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a b s t r a c t

Hydrodynamic lubrication problems in piezoviscous regime are usually modeled by the
classical Reynolds equation combined with a suitable law for the pressure dependence
of viscosity. For the case of pressure–viscosity dependence in the Stokes equation, a new
Reynolds equation in the thin film limit has been proposed by Rajagopal and Szeri. How-
ever, these authors consider some additional simplifications. In the present work, avoiding
these simplifications and starting from a Stokes equation with pressure dependence of vis-
cosity through Barus law, a new Reynolds model for line contact lubrication problems is
deduced, in which the cavitation phenomenon is also taken into account. Thus, the new
complete model consists of a nonlinear free boundary problem associated to the proposed
new Reynolds equation.

Moreover, the classical model, the one proposed by Rajagopal and Szeri and the here pro-
posed one are simulated through the development of some numerical algorithms involving
finite elements method, projected relaxation techniques, duality type numerical strategies
and fixed point iteration techniques. Finally, several numerical tests are performed to carry
out a comparative analysis among the different models.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In thin film lubrication problems the assumption that the viscosity of the lubricant remains constant, and therefore inde-
pendent of pressure, results to be reasonable in low pressure regimes. However, when the lubricant is subjected to high pres-
sures a strong dependence of viscosity on pressure arises, thus leading to the so called piezoviscous lubrication regimes. In
the mechanical and mathematical literature concerning the models for piezoviscous hydrodynamic thin film lubrication
problems, different classical devices have been considered, such as journal-bearings, rolling-bearings or rolling-ball-bearings
(see [1], for example). In all of these situations, the behavior of the lubricant pressure in the thin film setting has been clas-
sically modeled by the Reynolds equation, in which the pressure dependence of viscosity is usually introduced a posteriori by
some expression. In this procedure, the thin film limit from Stokes equation to Reynolds one is obtained regardless of the
pressure–viscosity dependence, as in the case of constant viscosity (isoviscous regime). We note that in the constant viscos-
ity case, the heuristic statement of incompressible Reynolds equation from Stokes model is obtained in [2] while the more
rigorous one based on asymptotic developments is proved in [3].
uez).
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In the piezoviscous case, one of the most classical expressions relating pressure and viscosity is given by the Barus law
l ¼ l0eap; ð1Þ
where l;l0; p and a denote the viscosity, the zero pressure viscosity, the pressure and the piezoviscosity coefficient, respec-
tively. Classically in the lubrication literature, the expression (1) is plugged into Reynolds equation to model piezoviscous
regimes. The resulting nonlinear Reynolds equation is then used inside more complex models that additionally consider
presence of cavitation or elastohydrodynamic phenomena. In these more complex settings, this way of including piezovis-
cous regimes has given rise to several mathematical analysis results that state the existence and the uniqueness of solution,
as well as to the design of suitable numerical methods to approximate the corresponding solutions, for which there are no
analytical expressions (see, for example, [4–8]).

Barus law has been also used to model pressure dependence of viscosity in the original Stokes equation in [9] arguing also
that Reynolds equation is only valid when the shear stress is much smaller than the reciprocal of the pressure–viscosity coef-
ficient, while later on in [10] a corrected Reynolds equation is obtained from Navier–Stokes ones with pressure dependence
of viscosity and in [11] a simpler derivation is obtained.

More recently, by assuming that the viscosity depends on pressure in Stokes equation according to Barus law, in [12] a
more careful derivation of the limit Reynolds equation is carried out. The authors find additional terms to those ones appear-
ing in the classical Reynolds equations used for elastohydrodynamic computations. Furthermore, they evaluate the conse-
quences of these additional terms in the hydrodynamic regimes leading to high enough pressure values. This derivation
starts from the assumptions that stress tensor in the incompressible fluid includes the possibility that constraint forces could
influence the work and is linear in the symmetric part of the velocity gradient tensor. Thus, unlike the Navier–Stokes equa-
tion for incompressible fluids which involves an explicit relation between both tensors and a constant viscosity, in this
departure model an implicit relation holds and pressure dependence of viscosity is considered. More precisely, the departure
model in the case of a steady two dimensional plane flow is given by the following equations:
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@x
@p
@x
þ l0ðpÞ @u

@y
þ @v
@x

� �
@p
@y
¼ q u

@u
@x
þ v @u

@y

� �
ð2Þ

� @p
@y
þ lðpÞDv þ l0ðpÞ @u

@y
þ @v
@x

� �
@p
@x
þ 2l0ðpÞ @v

@y
@p
@y
¼ q u

@v
@x
þ v @v

@y

� �
ð3Þ

@u
@x
þ @v
@y
¼ 0; ð4Þ
where x and y denote the spatial coordinates, ðu;vÞ represents the velocity field and q denotes the fluid density. Note that the
viscosity depends on pressure. After some simplifying assumptions detailed in [12], including that @p=@y ¼ 0, Eqs. (2) and (3)
are reduced to
dp
dx
¼ l @

2u
@y2 þ 2

dl
dp

@u
@x

dp
dx
: ð5Þ
Next, by integrating (5) twice across the film and taking into account the boundary conditions for the horizontal velocity we
can get an expression for uðx; yÞ. Finally, by replacing this expression in (4) and integrating again across the film for a vertical
velocity v vanishing at both surfaces, the following modified Reynolds equation is obtained:
d
dx

h3

l
� 12a

Z h

0
yðh� yÞ @u

@x
dy

 !
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" #
¼ 6s

dh
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; ð6Þ
jointly with the Barus law (1). Here h; ðu;vÞ and ðs;0Þ denote the gap between surfaces, the velocity field in the thin film and
the given velocity of the lower sliding surface, assuming that the upper surface is fixed. Furthermore, by using the
simplification
@u
@x
� duav

dx
; ð7Þ
where uav is an average velocity, the flow rate
Q ¼ hðxÞuavðxÞ ð8Þ
is introduced in [12] to deduce the following modified Reynolds equation
d
dx

h3
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þ aQ
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" #
¼ 6s

dh
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: ð9Þ
Next, for the case of the hydrodynamic and elastohydrodynamic lubrication of a long cylinder rolling on a plane, in [12] the
effect of the extra term appearing in the modified equation with respect to the classical one is numerically investigated. The
chosen device parameters imply that high pressures appear, so that their computed values and those ones of the correspond-
ing viscosities allow to illustrate the existence of differences between both models, mainly consisting in higher values for the
case of modified equation.
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In the present paper, we avoid the use of some simplifications considered in [12] and propose an original methodology to
deduce a family of models that take into account the pressure dependence of viscosity, by solving the problem defined by
Eqs. (6), (4) and (1). More precisely, a fixed point iteration produces different models, the complexity of which ones increases
with iterations. The present work focuses on the model produced by the first iteration of the algorithm, in which additional
terms appear with respect to the more classical piezoviscous model, noting that for particular values of certain parameters
both the isoviscous and the classical piezoviscous models can be recovered. Additionally, we model the consideration of cav-
itation phenomenon by means of a complementarity formulation (also known as Reynolds cavitation model). It is wellknown
that this cavitation model can be formulated in terms of a variational inequality. Moreover, we propose two different numer-
ical methods to solve the new model: the first one based on the second order differential equation problem and the second
one on a first order equation. By using these numerical methods, the hydrodynamic behavior of the lubricant film in the pres-
ence of sufficiently high pressures for the three piezoviscous models can be compared.

The paper is organized as follows. In Section 2 the here proposed model is presented. Section 3 describes the cavitation
model here considered and the scaling. The reduction to an initial value problem associated to first order ordinary differen-
tial equation is stated in Section 4. In Section 5 the numerical methods are described. Numerical results are presented in Sec-
tion 6. Finally, in Section 7 some considerations about conclusions and future work are summarized.

2. An alternative Reynolds equation for piezoviscous lubrication

As indicated in the introduction, in the present work we mainly propose a more rigorous way to obtain a piezoviscous
model avoiding the simplification (7) that has been considered to state the modified Reynolds equation (9). The proposed
methodology to deduce a new family of models is based on a fixed point technique to solve the coupled system defined
by Eqs. (6), (4) and (1).

For this purpose, we start by considering an initial iteration for the horizontal velocity, u0ðx; yÞ, vanishing at the upper
surface, equal to s at the lower one and satisfying the flux condition
Z h

0
u0ðx; yÞdy ¼ Q : ð10Þ
After some easy computations, we can obtain the following expression
u0ðx; yÞ ¼ sh
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Next, replacing u by u0 in (6) we get
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so that, after an easy integration, the following first iteration alternative model for the pressure can be obtained
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Now, if expression (11) for u0ðx; yÞ is introduced in (4) we deduce the following expression for v0:
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In order to deduce the model for the next iteration, we start by replacing the previous expression of v0 in Eq. (4), and then we
use (5) to obtain
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or equivalently,
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Next, in (6) we can consider u ¼ u1 to obtain the second iteration in the pressure
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so that, replacing u1 by expression (15), we get
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Next, v1 can be computed and the continuation of the fixed point iteration procedure allows to subsequently define u2; p2

and v2, and so on. In this way, this fixed point technique provides a family of alternative models. However, it does not seem
possible to obtain a generic procedure and the complexity of the involved expressions is increasing; this being the main rea-
son why we just consider in this paper the modified Reynolds equation (12) produced by the first iteration. Thus, the alter-
native Reynolds equation here proposed to model piezoviscous regimes is the following one:
d
dx

h3

l
� 12a

dh
dx

sh2

30
� Qh

10

 ! !
dp
dx

" #
¼ 6s

dh
dx
; ð18Þ
where p is the unknown pressure and l denotes the viscosity that depends on the pressure through Barus law.
Notice that (18) can be understood as a kind of conservation equation for the flow rate
F ¼ sh
2
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12l
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3. Cavitation model and scaling

As indicated in the review paper [13] and throughout the literature, cavitation is one of the most relevant features of
lubrication problems. This phenomenon is defined in [14] as the rupture of the continuous fluid film due to the formation
of air bubbles inside. The presence of two different regions, the first with a complete fluid film and the second with a partial
film (partial lubrication in cavitated area), has been experimentally observed in many lubricated devices such as journal-
bearings, ball-bearings, etc.

A review concerning the mathematical and physical analysis of the different models is presented in [15]. The common
feature of the models lies in the domain decomposition into two parts: a lubrication region where the appropriate Reynolds
equation is verified and a cavitation region where the pressure is taken to be a constant (the vapor saturation pressure). The
difference between models comes from the condition imposed on the (unknown) free boundary that separates lubricated
and cavitated areas. The two most widely used models are the so called Reynolds (or Swift–Stieber) and Elrod-Adams ones.

The Reynolds model for cavitation starts from the consideration that the pressure in the whole domain is greater than the
(known) saturation pressure, thus giving rise to an important number of mathematical papers that use the theory of varia-
tional inequalities by associating this model to an obstacle problem. This idea is reinforced by the fact that initially the most
popular numerical method used to cope with cavitation in mechanical engineering rely on this approach. Furthermore, this is
the usual first approach to cavitation when new Reynolds equations appear. So, in the present paper we propose this model
to take into account cavitation and leave the more complex Elrod-Adams model for forthcoming studies.

Reynolds model for cavitation is based on the free boundary condition
p ¼ @p
@x
¼ 0 ð20Þ
at the unknown interface between the cavitation and lubrication region.
Then, the cavitation model for lubrication admits the following complementarity problem formulation:
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In order to compare the results with those ones appearing in [12] for the case of a rigid long rolling-cylinder, we introduce
the angular coordinate, t, defined by the change of variable
x ¼ R sinðtÞ; t 2 ½�p=2;p=2�;



G. Bayada et al. / Applied Mathematical Modelling 37 (2013) 8505–8517 8509
where R represents the radius of the cylinder. Then, we define the film thickness by
hðtÞ ¼ �R
n
ð1þ n cosðtÞÞ; n ¼ � R

h0 þ R
; h0 ¼ hð0Þ;
where h0 is the minimum of the thickness. Moreover, we introduce the following scaled magnitudes:
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10
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dp
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Once we consider this scaling in the previously described Reynolds model for cavitation, then p can be obtained as the
solution of the following dimensionless complementarity problem posed in the domain X ¼ ð�p=2;p=2Þ:
d
dt

Gðt;pÞdp
dt
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P 6

dh
dt

in X; ð25Þ

p P 0 in X; ð26Þ
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jointly with the boundary conditions pð�p=2Þ ¼ 0; pðp=2Þ ¼ 0. The term G is defined by
Gðt; pÞ ¼ h3e�ap � 12b
cosðtÞ

dh
dt
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30
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10
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1

�nh0 cosðtÞ
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where h0 denotes the minimum of the dimensionless gap.
On the other hand, if we introduce the unknown lubrication and cavitation regions
Xþ ¼ ft 2 X=pðtÞ > 0g; X0 ¼ ft 2 X=pðtÞ ¼ 0g;
then the following equations hold:
d
dt

Gðt;pÞ dp
dt

� �
¼ 6

dh
dt
; p > 0 in Xþ; ð29Þ

p ¼ 0 in X0; ð30Þ

pðt2Þ ¼
dp
dt
ðt2Þ ¼ 0: ð31Þ
Notice that the so called smooth pasting condition (31) at the free boundary actually corresponds to the conservation of the
scaled flow rate (24) through the unknown interface, t2, separating the lubrication and cavitation regions. By using (24) and
(31) we can rewrite G in the form
Gðt; pÞ ¼ h3e�ap � 12b
cosðtÞ

dh
dt

h2

30
� hh2

20

 ! !
1

�nh0 cosðtÞ
; ð32Þ
where h2 ¼ hðt2Þ at the unknown free boundary t2.
It is important to point out that the model (25)–(27), or the equivalent set of Eqs. (29)–(31), includes the isoviscous case

for a ¼ b ¼ 0 and the classical piezoviscous model for the choice a – 0 and b ¼ 0. Furthermore, the Rajagopal and Szeri mod-
el in [12] may be also written in a similar way, although with the following slightly different expression of G:
Gðt; pÞ ¼ h3e�ap þ bh2

2 cosðtÞ
dh2

dt

 !
1

�nh0 cosðtÞ
: ð33Þ
4. An alternative first order model

Following some ideas in [12], another alternative is to restart from the modified Reynolds equation (18), to integrate it
and interpret the result as a kind of conservation equation for the flow rate Q given by (19).

Therefore, from (19) we can pose the following first order ordinary differential equation:
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dp
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sh
2
� Q
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12l
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sh2
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 ! : ð34Þ
So, by introducing the change of variable x ¼ R sinðtÞ, rescaling as before and taking into account the expression (24) and
the condition (31), the next dimensionless initial value ode problem is obtained:
dp
dt
¼

6ð�nÞh0 cos2ðtÞ h� h2

h i
h3e�ap cosðtÞ þ 6

5 bn sinðtÞh h
3�

h2
2

h i ; ð35Þ

pð�p=2Þ ¼ 0: ð36Þ
It is important to notice that the solution of (35)–(36) satisfying pðt2Þ ¼ 0 is the solution of (29)–(31).
Analogously, the corresponding first order ODE version for isoviscous, classical piezoviscous and Rajagopal and Szeri mod-

els can be obtained.

5. Numerical methods

Two different formulations have been posed for the alternative piezoviscous model which can also be applied to the other
piezoviscous and isoviscous models. In this section, several numerical schemes are proposed to obtain the numerical solu-
tions of these problems involving first order ODE solvers, finite elements method, projected relaxation algorithms and dual-
ity type method. As the present study is mainly devoted to numerical aspects, neither the theoretical results related to
existence and uniqueness, nor the statement of the qualitative properties of the solution of these models are considered here.
However, let us mention some related partial results in the literature. In the variational inequality formulation in the forth-
coming Section 5.1, existence and uniqueness is well known for the usual model with a ¼ 0 (see [16], for example). For a
different from 0, there exists only one partial result in [17], in which existence and uniqueness is proved for the equation,
under very strong assumptions on the data. However, the small data and non negativity of dh=dt assumptions in [17] are very
far from conditions in the present situation. Concerning the alternative first order ODE model, it is based on some classical
results in [18] for the Reynolds solution in the isoviscous regime. More precisely, in [18] it is proved that cavitation can only
occur in the divergent part of the gap (i.e. the region where dh=dt > 0) and that the cavitated area is a connected one. In other
words, there is only one free boundary point situated between t ¼ 0 and t ¼ p=2, so that the cavitation region is located be-
tween this point and t ¼ p=2. Assuming that this also holds in the present setting, the numerical procedure proposed in Sec-
tion 5.2. is justified. Notice that although this qualitative property of the solution is not assumed in Section 5.1., it is
confirmed by our numerical results.

5.1. Numerical solution of the alternative Reynolds equation

The numerical solutions for the problem (25)–(27) may be obtained by the combination of finite element techniques with
a classical projection method [19] or a more complex duality type algorithm proposed in [20]. The application of these tech-
niques to classical piezoviscous formulations can be found in [6–8,21], for example. The departure point is the formulation of
the complementarity problem in terms of an equivalent variational inequality formulation. More precisely, the solution of
problem (25)–(27) jointly with the boundary conditions satisfies that p 2 K and
Z p=2

�p=2
Gðt; pÞp0ðu� pÞ0dt P �6

Z p=2

�p=2
h0ðu� pÞdt; 8u 2 K; ð37Þ
where
K ¼ fu 2 H1
0ðXÞ=u P 0g
and H1
0ðXÞ denotes the classical Sobolev space.

Starting from p0, solution of the isoviscous case, we apply a fixed point algorithm for the nonlinearity related to piezo-
viscosity. At ðnþ 1Þth iteration, for a given pn, we obtain pnþ1 2 K , such that
Z p=2

�p=2
Gðt; pnÞðpnþ1Þ0ðu� pnþ1Þ0dt P �6

Z p=2

�p=2
h0ðu� pnþ1Þdt; 8u 2 K;
with Gðt; pÞ given by expression (32) for the alternative model here proposed and by (33) for the Rajagopal and Szeri one.
Notice that for the existence and uniqueness of pnþ1, the positiveness of Gðt; pnÞ is required at each step n. Although here
we do not address theoretically this open problem, we point out that in all numerical experiments the computed value of
Gðt; pnÞ remains strictly positive and the stiffness matrix associated to the discretized problem is positive defined.

For the spatial discretization we consider a classical piecewise linear Lagrange finite element space, so that the discretized
problem consists of finding pnþ1

h 2 Kh, such that
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Z p=2

�p=2
Gðt; pn

hÞðpnþ1
h Þ0ðuh � pnþ1

h Þ0dt P �6
Z p=2

�p=2
h0ðuh � pnþ1

h Þdt; 8uh 2 Kh; ð38Þ
where Vh denotes the finite element space (see [22], for example):
Vh ¼ fuh 2 C0ðXÞ=uhjE 2 P1; 8E 2 shg;
E being a standard element of the finite element mesh, the subspace V0h is given by
V0h ¼ fuh 2 Vh=uhð�p=2Þ ¼ 0; uhðp=2Þ ¼ 0g
and the convex set Kh is defined by
Kh ¼ fu2V0h=uhðxiÞP 0; 8i node of shg:
For simplicity, hereafter we omit the natural dependence h in the unknown p and the functions in the finite element space, h
being the stepsize of the uniform finite element mesh.

At this point we propose two alternatives to solve the discretized problem (38): a relaxation algorithm with projection on
the convex set Kh first described in [19] and the duality type algorithm proposed in [20] for the numerical solution partial
differential equations involving maximal monotone operators. As the first one is classical we describe the application of the
second one.

In order to apply the duality method in [20], we introduce the indicatrix function of the convex Kh denoted by IKh
, so that

the variational inequality of first kind (38) can be transformed in the equivalent variational inequality of second kind that
consists of finding pnþ1 2 V0h, such that
Z p=2
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Gðt; pnÞðpnþ1Þ0ðu� pnþ1Þ0dt þ IKh

ðuÞ � IKh
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Moreover, we use the notation
ðAnpnþ1;uÞ ¼
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Then, using the tools of subdifferential calculus, we obtain that
cnþ1 ¼ �ðAnpnþ1 � f nÞ 2 @IKðpnþ1Þ; ð39Þ
where @IKh
denotes the subdifferential of the indicatrix function. Therefore, the variational inequality problem defined by

(39) is equivalent to the problem:
Find pnþ1 2 V0h, such that
Z p=2
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Z p=2
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h0udt; 8u 2 V0h; ð40Þ

cnþ1 2 @IKðpnþ1Þ: ð41Þ
As the multivalued operator @IKh
is the subdifferential of the indicatrix function IKh

then it is a maximal monotone. In order to
apply the results in [20], for a given parameter x > 0, we introduce the new variable
bnþ1 2 @IKh
ðpnþ1Þ �xpnþ1: ð42Þ
In terms of this new variable bnþ1, the equivalent formulation to (40)–(41) can be written in the form:
Find pnþ1 2 V0h, such that
Z p=2

�p=2
Gðt;pnÞðpnþ1Þ0u0dt þ

Z p=2

�p=2
ðbnþ1 þxpnþ1Þudt ¼ �6s

Z p=2

�p=2
h0udt; 8u 2 V0h; ð43Þ

bnþ1 2 @IKðpnþ1Þ �xpnþ1; ð44Þ
with x > 0.
Then by using a lemma appearing in [20], we have that (44) is equivalent to
bnþ1 ¼ Kx
k ðpnþ1 þ kbnþ1Þ; ð45Þ
where Kx
k denotes the Yosida approximation of the operator @IKh

�xI with parameter k > 0, we drop the dependence on h
for the operator Kx

k .
Next, we summarize the steps of duality algorithm to solve (43)–(44) as follows:



Table 1
Maximum values of p for the different models, formulations and numerical schemes with ratio ¼ 103.

ODE-R VI-BM-R VI-Rel-R Analytical

Isoviscous 33.9235 33.9146 33.9230 33.9229
Piezo classical 40.7514 40.7373 40.7506
Piezo Szeri 40.7562 40.7419 40.7553 –
Piezo alternative 40.7508 40.7381 40.7514

Table 2
Values of t2 for the different models, formulations and numerical schemes with ratio ¼ 103.

ODE-R VI-BM-R VI-Rel-R Analytical

Isoviscous 0.021230 0.020460 0.021245 0.021230
Piezo classical 0.021230 0.020460 0.021245
Piezo Szeri 0.021230 0.020460 0.021245 –
Piezo alternative 0.021230 0.020460 0.021245
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Fig. 1. Dimensionless pressure for the three numerical schemes with ratio ¼ 103 and the proposed alternative piezoviscous model.
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� Initialize bnþ1
0 .

� At step jþ 1, for a given bnþ1
j , obtain pnþ1

jþ1 as the solution of the following linear problem:
Z p=2

�p=2
Gðt; pnÞðpnþ1

jþ1 Þ
0u0dt þx

Z p=2

�p=2
pnþ1

jþ1 udt ¼ �
Z p=2

�p=2
bnþ1

j udt � 6
Z p=2

�p=2
h0udt; 8u 2 V0h: ð46Þ
� Update the value of bnþ1
jþ1 with
bnþ1
jþ1 ¼ Kx

k ðpnþ1
jþ1 þ kbnþ1

j Þ: ð47Þ
� Repeat the previous two steps until satisfying of the convergence test in sequence fpnþ1
j g in index j.

We note that the analytical expression of Kx
k allows to update in (47) with
bnþ1
jþ1 ¼

ðpnþ1
jþ1 þ kbnþ1

j Þ � PKh
ðpnþ1

jþ1 þ kbnþ1
j Þ

kð1� kxÞ �xðpnþ1
jþ1 þ kbnþ1

j Þ; ð48Þ
where PKh
denotes the projection operator onto the convex Kh. Some convergence results have been proved in [20] under the

constraint kx 6 1=2, so that here we take kx ¼ 1=2 in all tests.
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Fig. 2. Zoom of the dimensionless pressure maximum for the three numerical schemes with ratio ¼ 103 and the proposed alternative piezoviscous model.
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Fig. 3. Zoom of the dimensionless pressure maximum for the three piezoviscous models and the isoviscous one with ratio ¼ 103 and the [ODE-R] numerical
scheme.
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5.2. Numerical solution of the first order ODE problem

In the numerical solution of the first order ODE problem we have to compute the pressure p that satisfies the initial value
problem (35)–(36) and the point t2 such that pðt2Þ ¼ 0 and p0ðt2Þ ¼ 0.

For this purpose, the proposed iterative numerical scheme combines a regula falsi algorithm that builds a sequence ftk
2g in

the interval ð0;p=2Þ, designed to converge to t2, with the use of the ode15s integrator of MATLAB to solve the initial value
problem in ½�p=2; tk

2�, for each value of tk
2. So, the sketch of the algorithm is as follows:

� Start regula falsi with the interval ½t0
2; t

1
2� ¼ ½0;p=2�.

� At the step k, for a given tk
2, solve the initial value problem
dpk

dt
¼ �6n cos2ðtÞðh� hk

2Þh0

h3 cosðtÞe�ap þ 6
5 bn sinðtÞh h

3�
hk

2
2

� � in ð�p=2; tk
2�;

pkð�p
2
Þ ¼ 0;
where hk
2 ¼ hðtk

2Þ
� if pkðtk

2Þ – 0, update tkþ1
2 using regula falsi
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Fig. 4. Zoom of the dimensionless viscosity maximum for the three piezoviscous models with ratio ¼ 103 and the [ODE-R] numerical scheme.

Table 3
Maximum values of p for the different models, formulations and numerical schemes with ratio ¼ 104.

ODE-R VI-BM-R VI-Rel-R Analytical

Isoviscous 107.520 107.526 107.518 107.520
Piezo classical 765.787 765.705 759.558
Piezo Szeri 824.881 892.148 812.327 –
Piezo alternative 771.111 763.985 754.963

Table 4
Values of t2 for the different models, formulations and numerical schemes with ratio ¼ 104.

ODE-R VI-BM-R VI-Rel-R Analytical

Isoviscous 6:7188� 10�3 6:2832� 10�3 6:7151� 10�3 6:7187� 10�3

Piezo classical 6:7189� 10�3 6:2832� 10�3 6:7151� 10�3

Piezo Szeri 6:7190� 10�3 6:2832� 10�3 6:7151� 10�3 –

Piezo alternative 6:7188� 10�3 6:2832� 10�3 6:7151� 10�3
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After convergence, the final solution is extended to the interval ½�p=2;p=2� by pðtÞ ¼ 0 in ðt2;p=2�, so that the cavitation
region is ðt2;p=2� as it is also obtained in the variational inequality model.
6. Numerical tests

In order to assess the relevance of the extra terms of both new more rigorous models for the piezoviscous case when com-
pared with the classical piezoviscous formulation, several numerical tests have been carried out. The idea is to make a com-
parative analysis of the different models, formulations and numerical schemes presented in the previous sections, mainly
taking as a reference the data set of the numerical examples in [12]. Although in the presence of high pressures the cylinder
will deformed, in the present paper to illustrate the differences we restrict ourselves to the case of a rigid cylinder. In a future
work, the elastohydrodynamic case will be treated. So, these data are a ¼ 9:293� 10�3 and b ¼ a=ratio, with ratio ¼ 104. In
addition, the value ratio ¼ 103, is introduced here to analyze a less extreme case. We recall again that to reproduce the clas-
sical piezoviscous model b ¼ 0 can be chosen and for the isoviscous case a ¼ b ¼ 0 can be considered.

For the solution of the variational inequality model with the projected relaxation numerical scheme, labeled by [VI-Rel-R]
in the forthcoming tables and figures, in all tests a uniform finite element mesh with 80,000 nodes on the interval
½�p=2;p=2� has been chosen and a relaxation parameter equal to 1.99 has been considered. Moreover, for the inner relaxa-
tion algorithm and for the outer fixed point iteration method, the tolerances for the stopping tests have been taken equal to
10�12 and 5� 10�6, respectively.

For the solution of the variational inequality model with the duality method, labeled by [VI-BM-R], the same discretiza-
tion is taken on the interval ½�p=2;p=2�. In addition, for ratio ¼ 103 the chosen parameters are x ¼ 3:1 and a tolerance of
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Fig. 5. Zoom of the dimensionless pressure for the three numerical schemes with ratio ¼ 104 and the proposed alternative piezoviscous model.
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Fig. 6. Zoom of the dimensionless pressure maximum for the three numerical schemes with ratio ¼ 104 and the proposed alternative piezoviscous model.
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10�6 in the duality algorithm stopping test, while for ratio ¼ 104 these parameters are x ¼ 0:1 and a tolerance of 10�6. For
both cases a tolerance of 10�3 for the fixed point stopping test is chosen.

In the numerical scheme implemented for the first order ODE formulation, labeled by [ODE-R], a 40,000 nodes discreti-
zation of each interval ½� p

2 ; t
k
2� is taken, thus leading to a similar stepsize to the one used in the meshes for the previous

methods. Furthermore, the MATLAB ode15s integration function, with RelTol¼ 10�6 and AbsTol¼ 10�5, is combined with
a regula falsi algorithm with a stopping test of 5� 10�5.

Table 1 shows the computed maximum of the dimensionless pressure with the different models, formulations and
numerical schemes for the less extreme case with ratio ¼ 103 and Table 2 shows the corresponding computed free boundary
point t2. For the isoviscous case, the exact results provided by an analytical solution are included as a reference.

Figs. 1 and 2 show the dimensionless pressure profile obtained with the diferent numerical schemes for one of the piezo-
viscous models for the case ratio ¼ 103; for the other models the behaviour is analogous. So, in this case, the three numerical
schemes reach similar solutions and have a similar performance.

Fig. 3 shows the maximum values of the dimensionless pressure obtained with the [ODE-R] numerical scheme for all the
models in the case with ratio ¼ 103 and Fig. 4 shows the corresponding results for the dimensionless viscosity; for the other
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numerical schemes the profiles are analogous. In this case, there is almost no difference between the three piezoviscous
models.

Table 3 shows the maximum of the dimensionless pressure obtained with the different models, formulations and numer-
ical schemes for the more extreme case with ratio ¼ 104 and Table 4 shows the free boundary point t2. For the isoviscous
case, the analytical solution values are again included as a reference. It seems that the results obtained with the numerical
schemes here implemented for the Rajagopal and Szeri model are very similar to the solution presented in [12]. All of them
may be used to make a comparison with the solutions of the other models, but the [ODE-R] scheme seems to provide the
closest solutions.

Fig. 5 shows the dimensionless pressure profile obtained with the different numerical schemes for the here proposed
piezoviscous model in the case with ratio ¼ 104. A slight difference can be observed between the maximum of pressure ob-
tained with the three numerical schemes but all of them have a similar performance.

Fig. 6 shows the maximum values of the dimensionless pressure obtained with the [ODE-R] numerical scheme for all the
models in the case with ratio ¼ 104. Fig. 7 shows the corresponding dimensionless viscosity for these models. In this case,
there is a slight difference between the maximum of pressure obtained with the classical piezoviscous model and the here
proposed one, while the other model reaches a higher value. For the viscosity, the difference between the maximum value for
the Rajagopal and Szeri model and the other two models is greater.
7. Conclusions

In this paper, a rigorous methodology to include piezoviscosity previously to the limit procedures to obtain a Reynolds
model has been developed, overcoming a simplification hypothesis considered in [12]. Additionally, by means of a suitable
complementarity formulation, the possible presence of cavitation is included.

In order to compare the different piezoviscous lubrication models, appropriate numerical techniques are proposed for the
variational inequality formulation for the alternative Reynolds cavitation model and for the first order equation in the lubri-
cated region.

Concerning the numerical results, a first general conclusion is that for critical values of the parameters the pressure exhib-
its a large gradient near the maximum pressure region, so that it results difficult to capture the almost spike qualitative
behavior of the solution in all models. Furthermore, in the extreme regime that we have considered, it seems that the numer-
ical results obtained for this new model result to be closer to the ones of the classical model mainly used in mechanical and
mathematical literature.

Now, the authors are trying to extend the alternative model when Elrod-Adams model for cavitation is used, as it results
more realistic when cavitation regions appear in the convergent region (starvation phenomenon). Other forthcoming studies
are devoted to the consideration of the elastohydrodynamic lubrication regime.
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