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1. Introduction

The geometric intersection number of homotopy classes of (simple) closed curves on a surface is the minimum number of
intersection points of curves in the homotopy classes. This is a much studied concept and has proved to be extremely useful
in low-dimensional topology.

Scott and Swarup [18] introduced an algebraic analogue, called the algebraic intersection number, for a pair of splittings of
groups. This is based on the associated partition of the ends of a group [19]. Splittings of groups are the natural analogue of
simple closed curves on a surface F —splittings of π1(F ) corresponding to homotopy classes of simple closed curves on F .
Scott and Swarup showed that, in the case of surfaces, the algebraic and geometric intersection numbers coincide.

We show here that the analogous result holds for free groups, viewed as the fundamental group of the connected sum
M = �n S2 × S1 of n copies of S2 × S1. Observe that this is a closed 3-manifold with fundamental group the free group on n
generators. Thus, the manifold can be regarded as a model for studying the free group and its automorphisms.

Embedded spheres in M correspond to splittings of the free group. Hence, given a pair of embedded spheres in M ,
we can consider their geometric intersection number (defined below) as well as the algebraic intersection number of Scott and
Swarup for the corresponding splittings. Our main result is that, for embedded spheres in M these two intersection numbers
coincide. The principal method we use is the normal form for embedded spheres developed by Hatcher.

Before stating our result, we recall the definition of the intersection numbers.

Definition 1.1. Let A and B be two isotopy classes of embedded spheres S and T , respectively, in M . The geometric intersec-
tion number I(A, B) of A and B is defined as the minimum of the number of components |S ∩ T | of S ∩ T over embedded
transversal spheres S and T representing the isotopy classes A and B , respectively.

This is clearly symmetric. Further, for an embedded sphere S , if A = [S] then I(A, A) = 0.
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We consider next the algebraic intersection number. Let M̃ be the universal cover of M . Observe that π2(M) = π2(M̃) =
H2(M̃). The fundamental group π1(M) = G of M , which is a free group of rank n, acts freely on the universal cover M̃ of M
by deck transformations. Homotopy classes of spheres in M correspond to equivalence classes of elements in H2(M̃) up to
the action of deck transformations. For embedded spheres, we can consider isotopy classes instead of homotopy classes as
the homotopy classes of embedded spheres are the same as isotopy classes of embedded spheres [15].

For an embedded sphere S ∈ M with lift S̃ ∈ M̃ , all the translates of S̃ are embedded and disjoint from S̃ . In particular,
if Ã = [̃S] is the isotopy class represented by S̃ , then Ã and g Ã can be represented by disjoint embedded spheres for each
deck transformation g ∈ G .

Definition 1.2. Let A = [S] and B = [T ] be two isotopy classes of embedded spheres S and T , respectively, in M . Let Ã = [̃S]
and B̃ = [T̃ ], where S̃ and T̃ are the lifts of S and T , respectively, to M̃ . The algebraic intersection number Ĩ(A, B) of A and
B is defined as the number of translates g B̃ of B̃ such that Ã and g B̃ can not be represented by disjoint embedded spheres
in M̃ .

It was shown in [6] that this coincides with the algebraic intersection number of Scott and Swarup.
We say that two isotopy classes Ã = [̃S] and B̃ = [T̃ ] of embedded spheres in M̃ cross if they cannot be represented by

disjoint embedded spheres. Thus, the algebraic intersection number is the number of elements g ∈ π1(M) such that Ã and
g B̃ cross. We shall also say that S̃ and T̃ cross if the classes they represent cross.

It is immediate that Ã and g B̃ cross if and only if g−1 Ã and B̃ cross. It follows that Ĩ(A, B) = Ĩ(B, A). Thus the algebraic
intersection number is symmetric.

Clearly, for all but finitely many translates g B̃ of B̃ , Ã and g B̃ can be represented by disjoint embedded spheres in M̃ .
This is because, for any pair of embedded spheres S and T in M , all but finitely many translates of T̃ are disjoint from S̃
in M̃ . Hence Ĩ(A, B) is finite for all isotopy classes A and B of embedded spheres in M .

As was shown in [6], it follows from results of Scott and Swarup that if the algebraic intersection number between classes
A and B as above vanishes, then they can be represented by disjoint embedded spheres, i.e., their geometric intersection
number vanishes. The converse is an easy observation.

We prove here a much stronger result—that the algebraic and geometric intersection numbers are equal.

Theorem 1.3. For isotopy classes A and B of embedded spheres in M, Ĩ(A, B) = I(A, B).

Our proof is based on the normal form for spheres in M due to Hatcher [7], which we recall in Section 2. We extend a
sphere Σ in the isotopy class B to a maximal system of spheres and consider a sphere S in the isotopy class of A in normal
form with respect to this system. We then show in Section 3 that, when S is in normal form, the number of components
of intersection between S and Σ is the algebraic intersection number between the isotopy classes A = [S] and B .

Our methods also show that, if A1, . . . , An is a collection of isotopy classes of embedded spheres, each pair of which can
be represented by disjoint spheres, then all the classes Ai can be simultaneously represented by disjoint spheres. We prove
this in Theorem 3.3.

The sphere complex associated to M is a simplicial complex whose vertices are the isotopy classes of embedded spheres
in M . A set of isotopy classes of embedded spheres in M is deemed to span a simplex if they can be realized disjointly
in M . This is an analogue of the curve complex associated to a surface. The topological properties of the sphere complex
have been studied by Hatcher, Hatcher, Vogtmann and Hatcher and Wahl in [7–12]. Culler and Vogtmann have constructed
a contractible complex Outer space on which the outer automorphism group O ut(Fn) of the free group Fn acts discretely
and with finite stabilizers [3]. This is an analogue of Teichmüller space of surface on which the mapping class group of the
surface acts. Culler and Morgan have constructed a compactification of Outer space much like Thurston’s compactification
of Teichmüller space [2]. The curve complex has proved to be fruitful in studying Teichumüller space (see, for instance,
[13,14]).

The geometric intersection number of curves on a surface has been used to give constructions like the space of measured
laminations whose projectivization is the boundary of Teichmüller space, [16], as well as to study geometric properties,
including hyperbolicity of the curve complex in [1,17]. One may hope that the geometric intersection number of embedded
spheres in M might be useful to give such constructions in case sphere complex and Outer space. The sphere complex is
useful for studying the mapping class group of M , O ut(Fn) and Outer space.

An important ingredient of our proofs is the observation that if S and T are embedded spheres in M and S is in normal
form with respect to a maximal system of spheres containing T , then S and T intersect minimally. This is somewhat anal-
ogous to results for geodesics and least-area surfaces [4,5]. Further the components of intersection correspond to crossing.
This is very similar to the case of geodesics, where intersections correspond to linking of end points.

2. Normal spheres

We recall the notion of normal sphere systems from [7].

Definition 2.1. A smooth, embedded 2-sphere in M is said to be essential if it does not bound a 3-ball in M .
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Definition 2.2. A system of 2-spheres in M is defined as a finite collection of disjointly embedded, pair-wise non-isotopic,
essential smooth 2-spheres Si ⊂ M .

Let Σ = ⋃
j Σ j be a maximal system of 2-sphere in M . Splitting M along Σ , then produces a finite collection of 3-

punctured 3-spheres Pk . Here a 3-punctured 3-sphere is the complement of the interiors of three disjointly embedded
3-balls in a 3-sphere.

Definition 2.3. A system of 2-spheres S = ⋃
i Si in M is said to be in normal form with respect to Σ if each Si either coincides

with a sphere Σ j or meets Σ transversely in a non-empty finite collection of circles splitting Si into components called
pieces, such that the following two conditions hold in each Pk:

1. Each piece in Pk meets each component of ∂ Pk in at most one circle.
2. No piece in Pk is a disk which is isotopic, fixing its boundary, to a disk in ∂ Pk .

Thus each piece is a disk, a cylinder or a pair of pants. A disk piece has its boundary on one component of ∂ Pk and
separates the other two components of ∂ P K .

Recall the following result from [7].

Proposition 2.4 (Hatcher). Every system S ⊂ M can be isotoped to be in normal form with respect to Σ . In particular, every embedded
sphere S which does not bound a ball in M can be isotoped to be in normal form with respect to Σ .

We recall some constructions from [7]. First, we associate a tree T to M̃ corresponding to the decomposition of M by Σ .
Let Σ̃ be the pre-image of Σ in M̃ . The closure of each component of M̃ − Σ̃ is a 3-punctured 3-sphere. The vertices
of the tree are of two types, with one vertex corresponding to the closure of each component of M̃ − Σ̃ and one vertex
for each component of Σ̃ . An edge of T joins a pair of vertices if one of the vertices corresponds to the closure of a
component X of M̃ − Σ̃ and the other vertex corresponds to a component of Σ̃ that is in the boundary of X . Thus, we have
an Y -shaped subtree corresponding to each complementary component. We pick an embedding of T in M̃ respecting the
correspondences.

Given a sphere S in normal form with respect to Σ and a lift S̃ of S to M̃ , we associate a tree T (̃S) corresponding to
the decomposition of S̃ into pieces. The tree has two types of vertices, vertices corresponding to closures of components
of S̃ − Σ̃ (i.e., pieces) and vertices corresponding to each component of S̃ ∩ Σ̃ . Edges join a pair of vertices if one of the
vertices corresponds to a piece and the other to a boundary component of the piece.

In [7], it is shown that T (̃S) is a tree. Moreover, the inclusion S̃ ↪→ M̃ induces a natural inclusion map T (̃S) ↪→ T . So we
can view T (̃S) as a subtree of T . The bivalent vertices of T correspond to spheres components in Σ̃ , i.e., lifts of the spheres
Σ j and their translates.

3. Algebraic and geometric intersection numbers

Consider now two isotopy classes A and B of embedded spheres in M . Choose an embedded sphere Σ1 in the isotopy
class B and extend this to a maximal collection Σ of spheres. Let S be a representative for A in normal form with respect
to Σ . Theorem 1.3 is equivalent to showing that Ĩ(A, [Σ j]) = I(A, [Σ j]) for j = 1. We begin by showing the non-trivial
inequality here.

Lemma 3.1. If A = [S] is the isotopy class of the embedded sphere S in M, then for the isotopy class [Σ j] of Σ j in M, Ĩ(A, [Σ j]) �
I(A, [Σ j]).

Proof. The sphere S , which is in normal form with respect to Σ , represents the class A. We shall show that the number of
components of intersection of S with Σ j is Ĩ(A, [Σ j]). As the geometric intersection number is the minimum of the number
of components of intersection of spheres in the isotopy classes, the lemma is an immediate consequence of this claim.

Fix a lift S̃ of S . The components of S ∩ Σ j are homotopically trivial circles in M . These lift to circles of intersection
between S̃ and components of the pre-image of Σ j . These correspond to vertices of T (̃S). As T (̃S) is a tree which embeds
in T , different circles of intersection of S and Σ j correspond to intersections of S̃ with different components of the pre-
image of Σ j . It follows that the number of components of intersection of S with Σ j is the number of components of the
pre-image of Σ j that intersect S̃ .

The main observation needed is the following lemma.

Lemma 3.2. If S̃ intersects a component Σ̃ j of the pre-image of Σ j , then the spheres S̃ and Σ̃ j cross.

Proof. Assume that S̃ intersects the component Σ̃ j of the pre-image of Σ j . The sphere Σ̃ j corresponds to a vertex v0 of T .
As S̃ intersects Σ̃ j and S is in normal form, the vertex v0 is an interior vertex of T (̃S).
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We recall the notion of crossing due to Scott and Swarup, which by [6] is equivalent to the notion we use. The spheres S̃
and Σ̃ j partition the ends of M̃ into pairs of complementary subsets E±

S and E±
Σ , corresponding to the components of the

complement of the respective spheres in M̃ . The spheres S̃ and Σ̃ j cross if all the four intersections E±
S ∩ E±

Σ are non-empty.
A properly embedded path c : R → M̃ induces a map from the ends ±∞ of R to the ends of M̃ . Thus, we can associate

to c a pair of ends c± . We say that the path c is a path from c− to c+ . Poincaré duality gives a useful criterion for when
two ends E and E ′ of M̃ are in different equivalence classes with respect to the partition corresponding to S̃ . Namely, E

and E ′ are in different equivalence classes if and only if there is a proper path c from E to E ′ so that c · S̃ = ±1, with c · S̃
the intersection pairing obtained from the cup product using the duality between homology and cohomology with compact
support.

The ends of M̃ can be naturally identified with the ends of the tree T . The sets E±
Σ correspond to the ends of the two

components of T −{v0}. It is easy to see that Σ̃ and S̃ cross if and only if each of the sets E±
Σ contain pairs of ends E1 and

E2 which are in different equivalence classes with respect to the partition corresponding to S̃ . By symmetry, it suffices to
consider the case of E+

Σ . Let X denote the closure of the component of M̃ − Σ̃ j with ends(X) = E+
Σ .

As v0 is an internal vertex of the tree T (̃S), there is a terminal vertex w of T (̃S) contained in X . A terminal vertex of
T (̃S) corresponds to a piece which is a disc D in a 3-punctured sphere P , with P the closure of a component of M̃ − Σ̃ .
Let Q 1 and Q 2 denote the boundary components of P disjoint from D (hence from S). Then D separates Q 1 and Q 2.

For i = 1,2, let W i denote the closure of the component of M̃ − Q i which does not contain S . As Q i is the lift of
an essential sphere, and M̃ is simply-connected, Q i is non-trivial as an element of H2(M̃). Hence W i is non-compact. By
construction W i ⊂ X , hence the ends of W i are contained in E+

Σ .
As D separates Q 1 and Q 2, (after possibly interchanging Q 1 and Q 2) there is a path c : [0,1] → P intersecting S

transversely in one point (with the sign of the intersection +1) so that c(0) ∈ Q 1 and c(1) ∈ Q 2. As W1 and W2 are
non-compact, we can extend c to a proper function c : R → M̃ with c((−∞,0)) ⊂ W1 and c((1,∞)) ⊂ W2.

The ends E1 and E2 of c are ends of X (as W i ⊂ X for i = 1,2). Further, by construction c · S = 1. It follows that the
ends E1, E2 ⊂ E+

Σ are in different components with respect to the partition corresponding to S . By symmetry, we can find
a similar pair of ends in E−

Σ . It follows that S̃ and Σ̃ cross. �
We now complete the proof of Lemma 3.1. We have seen that the number of components of S ∩ Σ j is the number of

components of the pre-image of Σ j which intersect S̃ . For a fixed lift Σ̃ j of Σ j , the components of the pre-images of Σ j

are the translates gΣ̃ j of Σ̃ j .
By Lemma 3.2, it follows that if S̃ intersects gΣ̃ j , then S̃ crosses gΣ̃ j . The converse of this is obvious. By the definition

of algebraic intersection number, Lemma 3.1 follows. �
Proof of Theorem 1.3. We have seen that it suffices to consider the case when A = [S], B = [Σ1] and S is in normal form
with respect to Σ . By Lemma 3.1, Ĩ(A, B) � I(A, B).

Conversely, let S and Σ1 be embedded spheres with A = [S], B = [Σ1] and I(A, B) = |S ∩Σ1|. Let S̃ and Σ̃1 be lifts of S
and Σ1, respectively, to M̃ . Observe that (distinct) components of intersection of S with Σ1 lift to (distinct) components of
intersection of S̃ with translates of Σ̃1. Hence the number of translates of Σ̃1 that intersect S̃ is at most I(A, B). As Ĩ(A, B)

is the number of translates of Σ̃1 that cross S̃ , and components that cross must intersect, it follows that Ĩ(A, B) � I(A, B).
This completes the proof of the theorem. �
Our methods also yield the following result. This also follows from the work of Scott and Swarup, see [18].

Theorem 3.3. If A1, . . . , An are isotopy classes of embedded spheres in M such that, for 1 � i, j � n, Ai and A j can be represented by
disjoint spheres, then there exist disjointly embedded spheres Si , 1 � i � n, such that Ai = [Si].

Proof. We prove this by induction on n. For n = 1,2, the conclusion is immediate from the hypothesis. Assume that the
result holds for n = k and consider a collection Ai as in the hypothesis with n = k + 1.

Suppose one of the spheres, which we can assume without loss of generality is An , is not essential. By the induction
hypothesis, there are disjoint embedded spheres Si , 1 � i < n, with [Si] = Ai . Choose a 3-ball disjoint from the spheres Si ,
1 � i < n, and let Sn be its boundary. Then the spheres Si , 1 � i � n, give the required collection.

Thus we may assume that all the isotopy classes Ai of spheres are essential. By induction hypothesis, there are disjoint
embedded spheres Si , 1 � i < n, with [Si] = Ai . As these are essential by our assumption, we can extend the collection
Si to a maximal system of spheres. We let Sn be a sphere in normal form with respect to this collection. By hypothesis,
I(Sn, Si) = 0 for 1 � i � n. By the proof of Lemma 3.1, it follows that Sn is disjoint from Si . Thus, Si , 1 � i � n, is a collection
of disjoint embedded spheres with Ai = [Si]. �
Remark 3.4. The above theorem shows that the sphere complex associated to M is a full complex in the sense that if
V 1, V 2, . . . , Vk are the vertices of the sphere complex and if there is an edge between every pair V i, V j of vertices, where
1 � i, j � k, then these vertices bound a simplex in the sphere complex.
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