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Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evi-
dence and insights showing that altered brain functional networks are associated with neurological illnesses
such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls
would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose,
group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted
brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a net-
workmodel and high noise levels in neuroimaging data.We are still in the early stage ofmethod development as
highlighted by Varoquaux and Craddock (2013) that “there is currently no unique solution, but a spectrum of re-
lated methods and analytical strategies” to learn and compare brain connectivity. In practice the important issue
of how to choose several critical parameters in estimating a network, such as what association measure to use
andwhat is the sparsity of the estimated network, has not been carefully addressed, largely because the answers
are unknown yet. For example, even though the choice of tuningparameters inmodel estimation has been exten-
sively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation
may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such pa-
rametersmay lead to extremely low-powered tests. Herewe develop highly adaptive tests to detect group differ-
ences in brain connectivity while accounting for unknown optimal choices of some tuning parameters.
The proposed tests combine statistical evidence against a null hypothesis frommultiple sources across a range of
plausible tuning parameter values reflecting uncertaintywith the unknown truth. These highly adaptive tests are
not only easy to use, but also high-powered robustly across various scenarios. The usage and advantages of these
novel tests are demonstrated on an Alzheimer's disease dataset and simulated data.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Previous studies have shown that neurological illnesses such as
Alzheimer's disease and autism are related to altered brain functional
networks, or functional connectivity, among distinct and distant brain
regions (Greicius et al., 2004; Supekar et al., 2008). However, group-
level statistical inference on functional connectivity is both challenging
and necessary due to the high dimensionality of the parameters in a
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network model and the high noise level in neuroimaging data. Even
though recent advances in neuroimaging technologies, such as rs-
fMRI, offer great potentials for studying brain functional networks
(Biswal, 2012), most statistical methods are for point estimation while
only few exist in drawing inference for group comparisons in brain net-
works (Varoquaux and Craddock, 2013). In particular, many studies ex-
amined possible differences between two covariance or precision
matrix estimates; however, whether there were any genuine differences
between the corresponding population matrices was never or inade-
quately addressed. Without rigorous statistical testing, it is unknown
whether any estimated network differences are simply due to estimation
errors. In practice, we recommend to first test for differences of the net-
works between two groups; only if it is confirmed that the differences
exist, then proceed to the next step to examine how they are different,
possibly in an exploratory analysis.

Functional brain connectivity can be described as a network or graph
(Bullmore and Sporns, 2009; Habeck and Moeller, 2011; He and Evans,
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2010), inwhich a set of nodes are linked by edges. Nodes stand for brain
regions, and brain connectivity (or edges) refer to pairwise associations
between every two nodes (Varoquaux and Craddock, 2013). Yet, what
measure of association should be used for the weights of network
edges remains to be an open question. Currently the two most popular
choices are Pearson's correlations and partial correlations. A correlation
represents the marginal relationship between two brain regions, while
a partial correlation quantifies the conditional association between the
two, conditioning on other brain regions' activities. Pearson's (full or
marginal) correlations have been adopted in many functional connec-
tivity studies (Azari et al., 1992; Horwitz et al., 1987; Kim et al., 2014;
Stam et al., 2007; Supekar et al., 2008). Partial correlations also have
been advocated (Marrelec et al., 2006; Salvador et al., 2005; Smith
et al., 2011), especially when one is interested in seeking conditional in-
dependence between any two regions. However, as shown by Kim et al.
(2015), the choice of the associationmeasurewould influence statistical
power in subsequently detecting group-level network differences.
Moreover, since brain networks can be reasonably assumed to be
sparse, they can be thus estimated via regularized sparse covariance
or precision matrices, which however pose some challenges in the
choice of a suitable regularization or tuning parameter. In addition,
there may be other tuning parameters to be determined in an analysis.
In general, the choice of such parameters may be difficult, and at the
same time critical. We propose highly adaptive testing procedures
that automatically search over and thus take account of these parameter
values to maintain high power across various situations.

Kim et al. (2014) reviewed and compared many statistical methods,
and concluded that the Network Based Statistic (NBS) (Zalesky et al.,
2012) and an adaptive sum of powered score (aSPU) test (Pan et al.,
2014) showed great performance, often complementary to each other,
for testing group differences in brain functional connectivity. In particu-
lar, mass-univariate testing on each edge and testing on some network
summary statistics is in general low-powered: for the former, in addi-
tion to possibly small differences on the edges, the stringent significance
level after multiple testing adjustment is often too high to achieve; for
the latter, it largely depends on the choice of the network summary sta-
tistics, which may be too mildly altered to be detected. NBS was origi-
nally developed to identify changed subnetworks in the neuroimaging
research, but could be employed for global testing as considered here.
By assuming that changed network edges form subnetworks, NBS can
be potentially powerful when the assumption holds. However, since it
is based on mass univariate testing to detect altered edges, it may
miss some edges and thus connected subnetworks, leading to loss of
power. As an alternative, the aSPU test does not impose any assumption
on the structure of altered edges or networks while data-adaptively ac-
cumulating evidence against a null hypothesis, and thus yields high
power under various situations. These are two representative and
state-of-the-art tests we consider here. In particular, we propose two
versions of highly adaptive aSPU and NBS tests respectively. The pro-
posed tests utilize and data-adaptively choose multiple parameter
values reflecting uncertainty with unknown true data structures,
while adjusting formultiple testing automatically. At the end, we obtain
two adaptive tests that can maintain high power more robustly across
many situations; being data-adaptive to unknown true association pat-
terns, the proposed tests are robust in the sense that they can achieve
high power across many situations, in contrast to a possibly high
powered test in only one or few situations that may lose much power
in many other situations. We will apply the proposed adaptive tests to
simulated data and an Alzheimer's Disease Neuroimaging Initiative
(ADNI) dataset.

The remainder of the paper is organized as follows. We first review
sparse estimation of brain connectivity, then present highly adaptive ver-
sions of aSPU and NBS in Section 2. Section 3 is devoted to the analysis of
ADNI data. In Section 4, we conduct simulation studies with realistic set-
ups mimicking the ADNI data. We end with some discussions on a few
technical aspects and comparisons with the literature in Section 5.
2. Methods

2.1. Data and notation

We focus on a case–control study design with covariates. Suppose
there are n unrelated subjects, either healthy or having a disease.

We denote a group indicator Yl =0 for controls, Yl =1 for cases, and
Zi = (Zi1,…, Zil)′ for the covariates for subject i. We consider N brain re-
gions of interests (ROIs), which define the nodes in a network or graph.
For each node, fMRI BOLD signals are measured at t = 1,2,…,M time
points. The BOLD signals from N nodes at time point t, Dt = (Dt1, ····,
DtN)′, are assumed to be distributed as multivariate Gaussian N(μ, Σ)
with themeanvector μ∈ℝN and thepositive definite covariancematrixΣ.

The next step is to estimate the pairwise association between any two
nodes. Thismeasure is stored in a symmetricN×N adjacencymatrixwith
its (i,j)th element as the association between the ith and jth nodes
(Bullmore and Sporns, 2009). Hence a total of k= N × (N− 1)/2 unique
pairwise associations are estimated for each subject, and these k continu-
ous measures are called brain connectivity or network edges to be used
for testing group differences. In our study, both Pearson's correlations
and partial correlations were considered. As usual, the correlations (or
partial correlations) are normalized via Fisher's z-transformation to gen-
erate subject i's brain connectivity, Xi = (Xi1,⋯, Xik)′. Fisher's transforma-
tion is used to alleviate the effects of skewed distributions and outliers,
which may negatively influence the power of a subsequent test.

In the following,we usematrix notation: Yn × 1 as a vector for disease
indicators, Xn × k as a matrix of pairwise associations between nodes
(with each element as a z-transformed correlation or partial correlation),
and Zn × l as a covariate matrix.

2.2. Estimating covariance and precision matrices via graphical lasso

Building on thework of Banerjee et al. (2008), Friedman et al. (2008)
proposed a graphical lasso (glasso) algorithm to estimate sparse (or
non-sparse) covariance and precision matrices, given M observations
of dimension N, which are distributed as multivariate Gaussian N (μ, Σ).
Let subject i have a possibly subject-specific true precision matrix Θi =
Σi
−1, and Si be its empirical covariance matrix of the BOLD signals ex-

tracted from N nodes; the problem is to maximize the penalized log-
likelihood,

LP;i Θi;λð Þ ¼ Li Θið Þ−P Θi;λð Þ ¼ log det Θið Þ−tr SiΘið Þ−λi Θik k1

over the semi-positive definite Θi, where tr denotes the trace.
‖Θi‖1 = ∑p ≠ q|θi,pq| is the L1 norm for non-diagonal elements;
λi ≥ 0 is a regularization parameter to be determined. The graphical

lasso finds the estimate, satisfying Θ̂i ¼ Θ̂i iðλiÞ ¼ arg maxΘi
LP;iðΘi; λ̂iÞ:

Here Θ̂i is a function of λi, from which we also obtain a regularized

estimate for the covariance matrix Σ̂i ¼ Θ̂
−1
i . Full correlations and partial

correlations can be estimated with Σ̂i and Θ̂i respectively.
In this paper, the graphical lasso was employed to estimate brain

connectivity at various sparsity levels. Denote c as the connection den-
sity (or proportion of nonzero elements) in a precision matrix estimate

Θ̂i. Using a grid search, λi can be chosen to generate the precisionmatrix

estimate at a predefined connection density c, namely Θ̂iðcÞ ¼ Θ̂iðλiðcÞÞ.
Again Σ̂iðcÞ is obtained by inverting Θ̂iðcÞ; we note that, c is the connec-
tion density of the precision matrix estimate, not of the corresponding
covariance matrix estimate.

For testing between-group differences in brain connectivity, recent
studies have chosen λi at the group level so that each group should
have the same or similar connection density in their estimated precision
matrices (Huang et al., 2010; Stam et al., 2007; Supekar et al., 2008).
Hence, at a low estimated connection density, only strong connectivity
would show up as non-zeros in the resulting estimates, based on
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which we compare the two groups by focusing on their strong connec-
tivity; as the connection density increases, mild connectivity will also

show up in the network estimates (Θ̂), and a two-group test would uti-
lize bothmild and strong connectivity. Consequently consideringmulti-
ple estimated connection densities (c) allows one to vary the strength of
connectivities to be tested, possibly boosting the power. In addition,
since it is hard to choose the best regularization parameter value, con-
sidering multiple values of c could be a useful strategy for exploring
group differences in brain connectivity. Furthermore, as to be shown,
a chosen regularization parameter value that is optimal in estimating
networks may not be optimal for testing, leading to low statistical
power.

We imposed the group level regularization to estimate a subject
level precision matrix at a predefined connection density c: for any

subject i in group j (i.e., i ∈ G(j)), λi(c) = λ(j)(c) and Θ̂iðcÞ ¼ Θ̂iðλiðcÞÞ ¼
Θ̂iðλð jÞðcÞÞ. It is possible that the group-level regularization may not
result in exactly the same connection density across all subject-level
network estimates at the specified connection density, but the dif-
ferences were observed to be minor in our numerical studies. For

subject i ∈ G(j), we estimated Θ̂iðcÞ and Σ̂iðcÞ by applying the group-

level λ(j)(c) to the graphical lasso. These Θ̂iðcÞand Σ̂iðcÞwere normalized
to estimate the partial correlations and full correlations respectively, to
which we applied Fisher's z-transformation to generate brain connec-
tivity dataXi(c)= (Xi1(c),⋯, Xik(c))′. To distinguish the brain connectiv-
ity estimated by partial correlations and that by correlations, we use

Ω∈fΘ̂; Σ̂g to indicate; in the following, we use Θ̂ for partial correlations

and Σ̂ for correlations. Hence, with given BOLD time series data, brain
connectivity can be estimated as Xi(c, Ω) = (Xi1(c, Ω), ⋯, Xik(c, Ω))′,
based on an estimated connection density c and the type of association
measures Ω.

To demonstrate the benefits of considering multiple estimated con-
nection densities (c), we considered a cross-validation (CV) selected
group-level regularization parameter value in one of our simulation ex-
amples. 10-fold CV was performed to choose the best group-level regu-
larization parameter value. For each group, the original sample was
partitioned into 10 equal size subsamples. The training datawas formed
with 9 sets while the remaining onewas retained as the validation data.
A candidate group-level regularization value λ(j), j=1,2 was applied to

the training set and the optimal λ̂ð jÞ was found to maximize the total
predictive log likelihood using a grid search on λ(j). Denote an estimate

with the fth fold training set as Θ̂
trainð f Þ
ð jÞ ¼ Θ̂ðλð jÞÞtrainð f Þ , and n(j) as the

number of subjects in the group j. The optimal group-level regularization
parameter value was defined as

λ̂ jð Þ ¼ arg max
λ jð Þ

X10
f¼1

Xn jð Þ

i¼1

log det Θ̂
train fð Þ
jð Þ

� �
−tr S test fð Þ

i Θ̂
train fð Þ
jð Þ

� �
:

λ̂ð jÞ was imposed to estimate subject level precision and covariance

matrices: Θ̂iðλ̂ð jÞÞ and Σ̂iðλ̂ð jÞÞ ¼ fΘ̂iðλ̂ð jÞÞg
−1

. Then the brain connectiv-
ity was estimated as discussed before.

2.3. Adaptive tests for group comparisons in brain functional connectivity

In practice it is in general unknown which association measure to
use to yield the highest power in testing for group differences in two
functional networks. In addition, statistical power may depend on the
specified density level of the estimated brain networks. The proposed
tests consider both the type of associationmeasures (Ω) and the density
level of estimated networks (c).

Either the aSPU or NBS test includes one tuning parameter that
incorporates unknown features of given data, to maximize power of
the test, as to be discussed. We propose two versions of highly adaptive
SPU or NBS to accommodate two new tuning parameters (c,Ω) in addi-
tion to their original tuning parameters. The main idea is similar to, but
generalizes, that of the aSPU test (Pan et al., 2014).

2.3.1. Highly adaptive SPU tests
The sum of powered score (SPU) tests are a family of global tests for

assessing overall differences across groups, applicable to small samples
with high dimensions, such as brain connectivity data (Kim et al., 2014;
Pan et al., 2014). Any SPU test includes a γ parameter, whose choice
depends on the unknown data distribution to yield high power. Since
the true data distributions are unknown, we specify a set of the γ param-
eter values, then apply the adaptive SPU (aSPU) test to the results of the
SPU(γ) tests across various γ′ values: for any given non-negative integer
set Γ, an odd γ ∈ Γ might be more suitable when all brain connectivity
changes are in the same direction; otherwise an evenγwould be favored;
furthermore, if only a small portion of edges are changed, a larger γ could
yield higher power. In addition to these features, we add more flexibility
on the SPU tests in the following way.

We briefly comment on the connections of the SPU tests with γ =
1,2 and ∞ with other tests used in the neuroimaging studies. As Kim
et al. (2014) pointed out, the SPU(1) test is equivalent to an fMRI net-
work test proposed in Meskaldji et al. (2011); the SPU(2) test is equiv-
alent to MDMR employed by Shehzad et al. (2014) and Reiss et al.
(2010), and to kernel machine regression with a linear kernel (Hua
and Ghosh, 2014; Liu et al., 2007; Pan, 2011); the SPU(∞) test can be
regarded as mass-univariate testing (Nichols and Holmes, 2001).

We extend the SPU(γ) test to SPU(γ,c,Ω) to incorporate two more
parameters, the estimated connection density and the type of associa-
tion measures used. The SPU(γ,c,Ω) test is based on the score vector
from a generalized linear model with estimated brain connectivity
Xi(c, Ω) = (Xi1(c, Ω), ⋯, Xik(c, Ω))′. For a case–control study, a logistic
regression model is applied with k functional network connections
and l covariates as predictors:

Logit Pr Yi ¼ 1ð Þ½ � ¼ β0 þ
Xk

j¼1
Xi j c;Ωð Þ � β j þ

Xl

m¼1
Zimδm: ð1Þ

We would test the null hypothesis of no group differences in func-
tional brain connectivity: H0 : β= (β1, …, βk)′ = 0. Under the null hy-
pothesis H0, the full model (1) reduces to

Logit Pr Yi ¼ 1ð Þ½ � ¼ β0 þ
Xl

m¼1

Zimδm: ð2Þ

Suppose β̂0 and δ̂m 's are the maximum likelihood estimates under

the null model (2), and Ŷ i ¼ 1=½1þ expð−β̂0−∑l
m¼1Zimδ̂mÞ�. Denote

a residual resi = Yi − Ŷi for i = 1,⋯n. Based on the data {Xi(c,Ω), Zi, Yi},
the score vector for β is defined as

U c;Ωð Þ ¼
Xn
i¼1

Yi−Ŷ i

� �
� Xi c;Ωð Þ ¼

Xn
i¼1

resi � Xi c;Ωð Þ;

which will be used for obtaining the test statistic of SPU(γ,c,Ω). Given a
candidate integer γ ≥ 1, c and Ω, the test statistic is defined as

TSPU γ;c;Ωð Þ ¼
Xk
j¼1

U j c;Ωð Þ� �γ
:

Note that Uj(c,Ω) is the jth component of U(c, Ω) = (U1, …, Uk)′.
For an extreme case, as an even number γ → ∞, we have
TSPU(∞,c,Ω) ∝ max j = 1

k |Uj(c, Ω)|. To draw statistical inference, as Pan
et al. (2014) proposed, we permute the original set of residuals res =
{res1⋯resn} to create a new set of residuals res(b) = {res1(b), ⋯ resn

(b)}.
Based on res(b), we calculate the score vector U(c, Ω)(b) = ∑i = 1

n resi(b) ⋅
Xi(c, Ω) and the null statistic TSPU(γ,c,Ω)

(b) = ∑j = 1
k [Uj(c, Ω)b]γ; with
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b = 1,…,B permutations, we compute the p-value as PSPU(γ,c,Ω) =
∑b = 1

B [I(|TSPU(γ,c,Ω)
n | ≥ [TSPU(γ,c,Ω)]) + 1]/(B + 1). The SPU test is

computationally efficient, since it only requires permuting resid-
uals to calculate U(c, Ω)(b) for drawing inference.

An adaptive SPU test, called aSPU(γ,Ω), combines the p-values of
multiple SPU(γ,c,Ω) tests across various connection density c's, and its
test statistic can be stated as

TaSPU γ;Ωð Þ ¼ min
c∈C

PSPU γ;c;Ωð Þ:

To estimate the null distribution of TaSPU(c,Ω), we first generate an

empirical null distribution of the p-values for SPUðγ; c;ΩÞ : pðbÞSPUðγ;c;ΩÞ ¼
∑b1≠bIðTb1

SPUðγ;c;ΩÞ ≥T
ðbÞ
SPUðγ;c;ΩÞÞ=ðB−1Þ for b = 1,…,B. Then the null dis-

tribution of TaSPU(γ,Ω) can be estimated as the empirical distribution
of TaSPU(γ,Ω)(b) =minc ∈ CpSPU(γ,c,Ω)

(b) . Finally the p-value of the aSPU(γ,Ω) test
is computed as PaSPU(γ,Ω) =∑b = 1

B [I(TaSPU(γ,Ω)(b) ≤ TaSPU(γ,Ω)) + 1]/(B+1)
for γ ∈ Γ. In our study, for possible γ's, we considered Γ = {1,2,3,…,8,∞}
as in Pan et al. (2014) and Kim et al. (2014). The analyses with γ = 1,2
and ∞will be presented as representatives.

A doubly adaptive SPU (daSPU(Ω)) test across double parameters
(γ,c) simply combines the p-values of multiple aSPU tests with various
values of γ. Similar to the aSPU test, the combining procedure is to take
the minimum p-value:

TdaSPU Ωð Þ ¼ min
γ∈Γ

PaSPU γ;Ωð Þ:

To construct the null distribution of TdaSPU(Ω), we calculatepðbÞaSPUðγ;ΩÞ ¼
∑bi≠bIðT

ðb1Þ
aSPUðγ;ΩÞ≥T

ðbÞ
aSPUðγ;ΩÞÞ=ðB−1Þ for b= 1,…,B and the null distribu-

tion can be generated with TdaSPU(Ω)
(b) = minγ ∈ ΓpaSPU(γ,Ω)

(b) , from which
the p-value of the daSPU test is computed.

Finally,we propose a triply adaptive SPU (taSPU) test across all three
parameters (γ,c,Ω), which combines the results of the daSPU(Ω) tests
with Ω for correlations and partial correlations respectively. The test
statistic of taSPU is the minimum p-value of daSPU(Ω)'s:

T taSPU ¼ min
Ω∈ Θ̂;Σ̂

� 	 PdaSPU Ωð Þ:

The procedure for p-value calculation is similar to those of the
aSPU and daSPU tests: an empirical null distribution of TtaSPU can be ob-

tained fromTðbÞ
taSPU ¼ minΩ∈fΘ̂;Σ̂gp

ðbÞ
daSPUðΩÞ, for b=1,…,B, wherepðbÞdaSPUðΩÞ ¼

∑b1≠bIðTðb1Þ
daSPUðΩÞ ≥T

ðbÞ
daSPUðΩÞÞ=ðB−1ÞThe p-value of taSPU test is estimated

as PtaSPU =∑b = 1
B [I(TtaSPU(b) ≤ TtaSPU) + 1]/(B+ 1).

2.3.2. Highly adaptive NBS tests
Zalesky et al. (2010) proposed the Network Based Statistic (NBS) to

identify altered subnetworks across groups, providing topological clus-
ters as evidence of group differences. Originally NBSwas not developed
for global testing, but depending on its threshold NBS provides small
to large subnetworks as evidence of group differences: at a low
threshold, NBS detects large-scale subnetworks, but not intense
and small-sized subnetworks; with a high threshold, only small
and substantially altered subnetworks will be detected. Most of all,
in practice it is unknown which threshold to use, while using differ-
ent threshold values may lead to quite different results; trying mul-
tiple values of the threshold requires an adjustment to multiple
testing. Our proposed methods overcome this shortcoming and fur-
ther improve its performance via an adaptive choice of other two
parameters (c,Ω).
Suppose we apply the NBS test on brain connectivity data Xi(c,Ω)=
(Xi1(c,Ω),⋯, Xik(c,Ω))′. NBS fits a linearmodel on each edge separately.
For each edge j = 1,…k,

Xi j c;Ωð Þ ¼ a0 þ Yia1 þ
Xl

m¼1

Zimδm þ ei j i ¼ 1;…;n

where the errors ei j �iid Nð0;σ2Þ. To test the null hypothesis H0: a1 = 0,
we can derive a t-statistic (ψ) at each edge j individually, which quan-
tifies the edge-wise difference between two groups, i.e.,

ψ j ¼
â1

se â1ð Þ j ¼ 1;…; k

where â1 is an OLS estimate and se(â1) is the standard error of the esti-
mate â1. Let a predetermined threshold parameter nbs(t) represent the
tth percentile in absolute values of ψj's, satisfying P(|ψj| ≤ nbs(t)) = t
(Kim et al., 2014). For possible thresholds t ∈ H, we chose H =
{0.10,0.25,0.50,0.75,0.9,0.95} to cover small to large-scale subnetworks
as evidence of group-differences.

We denote NBS(t,c,Ω) as the NBS test that evaluates group differ-
ences with brain connectivity measures Ω, at estimated connection
density c, and with the threshold nbs(t). The test statistic of the
NBS(t,c,Ω) can be defined as the maximum size (i.e. number of edges)
of the connected edges comprising supra-thresholded edges. Here
supra-thresholded edges represent the edges with weights exceeding
the predetermined threshold. Denote the test statistics of NBS(t,c,Ω)
as TNBS(t,c,Ω). To make inference, permutation is used (Nichols and
Holmes, 2001); for each permutation b = 1,…,B, group memberships
are randomly permuted, and calculate the size of the largest identified
components TNBS(t,c,Ω)

(b) . This yields an empirical null distribution of max-
imal suprathresholded component size. The p-value of NBS(t,c,Ω) can
be obtained by PNBS(t,c,Ω) = ∑b = 1

B I(|TNBS(t,c,Ω)|
(b) ≥ |TNBS(t,c,Ω)|)/B.

An adaptive NBS (aNBS(t,Ω)) adjusts for multiple testing with
NBS(t,c,Ω) being conducted at multiple connection densities. The test
statistic of aNBS(t,Ω) is the minimum p value of NBS(t,c,Ω)'s:

TaNBS t;Ωð Þ ¼ min
c∈C

PNBS t;c;Ωð Þ:

The null distribution of TaNBS(t,Ω)
(b)

can be generated with TNBS(t,c,Ω)
(b)

in

a way that pðbÞNBSðt;c;ΩÞ ¼ ∑b1≠bIðT ðb1Þ
NBSðt;c;ΩÞ ≥T

ðbÞ
NBSðt;c;ΩÞÞ=ðB−1Þ for b =

1,…,B; and defined as TaNBS(t,Ω)
(b)

= minc ∈ CpNBS(t,c,Ω)
(b)

. The final p-value of
aNBS(t,Ω) is PaNBS(t,Ω) =∑b = 1

B [I(TaNBS(t,Ω)
(b)

≤ TaNBS(t,Ω) + 1]/(B+ 1).
A doubly adaptive NBS (daNBS(Ω)) takes the minimum p-value of

aNBS(t,Ω)'s as its test statistic:

TdaNBS Ωð Þ ¼ min
t∈H

PaNBS t;Ωð Þ:

Its p-value is calculated as PdaNBS(Ω) = ∑b = 1
B [I(TdaNBS(Ω)

(b)
≤

TdaNBS(Ω))+1]/(B+1)with TdaNBS(Ω)
(b) =mint ∈ HpaNBS(t,Ω)

(b) andpðbÞaNBSðt;ΩÞ ¼
∑b1≠bIðTðb1Þ

aNBSðt;ΩÞ≥T
ðbÞ
aNBSðt;ΩÞÞ=ðB−1Þ.

With the same logic and inference procedure, a triply adaptive NBS

test (taNBS) can be applied to combine the results of daNBS(Θ̂) and

daNBS(Σ̂), which are based on partial correlations and on correlations
respectively:

TtaNBS ¼ min
Ω∈ Θ̂;Σ̂

� 	 PdaNBS Ωð Þ:

3. Application to the ADNI data

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.

http://adni.loni.usc.edu
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loni.usc.edu). The ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imaging and Bioen-
gineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a 60 mil-
lion, 5-year public–private partnership. The primary goal of ADNI has
been to testwhether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early Alzheimer's dis-
ease (AD). Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials. The Principal Investigator of this initiative
is Michael W.Weiner, MD, VAMedical Center and University of Califor-
nia— San Francisco. ADNI is the result of efforts of many coinvestigators
from a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the U.S.
and Canada. The initial goal of ADNI was to recruit 800 subjects but
ADNI has been followed by ADNI-GO and ADNI-2. To date these three
protocols have recruited over 1500 adults, ages 55 to 90, to participate
in the research, consisting of cognitively normal older individuals, peo-
ple with early or late MCI, and people with early AD. The follow-up du-
ration of each group is specified in the protocols for ADNI-1, ADNI-2 and
ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the
option to be followed in ADNI-2. For up-to-date information, see www.
adni-info.org.
3.1. Data acquisition and preprocessing

Data used in this study were obtained from the ADNI-2 dataset. The
raw images of 30 Alzheimer's disease (AD) patients and 38 cognitively
normal (CN) controls were downloaded from the ADNI website http://
www.adni-info.org. We applied automated anatomical labeling (AAL)
of 116 anatomical volumes of interest (AVOIs). The AVOIs represent
different regions of thewhole brain andN=116 of whole brain regions
were included in our analyses. The resting-state fMRI signals were
measured at 140 timepoints.

Preprocessing was performed utilizing a combination of the Statisti-
cal Parametric Mapping (SPM8) software (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/) (Wellcome Department of Cognitive Neurology,
University College London, UK), the Resting-State fMRI Data Analysis
Toolkit (REST) version 1.8 (http://www.restfmri.net) (Song et al.,
2011), and Data Processing Assistant for Resting-State fMRI (DPARSF)
version 2.3 (http://www.restfmri.net) (Yan and Zang, 2010). All sub-
jects were scanned with the same scanning protocol using 3.0 T Philips
medical systems with the following parameters: TR/TE = 3000/30 ms,
flip angle = 80°, imaging matrix = 64 pixels × 64 pixels, 6720 slices
in total (48 slices × 140 volumes), and slice thickness = 3.3 mm. The
140 images were processed with the standard preprocessing procedure
using the SPM8 and DPARSF package. These rs-fMRI images were
corrected for the acquisition time delay before they were realigned to
the first volume of the remaining images to primarily remove move-
ment artifact in rs-fMRI time series. Since there were a total of 48 slices,
we chose slice 2 as the temporal reference slice. Functional images were
normalized to theMNI spacewith resolution 3 × 3× 3mm3. The images
were then smoothed with 8 mm FWHM. The processed rs-fMRI images
were parcellated into 116 regions of interest (ROIs) according to the
automated anatomical labeling atlas with template size 61 × 73 × 61.
The mean rs-fMRI time series of each ROI was band-pass filtered
(0.01 ≤ f ≤ 0.08 Hz). Note thatwe did not correct for headmotionmainly
because it is still a highly debatable point: according to Power et al.
(2014), “Motion-related signal changes are not removed by a variety
of motion-based regressors, but are effectively reduced by global signal
regression”, while Saad et al. (2012) argued against the use of global
signal regression.
3.2. ADNI data analysis

We applied the proposed methods to test network differences be-
tween 30 Alzheimer's disease (AD) patients and 38 cognitively normal
(CN) controls after adjusting for covariates age, gender and education.
Both correlations and partial correlations were considered for k =
116 × (116− 1)/2= 6670 edges. Demographic information of the par-
ticipants is reported in Table 1. There was no significant difference in
any covariate between AD and CN. 15 different regularization values
were applied to generate various connection densities. Fig. 1 illustrates
how the p-values changedwith the group-level connection density. The
p-values are color-coded by statistical tests and sorted by plotting sym-
bols for each parameter. The top row of Fig. 1 illustrates the p-values of
SPU tests (only the results of a subset of the γ values are reported), and
in the bottom row, the p-values of NBS tests are reported. The left col-
umn (a) shows the p-values when using correlations, while the middle
column (b) shows the p-values with the use of partial correlations; the
last column (c) gives thep-values for the triply adaptive tests, taSPU and
taNBS. With no or only moderate regularization, neither SPU nor NBS
couldfind any significant group differences. As regularization increased,
the p-values tended to decrease when using correlations (a). Using
partial correlations (b), the p-values were unstable when small regulari-
zation was imposed. The p-value of taSPU was 0.02, more significant
than that of taNBS, 0.06.

As discussed, NBS is useful for identifying changed subnetworks
between the two groups. Fig. 2 illustrates the two subnetworks identi-
fied to be different between the two groups by the two individual NBS

tests with two most significant p-values: NBS(t = 0.25,c = 0.05, Θ̂)

for partial correlations, and NBS(t = 0.95,c = 0.05, Σ̂) for correlations.
Each changed subnetwork was represented in an N × N indicator ma-
trix; each row/column of the indicator matrix corresponds to a distinct
node, i.e. a brain region of interest. The (i,j)th element of the indicator
matrix was marked out if the edge linking the ith and jth nodes was
detected as significantly changed by the two NBS tests.

Note that, although NBS (or any global test) identified a large sub-
network, it does not mean that all the edges from the subnetwork
were genuinely altered. To facilitate interpretation, we further ranked
the detected edges by their absolute scores in the score vector as used
by the SPU tests, thus identifying the top 50 edges as presented at the
bottom row of Fig. 2.

The two associationmeasures (partial correlations and correlations)
answer somewhat different questions, but we found 27 common al-
tered connectivity edges for both correlations and partial correlations.
The 27 edges in Fig. 3, BrainNet Viewer (Xia et al., 2013)weremainly lo-
cated within the frontal and parietal regions classified as the salient
mode network. Beyond the frontal and parietal regions, the proposed
tests identified the subcortical structures caudate (CAU) and thalamus
(THA), and cerebellum (CRBL3 and Vermis3); Table 2 lists some regions
and their abbreviations. In this analysis, right frontal superior medial
(SFGmed) and parietal inferior (IPL) showed the highest node degree;
5 and 6 respectively. The proposed tests detected altered interhemi-
spheric functional connectivity in ADs, linking the left and right sides
of the supplementary motor area (SMA), frontal superior medial
(SFGmed), Superior frontal gyrus, medial orbital (ORBsupmed), cuneus
(CUN), parietal inferior (IPL), and caudate (CAU) respectively. We will
discuss the results by comparing with the literature in the Discussion
section.
4. Simulations

We further investigated the performance of the proposed tests
based on realistic simulations mimicking the ADNI data. Since brain
connectivity networks were found sparse in previous studies (Oh
et al., 2014; Hilgetag et al., 2002), we assumed either true precisionma-
trices or covariance matrices to be sparse.

http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org
http://www.adni-info.org
http://www.adni-info.org
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.restfmri.net
http://www.restfmri.net


Table 1
Demographic information of the participants in the ADNI data.

Group No. of subjects Gender (F/M) Age Years of education

AD 30 16F/14M 72.33 ± 7.38 15.46 ± 2.64
CN 38 20F/18M 75.22 ± 6.12 16.23 ± 2.29
Two sample test p-Value – 0.955 0.090 0.212

630 J. Kim, W. Pan / NeuroImage: Clinical 9 (2015) 625–639
In our simulations, we assumed the true brain connection density to
be 0.20, and 1% of the total brain network edges to be possibly altered.
The BOLD signals (Dt) of the 116 regionswere simulated frommultivar-
iate Gaussian distribution with mean 0 and group-level covariance ma-
trices, Σ(j) for j = 1 or 2.
4.1. True parameters Σ(j)

4.1.1. Set-up 1
This simulation set-up assumes that the true precision matrix

is sparse. First, group-level sample covariance matrices were obtained
from the ADNI data, to which the graphical lasso was applied to

generate sparse precision matrices (~Θð1Þ and ~Θð2Þ), both with connection
density 0.20. To specify altered brain network, we defined edges com-
prising a connected subnetwork as the truth, which was identified by
NBS for the ADNI data. In this set-up, the changed edges were detected
with the weights of partial correlations. Denote Δ as an N × N indicator
Fig. 1. p-Values for testing brain network differences between the AD group and CN group in th
(b) shows the p-values with using partial correlations. The last column (c) taSPU and taNBS
correlations.
matrix for the altered connectivity between the groups. The true param-
eters Θ(1) and Θ(2) were stated as

Θ 1ð Þ ¼ ~Θ 1ð Þ; Θ 2ð Þ ¼ Θ 1ð Þ þ ϕ � ~Θ 2ð Þ−~Θ 1ð Þ
� �

∘Δ

where ϕ is a scalar parameter to control the group differences and ○ is
the Hadamard (i.e. matrix element-wise) product. For type I error rates,
ϕ=0, and for power analyses, ϕ=0.008, 0.009 and 0.01 were consid-
ered. The true group-level covariance matrices were obtained as Σ(j) =
Θ(j)
−1 for j = 1 or 2.

4.1.2. Set-up 2
We also considered a case where the true covariance matrix is

sparse. Applying the graphical lasso to the group-level sample covari-
ancematrices of the ADNI data, we generated sparse covariancematrices

(~Σð1Þ and ~Σð2Þ), each of which had connection density 0.20. In set-up 2,
the true altered brain connectivity (Δ) was defined with the measures
e ADNI data. The left column (a) shows the p-values using correlations. Themiddle column
shows the p-values by combining two inferences evaluated with correlations or partial



Fig. 2. Altered network edges selected by the most significant NBS tests and the top 50 ranked by univariate score components.

631J. Kim, W. Pan / NeuroImage: Clinical 9 (2015) 625–639
of correlations. Similar to set-up 1, the true parameters Σ(1) and Σ(2)

were defined as Σð1Þ ¼ ~Σð1Þ and Σð2Þ ¼ Σð1Þ þ ϕ � ð~Σð2Þ−~Σð1ÞÞ∘Δ:
We set ϕ = 0 for calculating type I error rates, and ϕ = 0.45 for

power analysis.

4.2. Generating simulated data

At any time point t, the BOLD signals forN=116 brain regionswere
generated independently as

Dt ¼ Dt1;⋯;DtNð Þ0 � N 0;Σ jð Þ

 �

; t ¼ 1;…;M;

for each subject in group j. We mimicked the ADNI data by setting the
number of time points at M = 140, and generating data of 30 subjects
for AD or CN group respectively.

4.3. Estimating networks

The following procedure was used to estimate networks (Σ̂iðcÞ and
Θ̂iðcÞ) with the time-series data. First we tried to find the group level

λ(j)(c) so that estimated connection density of Θ̂iðcÞ is close to the target
density c, for subject i in a group j. Applying the graphical lasso with
λ(j)(c) to each subject's time course data, we would estimate each
subject-specific covariance (or precision)matrix, fromwhich correlations
(or partial correlations) were estimated. In the simulation study, the
estimated connection density of the precision matrix was predefined at
c ∈ {0.05,0.15,0.25,0.35,0.45,0.55,1}.
In one of the simulation set-ups, we also estimated networks by

applying 10-fold CV-selected regularization parameter values, λ̂ð jÞ.

4.4. Type I error and power for testing

In the procedure of applying the adaptive tests, brain connectivity
Xi(c,Ω) was estimated at various sparsity levels and with different asso-
ciation measures. Given Xi(c,Ω), the SPU(γ,c,Ω), aSPU(γ,Ω), daSPU(Ω)
and taSPU tests were sequentially applied while adjusting for multiple
testing results over each parameter c, γ andΩ. Similarly, the NBS(t,c,Ω),
aNBS(γ,Ω), daNBS(Ω) and taNBS test were consecutively implemented
to test group-level network differences.

The test significance level was fixed at a = 0.05 throughout the
simulations. The empirical type I errors and power were based on
1000 independent replicates for each set-up. The permutation number
used for all tests was 1000.

4.5. Errors in estimating networks

Suppose that subject i has a network estimate Σ̂i (or Θ̂i ) for
the true Σi (or Θi) and ΣiΘi = I. Estimation errors in the assessment

of networks ( Σ̂i and Θ̂i ) were quantified with an entropy loss

(EL) and a quadratic loss (QL). EL and QL from estimating Σ̂i were
computed as

EL Σ̂i;Σi

� �
¼ tr Σ̂iΘi

� �
− log Σ̂iΘi

��� ���−N



Fig. 3.Altered brain connectivity for Alzheimer's disease: Left side shows the brain in sagittal view and right side is for axial view; brain areas are color coded; the node size is proportional
to the degree of the node size; abbreviations for brain regions are in Table 2.

Table 3
Type I error rates of the various SPU-based tests for testing network differences.

Set-up 1

Correlations Partial correlations

SPU(γ,c) γ = 1 γ = 2 γ = ∞ γ = 1 γ = 2 γ = ∞

c = 0.05 0.033 0.030 0.032 0.046 0.044 0.050
0.15 0.049 0.039 0.031 0.044 0.049 0.033
0.25 0.054 0.041 0.033 0.042 0.041 0.059
0.35 0.054 0.041 0.035 0.038 0.041 0.056
0.45 0.054 0.041 0.039 0.038 0.043 0.057
0.55 0.053 0.041 0.037 0.041 0.043 0.052
1 0.056 0.046 0.037 0.041 0.046 0.042

Correlations Partial correlations

aSPU(γ) γ = 1 γ = 2 γ = ∞ γ = 1 γ = 2 γ = ∞

0.026 0.022 0.021 0.013 0.042 0.040

Correlations Partial correlations

daSPU 0.040 0.021
taSPU 0.033

Set-up 2

Correlations Partial correlations

SPU(γ,c) γ = 1 γ = 2 γ = ∞ γ = 1 γ = 2 γ = ∞

c = 0.05 0.033 0.030 0.050 0.046 0.044 0.050
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QL Σ̂i;Σi

� �
¼ tr Σ̂iΘi−I

� �2
:

Here Σi = Σ(j) and Θi = Θ(j) for subject i in a group j i.e. i ∈ G(j), since
we assumed the true networks at the group level. Similarly errors in

estimating Θ̂i were obtained with

EL Θ̂i;Θi

� �
¼ tr Θ̂iΣi

� �
− log Θ̂iΣi

��� ���−N

QL Θ̂i;Θi

� �
¼ tr Θ̂iΣi−I

� �2
:

In one of the simulation studies, EL and QL were obtained for each
group at different connection density c's and averaged out based on
1000 replicates.

4.6. Results

4.6.1. Type I error rates
Type I error rates in each simulation are reported in Tables 3 and 4,

where all tests had empirical type I error rates close to the nominal
level of 0.05.

4.6.2. Power for set-up 1
Figs. 4 and 5 show the power for testing group-level network dif-

ferences when the true precision matrices were set sparse and the
group-differences were created with the partial correlations. High

regularization led to a low estimated connection density at Θ̂i. The left
column (a) of Fig. 4 shows the power when using correlations while
the middle column (b) with using partial correlations; in the last
Table 2
Anatomical parcellation of the brain and their abbreviations used for the ADNI data.

Region Abbreviation Region Abbreviation

Precentral PreCG Frontal inf orb ORBinf
Frontal sup SFGdor Cuneus CUN
Supp motor area SMA Occipital sup SOG
Frontal sup medial SFGmed Postcentral PoCG
Frontal mid MFG Parietal sup SPG
Frontal med orb ORBsupmed Parietal inf IPL
Supramarginal SMG Angular ANG
Caudate CAU Thalamus THA
Temporal pole sup TPOsup Cerebellum3 CRBL3

Vermis3 Vermis3
column (c), the power of taSPU and taNBS is presented.When assuming
true sparse precision matrices, using correlations gave higher power
than employing partial correlations. The estimated connection density

of Θ̂i was influential on the power for testing group differences. When
using correlations (a), the power of SPU(γ,c,Ω) and NBS(t,c,Ω) was
0.15 0.048 0.040 0.031 0.043 0.049 0.033
0.25 0.053 0.042 0.033 0.042 0.042 0.059
0.35 0.053 0.042 0.034 0.038 0.042 0.056
0.45 0.053 0.042 0.039 0.038 0.043 0.057
0.55 0.052 0.042 0.036 0.041 0.043 0.052
1 0.055 0.046 0.037 0.042 0.046 0.043

Correlations Partial correlations

aSPU(γ) γ = 1 γ = 2 aSPU(γ) γ = 1 γ = 2 aSPU(γ)

0.029 0.024 0.025 0.036 0.040 0.039

Correlations Partial correlations

daSPU 0.017 0.026
taSPU 0.015



Table 4
Type I error rates of the various NBS-based tests for testing network differences.

Set-up 1

Correlations Partial correlations

NBS(t,c) t = 0.10 t = 0.25 t = 0.50 t = 0.75 t = 0.90 t = 0.95 t = 0.10 t = 0.25 t = 0.50 t = 0.75 t = 0.90 t = 0.95

c = 0.05 0.050 0.040 0.032 0.036 0.036 0.036 0.052 0.052 0.052 0.052 0.046 0.049
0.15 0.057 0.060 0.062 0.064 0.055 0.055 0.047 0.047 0.047 0.048 0.037 0.040
0.25 0.053 0.051 0.053 0.053 0.055 0.058 0.039 0.061 0.054 0.052 0.046 0.044
0.35 0.058 0.051 0.053 0.053 0.048 0.048 0.058 0.063 0.052 0.048 0.037 0.029
0.45 0.060 0.058 0.053 0.053 0.053 0.060 0.058 0.045 0.044 0.047 0.031 0.042
0.55 0.055 0.053 0.053 0.055 0.053 0.051 0.052 0.047 0.043 0.045 0.040 0.033
1 0.053 0.048 0.053 0.046 0.051 0.057 0.047 0.049 0.052 0.039 0.037 0.036

Correlations Partial correlations

aNBS(t) t = 0.10 t = 0.25 t = 0.50 t = 0.75 t = 0.90 t = 0.95 t = 0.10 t = 0.25 t = 0.50 t = 0.75 t = 0.90 t = 0.95

0.014 0.016 0.016 0.009 0.012 0.007 0.049 0.045 0.040 0.043 0.036 0.030

Correlations Partial correlations
daNBS 0.012 0.044
taNBS 0.042

Set-up 2
Correlations Partial correlations

NBS(t,c) t = 0.10 t = 0.25 t = 0.50 t = 0.75 t = 0.90 t = 0.95 t = 0.10 t = 0.25 t = 0.50 t = 0.75 t = 0.90 t = 0.95
c = 0.05 0.048 0.055 0.055 0.053 0.062 0.059 0.048 0.055 0.055 0.053 0.062 0.059
0.15 0.15 0.063 0.063 0.057 0.066 0.060 0.050 0.063 0.063 0.057 0.066 0.060
0.25 0.25 0.060 0.062 0.065 0.054 0.061 0.050 0.060 0.062 0.065 0.054 0.061
0.35 0.35 0.060 0.056 0.056 0.054 0.047 0.051 0.060 0.056 0.056 0.054 0.047
0.45 0.45 0.062 0.057 0.047 0.049 0.049 0.049 0.062 0.057 0.047 0.049 0.049
0.55 0.55 0.067 0.062 0.053 0.047 0.052 0.039 0.067 0.062 0.053 0.047 0.052
1 1 0.059 0.059 0.053 0.054 0.055 0.049 0.059 0.059 0.053 0.054 0.055

Correlations Partial correlations

aNBS(t) t = 0.10 t = 0.25 t = 0.50 t = 0.75 t = 0.90 t = 0.95 t = 0.10 t = 0.25 t = 0.50 t = 0.75 t = 0.90 t = 0.95

.047 0.050 0.052 0.047 0.055 0.046 0.028 0.031 0.030 0.031 0.031 0.029

Correlations Partial correlations
daNBS 0.049
taNBS 0.038
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low at estimated connection density less than 0.25; but with using
partial correlations (b), the power of SPU(γ,c,Ω) test was higher at
lower estimated connection density. The aSPU(γ,Ω) and the aNBS
(t,Ω) maintained high power robustly across different estimated
connection density c's. It is emphasized that the power of SPU(γ,c,Ω)
and NBS(t,c,Ω) largely depended on the sparsity level of estimated net-
works. As expected, the daSPU and daNBS tests showed the power be-
tween the lowest and the highest power of aSPU(γ,Ω)'s and
aNBS(t,Ω)'s respectively, while the power of the taSPU test was be-
tween those of the two daSPU(Ω) tests applied to correlations (a) and
partial correlations (b), and taNBS gave the power between those of
two daNBS(Ω)'s with correlation and partial correlations.

Fig. 5 shows how effect size (ϕ) of the group differences is related
to the statistical power. To illustrate the possible patterns of the
power, we only presented the power of SPU tests. In the top row,
ϕ = 0.01, and in the bottom ϕ = 0.008. In both cases, testings with
correlations (a) outperformed those using partial correlations (b).
When ϕ=0.01, lower estimated connection density gave higher sta-
tistical power; possible causes for this are the dimension of edges to
be tested was reduced due to the high regularization. However with
ϕ = 0.008 where effect size was too small, lower estimated connec-
tion density could not show high power, since only with small num-
ber of edges of weak effects, the group differences were hard to be
detected. The aSPU(γ,Ω), aSPU(Ω), and taSPU tests showed the
power between the lowest and the highest of each previous stage re-
spectively, as expected.

Overall, since the true precisionmatriceswere sparse (and hence the
true covariance matrices were not sparse), a test based on using
correlations seemed to be more stable and more powerful than that
using partial correlations.

4.6.3. CV-selected regularization parameter in set-up 1
Fig. 6 illustrates the power for testing network-differences and net-

work estimation errors when CV-selected regularization was applied
in estimating networks. The simulation setting was the same as that
for the top row of Fig. 5, where the true sparse precision matrices
were assumed and ϕ = 0.01. The vertical lines in Fig. 6, represent the
results when CV-selected parameter values were imposed. When CV-
selected regularization was imposed, the estimated connection density

at Θ̂iwas 0.33 for both groups, close to the true value of 0.2. As shown by
the top row of Fig. 6, the CV-selected regularization did not give the
highest statistical power for testing network differences when using
correlations (a) or partial correlations (b).

For testing group-differences, imposing higher regularization than the
CV-selected parameter valuewas preferred. Themiddle and bottom rows
of Fig. 6 show network estimation errors using the entropy loss and the
quadratic loss. It is interesting to note that CV was successful for estimat-

ing networks (Σ̂andΘ̂), yielding nearly theminimal entropy loss and qua-
dratic loss. This numerical example clearly suggests that testing group-
differences differs from network estimation; a good procedure (like CV)
for the latter does not necessarily guarantee high performance in testing.

4.6.4. Power for set-up 2
Fig. 7 describes power for testing network differences when true co-

variancematrices are sparse. The proposed adaptive tests were successful



Fig. 4. Simulation set-up 1: power for testing network differences with true sparse precision matrices when ϕ=0.009; the left panel (a) shows the power using correlations; the middle
panel (b) for the power with using partial correlations; in the last panel (c), is the power of taSPU and taNBS.
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in combining multiple testing results over parameters c, γ (or t) and Ω.
The patterns of the relative power between using correlations and partial
correlations were switched compared to Figs. 4, 5 and 6, presumably be-
cause the true covariance matrices, not true precision matrices, were
sparse, highlighting the necessity of data-adaptively choosing an associa-
tion measure.

5. Discussion

Wehave proposed two highly adaptive tests for group differences in
brain connectivity, building on two existing tests, aSPU and NBS (Pan
et al., 2014; Zalesky et al., 2010, 2012), which appeared to be high
powered and complementary to each other in a previous study (Kim
et al., 2014). In practice, one has to specify a few parameters, such as
the estimated connection density and type of association measures,
which will critically influence the corresponding brain functional net-
work estimates, and thus the subsequent group comparison of net-
works. On the other hand, it is in general unknown how to choose
these parameters tomaximize the power of group comparison. These is-
sues have not been carefully considered in the current practice of two-
group testing, for example, is based on some arbitrarily chosen param-
eters, e.g. unpenalized sample covariance matrices or some penalized
precision matrices. As shown in our numerical examples, in addition
to possible power loss with the use of sample covariance matrices, the
commonly used model selection method, cross-validation, may not be
able to choose an appropriate value of such a parameter for hypothesis
testing, though it may perform well for network estimation (Kim et al,
2015). Motivated by these observations, we have developed the highly
adaptive tests aiming to automatically and optimally choose these pa-
rameters to maximize power, in contrast to the current practice of
using some ad hoc parameters. Specifically, among multiple candidate
tests, each based on a set of specified tuning parameter values, we take
the minimum p-value of these tests. Due to the unavailability of a
closed-formexpression for the power of a test,weuse a p-value as a (neg-
ative) surrogate for its power; ideallywewould choose a test based on its
power (Fan, 1996; Kulasekera and Wang, 1997). The idea of using p-
values to approximate statistical power is both simple and proven useful
in practice. For example, Zou andQiu (2010) proposed choosing themax-
imum of a set of (normalized) test statistics with each test being con-
structed based on a specific value of the regularization parameter in
lasso, which is equivalent to our choosing of the minimum p-value. Our
proposed tests generalize the idea of Zou and Qiu (2010) to the case
with more than one tuning parameter. We also note that other p-value
combining methods (Pan et al., 2010) are possible and worth further in-
vestigation. Through both simulated and real data applications, we have
demonstrated the easy use, flexibility and possible power gain of the pro-
posed highly adaptive tests over non-adaptive tests.

In the following, we highlight a few of our technical choices, illustrat-
ing our major innovations and/or contributions, and then discuss the
ADNI data application and how to apply the proposed tests in practice.

5.1. How does network testing differ from network estimation?

Since brain networks are known to be highly clustered and sparse
(Achard andBullmore, 2007;He et al., 2007), it is presumably better to in-
corporate the sparsity of networks into both estimation and testing. For
example, many studies, including the current one, have employed the
graphical lasso with a group-level regularization parameter value to esti-
mate the networks at a given sparsity (or density) level. However, it is dif-
ficult to choose an appropriate value of the regularization parameter (or



Fig. 5. Simulation set-up 1: power of SPUs for testing network differences with true sparse precision matrices; in the top row, ϕ = 0.01, and in the bottom ϕ = 0.008. The left panel
(a) shows the power using correlations; the middle panel (b) for the power with using partial correlations; in the last panel (c), is the power of taSPU.
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the sparsity/density level) to maximize the power of a test. Existing
model selection criteria, such as CV, are developed for estimation, not
for testing. As we have shown, although CV-selected tuning parameter
(nearly)minimized the estimation error, it led to loss of power in the sub-
sequent testing (Fig. 6). This clearly demonstrates that an optimal proce-
dure for estimation may no longer be optimal for hypothesis testing,
highlighting the need for further investigation on testing.

Another example iswhich associationmeasure, the (full) correlation
or the partial correlation, should be preferred. For network estimation,
the answer largely depends on what is the question of interest, though
often the partial correlation, and hence the precision matrix, are pre-
ferred due to the connection with conditional independence and thus
easy interpretation of the latter (Smith et al., 2011). For testing, since
two unequal covariance matrices imply the inequality of the two corre-
spondingprecisionmatrices, and vice versa, the choice between the two
should depend on the power of the resulting test. Perhaps surprisingly,
in agreement with Kim et al. (2015), we confirmed that the question of
which one is preferred depends on which of the true covariance and
precision matrices is sparse. For example, if two different true precision
matrices are sparse, then using the full correlations based on the covari-
ance matrix estimates (with suitable regularization) gives higher
power; otherwise the conclusion is the opposite (see Figs. 4 and 7). A
possible explanation is that, by definition of sparsity, there are only
few different elements between two different and sparse matrices; on
the other hand, since the inverse of a sparse matrix is in general non-
sparse, there will be more different elements between the inverses of
the two sparse matrices, leading to higher power of a test.

The sparsity of a matrix may also influence the power of some non-
adaptive test. For example, if the two different precision matrices are
sparse, then as shown in Fig. 4, NBS may have much lower power to
detect their differences. The reason is that NBS is based on identifying
the largest altered (and connected) subnetwork; however, with sparse
matrices and weak signals, it is much harder to detect a large and con-
nected disrupted subnetwork, because missing one or two key edges
may split the altered subnetwork into a fewmuch smaller subnetworks.

We note that, due to space limit, we only present a few examples
here; we have obtained similar results based on a different real dataset
(as used in Kim et al., 2014) and more simulated datasets.

5.2. Why to ignore temporal correlations?

While BOLD signals are in general correlated across time, we ignore
the correlations when estimating a spatial covariance or precision ma-
trix for a set of ROIs. This is largely for simplicity, but theoretical support
exists. It is sufficient to consider only one group here. As before, suppose
Dt = (Dt1,…, DtN)′ is the vector of BOLD signals for N ROIs at time t, t=
1,…,M. Nowwrite D=(D1,…,DM) as the data matrix. If we assume that
D ~ MN(0, Σ, V) has a matrix Normal variate distribution, i.e. vec (D) =
(D1′, …, DM′)′ ~ N(0, Σ ⊗ V) with ⨂ as the Kronecker product, then a
penalized spatial correlation matrix R can be estimated by the glasso:

~R λð Þ ¼ arg max
R

log R−1
��� ���−tr R̂R−1

� �
−λ R−1

 
1

n o
;

where R=(Rij) is the population correlationmatrix derived from∑=

(∑ij) with Ri j ¼ Σi j=
ffiffiffiffiffiffiffiffiffiffiffiffi
ΣiiΣ j j

q
, and R̂ is the sample correlation matrix of

D1, …, DM under the working assumption that D1, …, DM are indepen-
dent (i.e. by ignoring the temporal correlations). Some theoretical justi-
fications and good finite-sample performance of such an estimate were



Fig. 6. Simulation set-up 1: CV-selected regularization for testing network differences and estimation errors with true sparse precision matrices and ϕ = 0.01.
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studied in Zhou (2014). Note that ~R and its (generalized) inverse are
used in our proposal to obtain correlations and partial correlations for
a brain network. Furthermore, under more general conditions (e.g.
without the matrix variate normal assumption and without assuming
a common temporal covariance matrix V across the ROIs), the theoreti-
cal validity of some penalized (spatial) covariance and correlation ma-
trices for ∑ and R, based on the sample covariance or correlation

matrix R̂ obtained by ignoring temporal correlations, is established in
Shu and Nan (2014).

More intuitively, the validity of using the sample covariance matrix

S ¼ 1
M

XM
t¼1

Dt−D

 �

Dt−D

 �0

;

with D ¼ ∑M
t¼1Dt=M, (or using the sample correlation matrix R̂,) is due

to its unbiasedness, no matter whether Dt's are correlated or not across

time t, because of the simple fact of E½ðDt−DÞðDt−DÞ0� ¼ Σ. This is anal-
ogous to the fact that the sample mean is unbiased for the population
mean even if we have a correlated sample. More generally, the normal
likelihood based on assuming independent Dt's can be regarded as a
pseudo-likelihood or composite likelihood (Lindsay, 1988). In fact, for
the normal likelihood under the working independence assumption,

log LI ¼ log R−1
��� ���−tr R̂R−1

� �
;



Fig. 7. Simulation set-up 2: power for testing network differences with true sparse covariancematrices; the left panel (a) shows the power using correlations; themiddle panel (b) for the
power with using partial correlations; in the last panel (c), is the power of taSPU and taNBS.
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it is easy to verify that

∂ log LI
∂R−1 ¼ R−R̂:

By the unbiasedness of the sample correlation matrix R̂, we have EðR̂
Þ ¼ R and thus E(∂ log LI/∂R−1) = 0. By the theory of estimating func-
tions (e.g. Liang and Zeger, 1986; Lindsay, 1988), using log LI is equiva-
lent to using an unbiased estimating function, leading to some nice
asymptotic properties, e.g. consistency, of the resulting estimator
under some regularity conditions. However, we acknowledge that ig-
noring temporal correlationsmay lead to an inefficient estimate of a co-
variance or precision matrix (Zhou, 2014) and thus possible loss of
power in subsequent testing. How to incorporate temporal correlations
while maintaining the simplicity and robustness in estimating a covari-
ance or precision matrix warrants further investigation.

5.3. Why to use penalized covariance and precision matrix estimates?

By striking a better bias–variance trade-off, penalizationmay lead to
a better estimate. In the current context of testing the equality of two
large group-level covariance (or precision) matrices, there are a large
number of parameters (i.e. element-wise differences between the two
matrices). Because usuallymany elements are equal but their estimates
may not be equal (due to estimation errors), using all non-penalized
element-wise differenceswill simply contribute noises to the test statis-
tic, and thus reduce the power of the resulting test. By penalization,
some or all of these elements may be shrunk to be (nearly) zero, thus
effectively eliminating (or reducing) their negative influences on the
power; on the other hand, the shrinkage of those elements that are un-
equal between the two population matrices may also lead to loss of
power (by reducing the element-wise differences). In the end, it is a
trade-off between the two effects. As shown in Figs. 1 and 4, a proper
shrinkage or penalization (with the corresponding connection density)
will yield higher power than no shrinkage or over-shrinkage.

A potential problem of penalization is its introducing biased param-
eter estimates, which in the current context is not critical, because our
goal is to maintain a correct Type I error rate while maximizing the
power. This is why we propose choosing the penalization (or connec-
tion density) at the group level: under the null hypothesis H0, the two
group-level covariance or precision matrices are equal, implying that
they have the same connection density; enforcing an equal connection
density between the two groups ensures that under H0, no differences
between the two groupswould arise simply due to the artifact of impos-
ing different connection densities between the two groups. The effec-
tiveness of our proposal was confirmed in our simulations with
properly controlled Type I error rates (e.g. Tables 3 and 4). Of course,
under an alternative hypothesis, if the two groups have different covari-
ance matrices with different connection densities, then our method
may lose power, though it is unclear to us what is a better alternative.

We also note that, we do not assume that all the subjects in the same
group have the same covariance matrix (and connection density); it is
possible that each individual has his/her own covariance matrix, and
their mean is the corresponding group-level covariance matrix. This is
analogous to testing for differences of blood pressure between two popu-
lations; within each population, the individuals may have different blood
pressures. Through our proposed group-level penalty parameter selec-
tion, we aim to penalize the individual covariance matrices by a similar
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amount so that the between-group equality (or differences) can bemain-
tained, leading to a correct Type I error rate (or high power). Note that,we
donot assume that an estimated covariance (or precision)matrix for each
individual is exact; we treat them as observations with random errors,
which are then used in the subsequent two-sample testing.

5.4. How do our proposedmethods differ from existing two-sample tests for
covariance matrices?

Two new tests have been proposed recently for high-dimensional
covariancematrices (Cai et al, 2013; Li and Chen, 2012). A key difference
between the two tests and ours is the lack of replicates in the former;
that is, only one sample covariance matrix is observed from each of
the two groups. Because of this difference, no penalization is applied
in the two tests, both of which are based on the sample covariance ma-
trices. Specifically, the two tests are based on the sum of the squared
element-wise differences and the most significant element-wise differ-
ence between the two sample covariance matrices respectively, hence
they are similar to our proposed SPU(γ = 2, c = 1, S) and SPU(γ = ∞,
c = 1, S) tests, respectively. In particular, the test of Cai et al. (2013) is
similar to a mass-univariate testing procedure, which has been shown
by Kim et al. (2014) to be low-powered for non-sparse alternatives.
Accordingly, the two tests are not adaptive: they will not be powerful
unless under their desired alternatives with appropriately dense and
sparse element-wise differences respectively.

For simplicity, we used the popular glasso to estimate both a covari-
ance matrix and a precision matrix; other penalization methods can be
equally applied.

5.5. More on the ADNI data application

Independent component analysis (ICA) is a popular method for anal-
ysis of functional connectivity. Zhou et al. (2010) applied ICA to each sin-
gle subject's estimated brain networks and then test for their group
differences. Here we compare our results with theirs and others' for dif-
ferential functional connectivity between patients with Alzheimer's dis-
ease and controls. For our methods, we focus on the 27 edges and
related ROIs in Fig. 3.

Zhou et al. (Supplementary Table 1) revealed connectivity alterna-
tions in the salience network of ADs, including the pregenual anterior
cingulate cortex (ACC), right subgenual ACC, right dorsal anterior insula,
left putamen, left pallidum, left caudate, right pulament, thalamus, mid-
brain periaqueductal gray, and brainstem, among which the caudate
and thalamus were overlapped with those identified by our methods
(Fig. 3). Furthermore, Jiji et al. (2013) found a significant reduction in
the caudate volume in Alzheimer's patients when compared to normal
controls, while reduction in thalamus volume in Alzheimer's disease
was pointed out by de Jong et al. (2008). For the regions included in
the default mode network (DMN), our proposed tests indicated altered
connectivity linked to the cuneus (CUN), temporal pole (TPOsup), and
inferior parietal gyrus; Zhou et al. (Supplementary Table 2) reported
the left lingual gyrus, cuneus, left precuneus, right dorsolateral prefron-
tal cortex, left middle temporal gyrus, left parahippocampa, right
precuneus, right angular gyrus, right posterior MCC, left hippocampus,
right putamen, and brainstem.

Our proposed tests also identified connectivity differences in clusters
in the frontal, temporal, and subcortical (CAU and THA) regions, which
were also uncovered by Zhang et al. (2009) and Allen et al. (2007).

5.6. How to apply the proposed tests?

As a global test, the primary goal of each proposed method is to
achieve high power in detecting any differences of connectivity, rather
than localizing such differences. The main reason is that, with often a
small sample size and a large number of parameters (i.e. edges) to be
tested, even the power of a global test can be low while that of a
localization test (e.g. a mass-univariate test) is much worse. Our pro-
posed strategy is to first apply a high-powered global test to assess
whether there are any genuine differences of connectivity; if so, then
explore and localize the differences. Since our proposed global tests
build on univariate tests on individual edges, in practice the results of
the uniavraite tests can be examined to help identify possible differ-
ences. For example, at each c, t andΩ, NBS(t,c,Ω) provides subnetworks
with the strongest evidence against the null hypothesis H0, thus
allowing one to visualize possible connectivity differences.

To apply our proposed tests, one has to specify some ranges for sev-
eral tuning parameters, which may influence the performance of the
tests: searching a too wide or too narrow range than necessary may
lead to loss of power. One effective way is to incorporate prior knowl-
edge. For example, since brain structural networks are known to be
sparse with a connection density c around 17–20% (Oh et al, 2014),
onemay specify the range of c around 0.20. However, such prior knowl-
edgemaynot exist ormay not be reliable. In practice, to be conservative,
one may choose to specify a full range of a tuning parameter, e.g.
0 b c b 1 as done before. An advantage of our proposed tests is that
they will search for an optimal tuning parameter (e.g. c) automatically.

5.7. Future work

The main idea of our construction of adaptive tests over multiple
tuning parameters is general and can be equally applied to other tests
(e.g. Lin et al., 2012; Sun et al., 2015). Our proposed tests may be also ex-
tended to other cases. For example, they can be extended to comparison
among three or more groups. For adaptive SPU tests, a multinomial logis-
tic regression (for a categorical group indicator) or a proportional odds
model (POM) (for an ordinal group indicator such as NC, MCI and AD
groups in the ADNI data) can be employed in lieu of the binomial logistic
model, fromwhichwe derive the score vector and thus the SPU tests. The
score vector of the POM has a closed-form solution (McCullagh, 1980;
Zhang et al., 2014b). Since the NBS tests are based on linear regression
on each connectivity edge, it is easy to incorporate a multi-categorical
group indicator as several binary dummy variables as covariates in a line-
ar model and test the significance of group-edge association by an F-test
(instead of the t-test). In this way it is straightforward to apply the highly
adaptive NBS test tomore than two groups. In addition, rather than using
the graphical lasso, othermethods (Eavani et al., 2014) can be used to es-
timate the undirected networks, or dynamic/directional networks (Ou
et al, 2014; Zhang et al., 2014a; Zhang et al, 2015), based on which of
our proposed tests can be applied. Furthermore, instead of Pearson's cor-
relations or partial correlations as considered here, other associationmea-
sures (Lindquist et al., 2014; Varoquaux and Craddock, 2013)may be also
used. These are all interesting topics to be pursued in the future.
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