
close to the experimental data at backward angles, but affects little
the forward angle cross section.

The basic Regge model is fully described in Ref. [2]. Instead of
their expression in terms of γ matrices, I use the expression of the
π and ρ t-channel exchange amplitudes in terms of σ matrices
that are given in the appendix of Ref. [8]. The expression of the
nucleon and Delta u-channel exchange amplitudes has been given
in the Guidal’s thesis [3], but not published elsewhere. For the sake
of completeness, I give the reduction in terms of σ matrices that I
use.

The nucleon exchange amplitude takes the form:

T N = −ieμn gπ

√
(Ei + m)(E f + m)

2m
P R

N (u)

×
(

λ f

∣∣∣∣�σ · �kγ × �ε �σ ·
[ �kπ − �pi√

m2 + (�kπ − �pi)
2 + m

+ �pi

Ei + m

]∣∣∣∣λi

)
(1)

where (Ei, �pi) and (E f , �p f ) are the four momenta of the target

proton and the final neutron, respectively, where �kγ is the mo-
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Fig. 1. The cross section of the p(γ ,π+)n reaction at Eγ = 5 GeV and 7.5 GeV.
The dashed line curves are the basic Regge pole model. The dash-dotted line curves
take into account the contribution of the π+n elastic cut. The full line curves take
also into account the contribution of the inelastic ρ0 p cut. The references to the
experimental data can be found in Refs. [1,2].

mentum of the ingoing photon and �ε is its polarization, and where
(Eπ , �kπ ) is the four momentum of the outgoing pion. The four mo-
mentum transfer in the u-channel is u = (kπ − pi)

2. The magnetic
moment of the neutron is μn = −1.91, and the pion–nucleon cou-
pling constant is g2

π/4π = 14.5.
To be consistent with the backward angle cross section of

the p(γ ,ω)p channel [3,9,10], where only the proton can be ex-
changed in the u-channel, I use the non-degenerated Regge prop-
agator

P R
N =

(
s

s0

)αN −0.5

α′
NΓ (0.5 − αN)

1 − e−iπ(αN+0.5)

2
(2)

where s0 = 1 GeV2 and where the nucleon trajectory is αN =
−0.37 + α′

N u, with α′
N = 0.98.

The Delta exchange amplitude takes the form:

TΔ = −i√
3

egγ ΔgπΔ

√
(Ei + m)(E f + m)

2m
P R

Δ(u)

× (
λ f

∣∣�S† · �kγ × �ε�S · �kπ

∣∣λi
)

(3)

The magnetic coupling of the γ NΔ transition is gγ Δ = 0.232(mΔ+
m)/m, and the pion–nucleon–Delta coupling constant is gπΔ =
2.13/mπ (see e.g. Ref. [11]).

To be consistent with the backward angle cross section of the
p(γ ,Δ++)π− channel [3], where only the Delta can be exchanged
in the u-channel, I use the degenerated Regge propagator:

P R
Δ =

(
s

s0

)αΔ−1.5

α′
ΔΓ (1.5 − αΔ)e−iπ(αΔ−0.5) (4)

where the Delta trajectory is αΔ = 0.10 + α′
Δu, with α′

Δ = 0.93.
The Delta exchange amplitude contributes little to the cross

section (less than 10%, at extreme backward angles), since it be-
Fig. 2. The relevant graphs in the γ p → π+n reaction. Left: Elastic π+n cut. Right:
ρ-nucleon unitary cut.

haves as s−1.4 instead of s−0.87 for the nucleon exchange ampli-
tude.

These u-channel contributions overestimate, by about a factor
two, the backward angle cross section. In Refs. [1,3] we have renor-
malized those amplitudes, on the basis that the physical region is
far from the nucleon or the Delta pole. I do not use such a reduc-
tion form factor, since the elastic π+n cut naturally brings down
the Regge cross section close to experiment.

Fig. 2 depicts the two cuts that are dominant in this study. Only
the π+ production channel is drawn, and the corresponding am-
plitudes will be given. The π− production amplitudes are trivially
related.

The second graph in Fig. 2 depicts the production of the ρ me-
son followed by the reabsorption of one of its decay pions by the
nucleon. The corresponding rescattering amplitude takes the form:

TρN =
∫

d3 �p
(2π)3

m

E p

1

P 2
ρ − m2

ρ + iε
Tγ p→ρ0 p Tρ0 p→π+n (5)

where the integral runs over the three momentum �p of the in-
termediate nucleon, of which the mass is m and the energy is
E p = √

p2 + m2. The four momentum and the mass of the inter-
mediate ρ are respectively Pρ and mρ . The integral can be split
into a singular part, that involves on-shell matrix elements, and
a principal part P :

TρN = −i
pc.m.

16π2

m√
s

∫
dΩ

[
Tγ p→ρ0 p(tγ )Tρ0 p→π+n(tπ )

] + P

(6)

where pc.m. =
√

(s − (mρ − m)2)(s − (mρ + m)2)/4s is the on-shell

momentum of the intermediate proton, for the c.m. energy
√

s.
The two fold integral runs over the solid angle Ω of the interme-
diate proton. The four momentum transfer between the incoming
photon and the ρ is tγ = (kγ − Pρ)2, while the four momentum
transfer between the ρ and the outgoing pion is tπ = (kπ − Pρ)2.
The summation over all the spin indices of the intermediate parti-
cles is meant.

I neglect the principal part. The singular part of the integral
relies entirely on on-shell matrix elements and is parameter free
as long as one has a good description of the production and the
absorption processes.

For photoproduction of vector mesons, Tγ p→ρ0 p , I use the
Regge model [9,10] which reproduces the world set of data in the
entire angular range (see for instance Fig. 3 in Ref. [14]). It has
been extended to electroproduction [12,13] and also reproduces
the data [15,16]. The model takes into account the exchange of the
Pomeron, the f2 and σ mesons in the t-channel, as well as the
exchange of the nucleon and the Delta in the u-channel.

For the reabsorption of the ρ meson, Tρ0 p→π+n , I use a pion
exchange Regge description which nicely reproduces the data in
the energy range that is considered in this study (Fig. 3). The cor-
responding matrix element takes the form:
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Fig. 3. (Color online.) The cross section of the reaction p(π−,ρ0)n. The experimen-
tal data are from Ref. [17].

Tρπ = √
2gπ gρ

√
(E p + m)(E f + m)

2m
P R

π (tπ )F1(tπ )

× [�ερ · (�kπ+ − �p + �p f ) − ε0
ρ(Eπ+ − E p + E f )

]

×
(

λ f

∣∣∣∣�σ ·
[ �p

E p + m
− �p f

E f + m

]∣∣∣∣λ
)

(7)

where (ε0, �ε) is the intermediate ρ polarization, and where
(E f , �p f ) and (Eπ+ , �kπ+ ) are the four momenta of the outgoing
neutron and pion respectively. The pion–nucleon coupling constant
is g2

π/4π = 14.5, and the rho decay constant is g2
ρ/4π = 5.71 as

deduced from the ρ width. P R
π is the pion Regge propagator, with

a degenerated non-rotating saturating trajectory, and F1 is the nu-
cleon form factor:

F1(t) =
( 1 − 2.79t

4m2

(1 − t
4m2 )(1 − t

Λ
)

)2

(8)

I use the same expressions and couplings as in Ref. [2], except for
the cut-off mass in F1 that I take as Λ = 0.7 GeV2. For π− produc-
tion, the amplitude is multiplied by −1, for symmetry and charge
reasons.

Up to −t = 2 GeV2, the model reproduces fairly well the domi-
nant peak but it misses the dip at −t = 2.5 GeV2. Above, the cross
section of the ρ0 p → π+n reaction is more than two orders of
magnitude smaller than at forward angles. It contributes less to
the rescattering integral and an average description of the elemen-
tary channel is sufficient here.

The first graph in Fig. 2 depicts the elastic rescattering of the
pion. The singular part of the corresponding rescattering amplitude
takes the form:

Tπ N = −i
p′

c.m.

16π2

m√
s

∫
dΩ

[
Tγ p→π+n(tγ )Tπ+n→π+n(tπ )

]
(9)

where p′
c.m. =

√
(s − (mπ − m)2)(s − (mπ + m)2)/4s is the on-shell

momentum of the intermediate proton, for the c.m. energy
√

s. The
Fig. 4. The cross section of the p(γ ,π+)n reaction at forward angles. Basic Regge
pole model: dotted lines. Elastic pion rescattering cut included: dash-dotted lines.
Inelastic ρ0 N also included: full lines. Filled triangle: Ref. [22].

two fold integral runs over the solid angle Ω of the intermediate
proton. The four momentum transfer between the incoming pho-
ton and the intermediate π is tγ = (kγ − Pπ )2, while the four
momentum transfer between the intermediate π and the outgoing
pion is tπ = (kπ − Pπ )2. The summation over all the spin indices
of the intermediate particles is meant.

The pion photoproduction amplitude is the same as in the pole
term. I choose a purely absorptive pion nucleon elastic scattering
amplitude:

Tπ+n→π+n = −
√

sp′
c.m.

m
(επ + i)σπ− p exp

[
βπ

2
tπ

]
(10)

Above
√

s ∼ 2 GeV, the total cross section stays constant at the
value σπ− p = 30 mb [18], and the fit of the differential cross sec-
tion at forward angles leads to a slope parameter βπ = 6 GeV−2

[19]. At high energy the ratio between the real and imaginary part
of the amplitude is small [18] and I set επ = 0 in this study.

Under those assumptions, the sum of the Regge pole amplitude
and the elastic π N cut takes the form:

T = Tγ p→π+n(t) − p′2
c.m.

16π2
σπ− p

∫
dΩ Tγ p→π+n(tγ )exp

[
βπ

2
tπ

]

(11)

where t = (kπ − kγ )2 is the overall four momentum transfer. It
clearly shows the purely destructive interference, that is expected
for an absorptive rescattering. It compensates the contribution of
the u-channel Regge poles at the very backward angles. The effect
is less important at the very forward angles, simply because the
t-channel Regge contribution is more than an order of magnitude
larger than the u-channel one.

Fig. 4 shows how the delicate interference between the pole
terms and the cuts reproduces the π+ cross section at forward
angles. The rise of the cross section at the very forward angles
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Fig. 5. (Color online.) The scaled cross sections of the p(γ ,π+)n (top) and the
n(γ ,π−)p (bottom) reactions at θπ = 90◦ . Basic Regge pole model: (black) dashed
lines. Elastic pion rescattering cut included: (blue) dotted lines. Inelastic ρ0 N also
included: (red) full lines. Filled circles: Ref. [20]. Empty circle: Ref. [21]. Filled tri-
angle: Ref. [22].

comes from the interference between the t-channel π and ρ ex-
change and the s-channel nucleon exchange that is necessary to
restore gauge invariance in the basic Regge model (see Ref. [2] for
an extensive discussion). The π N elastic cut brings the model very
close to the data at moderate −t , while the ρN inelastic cut fills
in the minimum around −t = 0.02 GeV.

Contrary to the earliest Regge approaches, in which the residues
of the poles and the effective residues of the cuts were fitted to
experiments, the model that I use in this Letter takes into account
the full spin-momentum structure of the elementary amplitudes
and is basically parameter free. As explained in Ref. [2] the ex-
pression of the Regge pole amplitudes follows the Lagrangian of
each vertex, where the coupling constants are determined from the
analysis of other independent channels, and the Feynman propaga-
tor is simply replaced by the Regge propagator. The cut amplitudes
rely on on-shell elementary amplitudes in the initial state and fi-
nal state. Again the full spin-momentum dependency is taken into
account, and the integral is performed numerically. The results are
therefore founded on solid grounds, at least in the domain of va-
lidity of the Regge approach, let say above Eγ ∼ 4 GeV (i.e. above
W ∼ 3 GeV).

It is interesting to see how this model behaves at lower ener-
gies where data have been recently recorded at JLab [20,21]. Fig. 5
shows the 90◦ cross section, scaled by s7, for π+ and π− photo-
production. In the π+ production sector, the model reproduces
very well the magnitude and the s−7 scaling behavior of the cross
section above W = 3 GeV. Below it follows the rise of cross section
and goes down at the ρ production threshold. Here, the sharp drop
comes from the fact that I have assumed a stable intermediate ρ
in the cut: taking into account its width would certainly reduce
the height of the theoretical bump and smear its low energy side.
Also the principal part of the integral in Eq. (6) survives below the
threshold. Finally, other channels (namely the πΔ channels) may
contribute below W = 2 GeV and one enters into the resonance
region.

The same pattern occurs in the π− production channel, where
the model gives a good account of the data down to W = 2 GeV.
Fig. 6. (Color online.) The ratio of the cross sections of the n(γ ,π−)p and the
p(γ ,π+)n reactions at θπ = 90◦ . The data are from Ref. [20].

One notes that the interference between the basic Regge pole am-
plitude and the π N elastic cut is more important in the π− than
in the π+ channel. The reason is that the Regge propagators [2]
have a constant phase in the π− channel, but a rotating phase
in the π+ channel. The rescattering integral, Eq. (9), destroys the
coherence between the pole terms and the elastic cut in the π+
channel, but leaves it intact (Eq. (11)) in the π− channel.

Fig. 6 shows the ratio of the π− and the π+ cross section at
θπ = 90◦ . The agreement between the data and the basic Regge
model [2] or the handbag quark based model [7] (as quoted in
[20]) is not relevant, since both these models miss the cross sec-
tion. Among the two models that reproduce the magnitude of the
cross sections, the data prefer the coupled channel approach, that
I have presented here, rather than the saturating trajectory version
of the basic Regge model.

In summary, the coupling to the ρ0 meson production channel
provides a natural explanation, which does not rely on pertubative
QCD, of the magnitude and the scaling with energy of the cross
section of charged pion production at intermediate angles (around
90◦). At forward and backward angles the interference with elas-
tic pion rescattering improves the basic Regge pole approach. This
model provides us with a good baseline for the analysis of exper-
iments in the range 4 < Eγ < 11 GeV that will become possible
with the 12 GeV upgrade of CEBAF at JLab. Below, it reproduces
the trend of the deviations from scaling that was recently observed
at JLab above the ρ meson production threshold.
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